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Abstract

Wildland fires in relatively homogeneous terrains and vegetation
motivates this work which considers the formation of green islands,
regions of vegetation that become enclosed and eventually engulfed by
the fire. A Voronoi growth model adequately represents the spreading
of a fire from isolated point-like sources. Using this model, it is possible
to predict the green island formations. First, we introduce a condition
for when three simultaneous point-like ignition sources can form a
simple green island and then present an algorithm to infer when a
complex green island is formed by more than three sources at a time
t. Finally, we comment on the extension of Voronoi growth model to
other fire source shapes.

Keywords: Voronoi growth model, wildland fire, green island for-
mation, landscape ecology.

1 Introduction

The occurrence of wildland fire had a significant growth in recent years. In
particular it has been much observed in Brazil, where wildland fires and
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queimadas1 are frequent and also during summer in the US, Australia and in
European countries. Not only do wildland fires [2] have implications to the
global environment, but they also incur a large financial cost.

In the literature of wildland fires several authors have been concerned
with fire spread models, giving most of their attention to the fire process
itself [18, 9, 10, 13] and only more recently some have given closer attention
to the study of the spatial patterns and geometrical aspects [6, 21, 3, 14].

Modelling the landscape geometry of burned out areas due to surface fire
on vegetation is quite important as it can provide a better understanding
of the fire behavior [2] and its dynamics. This is essential for fire control
and suppression, identification of refuge zones and landscape investigation of
spatial patterns disturbance.

In the papers [17, 16] it has been shown that, starting with very simple
assumptions, a Voronoi diagram structure [12, 15] naturally emerges as the
landscape geometry generated by the spread out of wildland fire. In this
article, assuming the Voronoi growth model, we wish to focus our attention
to the specific problem of green island (refuge zones) formation, which cor-
respond to isolated regions of vegetation that will ultimately be burned out
if the fire is not suppressed.

Initially, a simple situation will be considered where the fuel bed is com-
posed of a vegetation with a homogeneous distribution over a regular topog-
raphy. In the absence of wind and other severe weather conditions and for a
set of simultaneous or synchronous fire ignition sources, it is shown that the
geometrical construction of Voronoi diagram is a natural structure to model
the landscape geometry of burned out vegetation areas. Under these cir-
cumstances the fire wavefront would simply propagate with radial (or nearly
circular) symmetry. The intersection of the fire wavefronts of two neighbor-
ing ignition sources would occur at the bisector of the segment that joins
the two ignition points. This corresponds to the very basic principle of the
Voronoi diagram geometrical structure. Latter we consider a situation where
the fire ignition sources are no longer simultaneously lit and are randomly
spatially distributed. This situation is likely to occur by the process called
“spotting” [2].

In Section 2 an overview of the geometric construction of Voronoi dia-
grams are given, in Section 3 the simple green island definition and forma-
tion are provided, in Section 4 the complex green island definition and its
formation are treated and, finally, Section 5 is devoted to comments and
conclusions.

1Man made fires, either prescribed or not.
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2 Voronoi diagrams

In this section we provide a brief introduction to the planar Voronoi diagram
geometrical construction.

2.1 Ordinary Voronoi diagram

The planar ordinary Voronoi diagram (OVD) [12] is defined as a division
of the plane into regions according to the principle of the nearest neighbor.
Let us consider the Euclidean distance d(p, pi) from a point p to a set of
non-collinear points pi in the plane. A Voronoi region R(pi) ≡ Ri generated
by a point pi is defined as Ri = {p ; d(p, pi) ≤ d(p, pj),∀pi 6= pj}. The
Voronoi diagram V (P ) for a set of points P = {p1, p2, . . . , pn}, is defined as
the union of all Voronoi regions V (P ) =

⋃n
i=1 R(pi). The points pi are called

Voronoi generators. The edges between two adjacent Voronoi regions are
called Voronoi edges and the points where 3 or more Voronoi edges meet are
called Voronoi vertices. We say that a Voronoi generator pi is adjacent to pj

when their Voronoi regions share a common edge. According to its definition,
the Voronoi diagram is such that any point on the edge of two neighboring
regions is equidistant from the corresponding Voronoi generators.

