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In this paper we assess the effects of fire-related air pollution on population health in the Brazilian
Amazon. Our empirical strategy is based on a municipality-by-month fixed effects model, coupled with
an instrumental variables approach that explores wind direction and air pollution in surrounding areas in
order to exogenously shift exposure