The region of dominance of pi over pj is defined as:

D(pi, pj) = {x; ‖x − xi‖ ≤ ‖x − xj‖, i 6= j}, (1)

where x, xi, and xj are the position vectors of the points p, pi and pj,
respectively. The regions of dominance for a set of generators are equivalent
to the Voronoi diagram for these generators. Therefore, a planar ordinary
Voronoi diagram may be constructed by halfplanes taking into account that
the Voronoi region R(pi) can be constructed equivalently by:

R(pi) =
⋂

j∈In\{i}
D(pi, pj), In = 1, 2, . . . , n. (2)

One important property of the OVD is that the Voronoi vertex is the cen-
ter of the circle that passes exactly through at least three Voronoi generators
that create the vertex. Figure 1 shows an OVD for 20 generators.

2.2 Voronoi diagrams from growth models

Growth models are processes that produce spatial patterns as a consequence
of the growth of a set of points P on the plane or in higher dimensions.
Suppose we have a set of points or sites P = {p1, p2, . . . , pn} on the plane.
Let us assume that:

1. Each point pi is located simultaneously.
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Figure 1: Planar OVD for 20 generators.

2. Each point pi is fixed at its original position throughout the growth
process.

3. The growth starts simultaneously and with the same growth rate v in
all directions from pi.

4. The growth process ceases in one direction whenever the region of grow-
ing from point pi comes into contact with the growing region of a point
pj, i 6= j.

This set of assumptions gives rise to a Voronoi diagram structure known as
Voronoi Growth Model [12] or cell model, as the intersection of growth points
occurs at the bisector of them, which corresponds to the basic principle of
the ordinary Voronoi diagram stated in the previous subsection. This kind
of modelling has been applied in some fields like physics [8], geology [22],
geography [11] and also in ecology [7].

The growth model assumptions above can be modified to describe more
general situations where the sites are no longer simultaneously distributed
and/or the growth rate is different for each site. This will lead to more com-
plex Voronoi growth models. In these cases the Voronoi diagrams generated
are no longer the OVD, they become generalized Voronoi diagrams for cir-
cular objects [19] (see Figure 2), as will be seen in the next section. Also,
in [19] it was considered the case where the sites could be inside another
growth region. Note that this situation cannot happen in the fire growth
model because it is assumed that a spark cannot take place inside an area
that has already been burned out.

We will see later that under certain simple assumptions the fire spread
process can be regarded as a Voronoi Growth Model or an extension of it.
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Figure 2: Voronoi growth model diagram for synchronous (left) and asyn-
chronous (right) ignition sources.

2.3 Generalized Voronoi diagram

The concept of the ordinary planar Voronoi diagram can be extended to
more complex set of generators. In particular, we can construct generalized
Voronoi diagrams (GVD) for objects like lines, arcs, circles and polygons [12].

Let L = {L1, L2, L3, . . . , Ln} ⊆ <2 be a set where Li can be a point, a line
segment or an arc, such that they do not intersect each other, Li∩Lj 6= 0, for
i 6= j. Let define the distance from a point p to Li as the shortest distance
between p and a point pi on Li by:

ds(p, Li) = min
xi

‖x − xi‖; xi ∈ Li, (3)

where x and xi are the position vectors of p and pi, respectively. The Voronoi
region R(Li) is given by:

R(Li) = {p; ds(p, Li) ≤ ds(p, Lj), j 6= i, j ∈ In}. (4)

The union set of all Voronoi regions given by V (L) =
⋃n

i=1R(Li) generates
the line Voronoi diagram for the set L.

The Voronoi diagram structure for circles and polygons is easily obtained
from the line Voronoi diagram just by considering the distance function from
a point p to the nearest point pi in the object. Figure 3 shows the GVD for
a set of distinct generators.

It is important to mention here that the set of edges and vertices of a
Voronoi diagram induces a graph structure [15], on which the techniques
available for graphs may be applied.
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Figure 3: GVD for a set of generators.

2.4 Weighted Voronoi diagram

In the previous construction of Voronoi diagrams we have assumed a priori
that all generators have the same status, or in different terms that all of
them have the same weight. In certain cases it is appropriate to consider
generators with distinct weights.

The underlying principle for weighted Voronoi diagrams (WVD) is sim-
ilar to the OVD. Let us consider a set of non-collinear distinct points P =
{p1, p2, . . . , pn} in <2 (2 ≤ n < ∞) and assign a weight to each point pi ∈ P .
The weight for each pi will be represented by a parameter wi.

The weighted distance from a point p to pi ∈ P is defined by

dw(p, pi) =
1

wi

‖x − xi‖, wi > 0 . (5)

The weighted distance above is called multiplicative weighted distance
(MW-distance) to distinguish it from other weighted distance definitions in
the literature.

Based on the MW-distance the dominance regions of a point pi over pj

can be defined. The dominance region of point pi over pj with weighted
distance dw is given by:

Dw(pi, pj) = {p; dw(p, pi) ≤ dw(p, pj), i 6= j} . (6)

The definition above can be extended to any weighted distance. In our
particular case, we shall consider only the MD-distance, which becomes

Dw(pi, pj) = {x;
1

wi

‖x − xi‖ ≤ 1

wj

‖x − xj‖, i 6= j} . (7)
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The weighted Voronoi region for a generator pi is determined by the in-
tersection of dominance regions

Rw(pi) =
⋂

j∈In\{i}
D(pi, pj) . (8)

The weighted Voronoi diagram (WVD) is obtained as

WV D(P ) =
⋃

i

Rw(pi) . (9)

The multiplicative WVD need not be convex or connected and it may
have holes [12]. Figure2 4 shows a multiplicative WVD for a set of point
generators. It is important to note that the distance function, need not be a
metric distance. This is where the strength of the Voronoi diagram structure
resides.

Figure 4: Multiplicative Weighted Voronoi diagram with weights in brackets.

3 Voronoi growth model of fire spread

Wildland fire is quite a complex problem, however here we will focus our
attention to a single aspect that will serve as a subcomponent to a deeper
and complete analysis concerning wildland fire modeling. Let us assume a
homogeneous distribution of vegetation on a plane topography and without
wind or other weather adversities. In such a case, the fire wavefront of a
single fire ignition source is expected to spread out in a circular symmetry.
If the spread rate is given by v for each fire source pi, the wavefronts move
radially with ri(t) = [vt cos(s), vt sin(s)]T , s ∈ S1.

When two fire ignition sources are lit simultaneously at time t0, the fire
wavefronts will propagate until t∗ > t0 where they initially touch each other.

2This figure is reproduced from [12] with permission of John Wiley & Sons Limited.
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The point where the wavefronts meet is at the bisector of fire ignition sources.
For t > t∗, the wavefronts intersect each other, but we assume that no fire
can grow on an already burned out area. For t > t∗, the initial point of
contact of the wave fronts splits and traces a line equidistant to the two
fire sources, giving rise to a simple Voronoi Growth Model. For three non-
collinear appropriately placed simultaneous fire ignition sources, the growth
model gives rise to a green island, a region of vegetation that is no longer
connected from the rest of the other vegetation areas due to the expanding
fire.

Here we first describe the relative placement of three fire sources that are
necessary to form a green island. Next, we extend the result for non point-
like fire ignition sources and finally for multiple simultaneous fire ignition
sources. Note that a green island itself will eventually be burned out if the
fire is not suppressed. However, it is useful to determine their spatial and
temporal formation as a green island can serve as refuge zones for wildlife.

Growth models produce spatial patterns as a consequence of the expan-
sion of a set of points P = {p1, p2, . . . , pn} in a region S ⊂ <2. Let Bi(t− τ)
be the burned vegetation at time t corresponding to the fire ignition source pi

that started at t = τi. The growth model is said to be uniform and isotropic
if the rate of expansion v is constant for all sources in all directions, i.e.,

Bi(t) =





{pi + [v(t′ − τi) cos(s), v(t′ − τi) sin(s)]T :
∀ t′ ≤ t, and s ∈ S1}, if t > τ ,

pi, if t ≤ τ .

Without loss of generality, let v = 1. The uniform growth model gives rise
to a Voronoi diagram structure known as Voronoi Growth Model [12] or cell
model, because the growth process in a particular direction ceases whenever
it comes into contact with another growing region. When all sites are ignited
at the same time, i.e., for all i and j, τi = τj, the growth model is said to be
simultaneous. Again, without loss of generality, assume simultaneous growth
models start at t = 0.

The burned vegetation set at time t is defined by:

B(t) =
n⋃

i=1

Bi(t),

and the green vegetation set G(t) at time t is given by:

G(t) = S\B(t).

At t = 0, G(t) is equal to S and is connected. With the Voronoi growth
model, there exits a t∗ such that the connectivity of G(t) decreases from
t−∗ ≤ t∗ ≤ t+∗ . At t∗, the following is formed:
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Definition 1 A green island Ig is a disjoint subset of G(t).

Let wi(t) = ∂Bi(t) be the fire wavefront generated by the fire source pi.
Let cij be the point where two fire wavefronts, say wi(t∗) and wj(t∗) become
tangent to each other at time t∗. The point cij lies on the bisector of pi and
pj, i.e., d(pi, cij) = d(pj, cij), where d(., .) denotes the Euclidean distance.

For t > t∗, the point cij(t) may give rise to two fire vertices, that will
be denoted by c+

ij(t) and c−ij(t). Note that c±ij(t) = c±ji(t), and d(c±ij(t), wi) =
d(c±ij(t), wj) = 0.

We will show below that three appropriately spaced ignition sources, pi, pj,
and pk, give rise to three inward fire vertices c−ij(t), c−ik(t), and c−jk(t) that
“pinch off” a region of the green vegetation and form a green island. Even-
tually, there exists a t∗ such that c−ij(t), c−ik(t), and c−jk(t) converge onto qijk, a
Voronoi vertex, as t goes to t∗. At this time, the green island has been fully
consumed by the fire.

Note that d(c−ij, qijk) decreases as t goes to t∗, and that c−ij 6= ∅ for t ∈
(t∗, t∗). At t∗, the green island associated with qijk is burned up.

4 Green Island Formation

In this section, we consider the formation of green islands when a simulta-
neous uniform Voronoi growth model is in effect. At the end of this section,
we relax the simultaneity assumption.

4.1 Simple green island

Ig is said to be simple when it has been formed out of three fire sources.
Otherwise, it is said to be complex. A complex green island can breakdown
to form other complex or simple islands.

We may view Bi(t) as obstacles (that grew from the point sites) and con-
sider the Generalized Voronoi Diagram (GVD) [4, 17] in S with obstacles
Bi(t). For the uniform simultaneous growth model, the resulting GVD will
be a subset of the conventional Voronoi diagram. Since the GVD is con-
nected in each connected piece of free space, each green island Ig has its own
unique GVD structure. There is a duality between the generalized Voronoi
diagram (GVD) of the burned regions and the connectivity of the free space,
as indicated in the following:

Proposition 1 Given three fire ignition sources {pi, pj, pk}, a simple green
island Ig is formed if and only if the only fire vertices connected to qijk are
{c−ij, c−jk, c−ik}.
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Proof Consider the GVD where Bh(t) for all h are the obstacles. Recall
that the GVD is connected for each connected region of free space [4]. Since
a green island has been formed, it has its own connected GVD. Since this is-
land was formed by three obstacles Bi(t), Bj(t), Bk(t), there exists a Voronoi
vertex qijk that is equidistant to {pi, pj, pk} and cannot be adjacent to any
other Voronoi vertex. Therefore, the only adjacent nodes to qijk are bound-
ary nodes, nodes where the distance to Bi(t), Bj(t) (and all other pair-wise
combinations) is zero. In other words, the only adjacent nodes to qijk are
c−ij, c

−
jk, and c−ki.

Likewise, if {c−ij, c−jk, c−ki} are the only connected nodes to qijk, since the
distance to the obstacles Bi(t), Bj(t), Bk(t) for each {c−ij, c−jk, c−ki} is zero, qijk,
{c−ij, c−jk, c−ki} form a disconnected GVD structure and thus a green island has
formed. 2

Now, we consider the appropriate placement for {pi, pj, pk} to allow the
formation of a green island.

Theorem 1 For simultaneous uniform growth, a green island is formed by
{pi, pj, pk} if and only if qijk lies in the convex hull of {pi, pj, pk}.

Proof First, consider the converse – a green island is formed. By Propo-
sition 1, we know that a triangle formed by {cij, cjk, cki} will exist because
there is a green island. Also, note that the triangle formed by {pi, pj, pk} is
similar to the triangle formed by {cij, cjk, cki}. See Figure 5.

Figure 5: Green island formation.

We will now show that the triangle formed by {cij, cjk, cki} must contain
the Voronoi vertex qijk. Actually, we are going to show that the hyperbolic
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triangle inside of triangle {cij, cjk, cki} contains qijk. The three curved edges
that form the hyperbolic triangle comes from wi(t), wj(t), and wk(t).

Consider the functions

Gij(x) = (di − dj)(x),

Gik(x) = (di − dk)(x),

Gjk(x) = (dj − dk)(x).

Now let us define the function

G(x) =





G2
ij(x) + G2

jk(x) if dj(x) ≤ di(x) and dj(x) < dk(x)
G2

ij(x) + G2
ik(x) if di(x) ≤ dj(x) and di(x) < dk(x)

G2
jk(x) + G2

ik(x) if dk(x) ≤ di(x) and dk(x) < dj(x)

So, on the wi(t) wavefront, G(x) = G2
ij(x) + G2

ik(x). For all x ∈ wi(t),
and

∇G(x) = 2(di(x)−dj(x))(∇di(x)−∇dj(x))+2(di(x)−dk(x))(∇di(x)−∇dk(x)),

taking the inner product of ∇G(x) and ∇di(x), for all points x on wi, we get

∇G(x) · ∇di(x) = 〈di(x), 2(di(x)− dj(x))(∇di(x)−∇dj(x))

+2(di(x)− dk(x))(∇di(x)−∇dk(x))〉
= 2(di(x)− dj(x))(1− 〈∇di(x), dj(x)〉)

+2(di(x)− dk(x))(1− 〈∇di(x), dk(x)〉)

Since x ∈ wi(t), di(x)−dj(x) < 0, and di(x)−dk(x) < 0, and, furthermore,
by definition −1 < 〈∇di(x), dj(x)〉 < 1 and −1 < 〈∇di(x), dk(x)〉 < 1, the
above expression for 〈∇di(x),∇G(x)〉 must be negative.

In fact, 〈∇dj(x),∇G(x)〉 and 〈∇dk(x),∇G(x)〉 are also negative. There-
fore, G decreases from the boundary to the interior of the triangle. This is
true for all t < t∗ and thus G(x) monotonically decreases for all paths from
the boundary towards the interior of the triangle. Since G(x) is a continuous
function that is decreasing for all paths directed into the triangle, it must
have a unique minimum. Furthermore, G is bounded below by zero, so the
minimum value of G is zero. Finally, since G vanishes when x = qijk (and
this minimum is unique), qijk must be contained inside of the hyperbolic tri-
angle formed by wi(t), wj(t), and wk(t) whose vertices are {cij, cjk, cki}. This
triangle is in the convex hull of {cij, cjk, cki} which is contained in the convex
hull of {pi, pj, pk}. Alternatively, when the gradient from each fire source
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positively span the convex hull[4] of {pi, pj, pk} a simple green island will be
formed.

Now we consider the forward direction: suppose qijk is contained in the
convex hull of {pi, pj, pk}. Consider the triangle formed by the fire sources.
As qijk is inside this triangle, it is possible to find along the Voronoi edges
the intersecting points of the edges with each side of the triangle {pi, pj, pk}.
By Voronoi growth construction these points correspond to cij, cik and cjk,
respectively. As qijk is inside the triangle formed by cij, cik, cjk, then each one
of the cij’s will give rise to an inward fire vertex. Therefore, by Proposition 1
a green island will be formed. 2.

It is worth noting that the above result indicates that three collinear fire
ignitions sources cannot give rise to a green island, even when one assumes
there is a Voronoi vertex at infinity.

4.2 Non-simultaneous and Non-point-like fire ignition
sources

The above result can be extended to non-simultaneous and to different shapes
of the fire ignition sources. In the case of non-simultaneity of point-like
fire ignition sources, the resulting Voronoi diagram is not a subset of the
conventional Voronoi diagram. Furthermore, the location of the resulting
edges of the generalized Voronoi diagram is a function of time t.

Corollary 1 At a t = max{τi, τj, τk}, a green island is formed by {pi, pj, pk}
if and only if qijk(t) lies in the convex hull of {pi, pj, pk}.

Proof The proof of this Corollary follows directly from application of The-
orem 1. 2

An extension of the previous results can be applied for the case when the
fire ignition sources are no longer point-like only. In other words, in some
situations, as in prescribed fires, the ignition may start as a line, arc, circle
or even in a polygonal shape. If we consider every point on the object as
a source of fire, the fire wavefront will spread out according to Huygens’
Principle [5].

The fire ignition sources will generate a generalized Voronoi diagram
(GVD) and the GVD remains the same as the fire grows. A green island
will be formed when part of the GVD looses its connectivity in a similar
fashion as in the point-like fire source situation.

The Voronoi edges are the growth limit between the fire wavefronts. Once
the wavefront reaches an edge a fire vertex is formed. As such, a green island
can be formed in much the same way as for point-like fire ignition sources.
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At each point on the fire wavefront the propagation direction is pointing
along the gradient. Let li, lj, lk be three fire ignition sources (point, line, arc,
etc.) and let qijk be the GVD vertex formed by them.

Corollary 2 For simultaneous uniform fire growth, a green island is formed
by li, lj, lk if and only if qijk lies inside the convex hull of the gradients for
the three fire wavefronts at qijk.

Proof Essentially, the proof of this Corollary follows from Theorem 1. Con-
sider a Voronoi vertex qijk associated with three or more convex obstacles.
Without loss of generality, let pi, pj and pk be the three closest points on
the three defining obstacles. By the property of convex sets and distance
function, qijk must lie in the convex hull of pi, pj and pk. By themselves,
pi, pj and pk would from a green island. Furthermore, the wavefront of the
obstacles associated with these points would reach the Voronoi vertex first,
so pi, pj and pk indeed pinches off a region of free space forming a green
island. 2

4.3 Complex green island

Complex green islands can be formed at time t for a set of simultaneous
fire sources even when no three adjacent fire sources do form an island by
themselves. In this subsection we provide a constructive algorithm to find
out when a green island is formed at time t for a set of simultaneous fire
sources.

Let P = {p1, p2, . . . , pn} be a set of n simultaneous fire ignition sources.
Let t = t∗ be such that the growth radius r(t∗) = R.

Determine all sets of adjacent fire sources such that

d(pi, pj)

2
≤ R, ∀i, j; i 6= j. (10)

The fire sources that satisfy the above condition have their wavefronts
such that wi

⋂
wj 6= ∅. Let us suppose that P ∗ = {P1, P2, , . . . , Pm},m ≤

n, is the set of all disjoint sets Pi composed of a sequence of adjacent fire
sources that fulfill Equation 10. For each set Pi ∈ P ∗, search the cycles
with at least three fire sources. Let the set of all possible cycles of Pi be
C = {C1, C2, . . . , Ck}. Construct a simple polygon associated with each
cycle Cl ∈ C, where the fire sources are the polygon’s vertices. Let define an
fire empty polygon as a simple polygon without any fire source in its interior.

Theorem 2 A complex green island is formed at time t∗ if and only if there
is at least one Voronoi vertex, say qijk, in the interior of a fire empty polygon
formed from a cycle Cl ∈ C, such that

d(pi, qijk) > R, pi ∈ Cl.

13



Proof Let Cl = {p1, p2, . . . , ps}, where s ≤ n, be a cycle of adjacent fire
sources at time t∗ satisfying equation 10 and forming a fire empty polygon.
At t∗ all adjacent fire sources in Cl are such that wi

⋂
wj 6= ∅. Thus d(pi, pj) ≤

2R. Suppose there is a Voronoi vertex qijk in the interior of the fire empty
polygon formed by the sequence p1p2 . . . ps. If no fire wavefront has reached
the Voronoi vertex qijk at t∗, than it satisfies the condition d(pi, qijk) > R for
all pi ∈ Cl. However, as the Voronoi vertices are the last points to be burned,
a complex green island is formed around qijk at t∗, or equivalently, when
r(t∗) = R. Now, let us assume that an island exist around a Voronoi vertex
qijk. That means no fire wavefront has reached qijk yet and so d(pi, qijk) > R.
As an island is formed, there is no connectivity between the Voronoi edges
inside the island and outside it. Hence there should be at least one cycle Cl

such that it encompass the Voronoi vertex qijk. If Cl is not empty there will
be a sub-cycle Ce ⊂ Cl such that Ce is an empty cycle. 2

Unfortunately, for complex green island the fact that a Voronoi vertex
does not satisfy Theorem 1 is not sufficient to guarantee that it does not
belong to a green island. Therefore, we can not directly apply Theorem 1 for
complex green island. Nevertheless, it is easy to see that Theorem 2 reduces
to Theorem 1 when there are three ignition sources only.

Figure 6 shows a complex green island where some Voronoi vertices are
connected to each other only. Ultimately, all Voronoi vertices within a com-
plex green island are connected to inward fire vertices as terminal nodes.
Figure 7 shows two fire empty polygons constructed from cycles in complex
green islands.

Figure 6: Complex green islands for a set of simultaneous fire sources.
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Figure 7: Empty polygons for the complex green islands.

5 Comments and Conclusions

In this paper the Voronoi Growth technique has been applied to model the
geometry of burned areas due to surface fire. In particular, we have dis-
cussed the specific geometrical problem of simple and complex green island
formations for simultaneous and non-simultaneous fire ignition sources. The
spatial and temporal identification of a green island is an important aspect
for simulation of prescribed fires and real-time fire spread monitoring [5],
because the green islands form the refuge zones for the wildlife. Here The-
orem 1 allows to predict when a green island will be formed from three fire
ignition sources and Theorem 2 provides the means to identify the formation
of complex green islands at a time t.

In a more realistic situation where the fire ignition sources are non-
simultaneous with distinct ignition patterns (lines, arcs, polygons), in the
presence of wind and a non-planar topography the Voronoi Growth still
shows a rich structure to further model the landscape geometry of wildland
fires [17]. For instance, in the presence of wind, the landscape geometry can
be modeled using the approach of Voronoi diagrams in the river [20] and for
terrain with slopes, the recent work on skew Voronoi diagrams [1] seem an
interesting ones.

Even when these strong assumptions are present, the wildland fire still
exhibit similar features as the ones predicted in our approach. For example,
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the Figure 8 shows the 1988 Yellowstone National Park fire resemble the
Voronoi growth model and green island formation.

Figure 8: 1988 Yellowstone National Park Fire (Photo by R. Hartford).

The fire ignition sources can have different shapes, e.g., lines, arcs, circles
or polygons. These patterns are more often used in prescribed fires in national
parks, in farms to clean the field or as process to ease the cropping in large
sugar plantation in Brazil. The Voronoi Growth Model defined in Section 3
can be extended to a Generalized Voronoi Growth Model, where the Voronoi
generators can be any set of these objects. Although the fire sources may
actually be a combination of these patterns, most of the proposed wildland
fire models in the literature have considered only point-like fire sources.

Another feature of modeling wildland fires with Voronoi diagrams is that
it forms a graph structure, which makes simple to determine the shortest
path with maximal clearance between two points among the fire wavefronts.
This path corresponds to the safest trajectory for firefighters to move during
rescue operations and planning strategies to fire control and suppression.
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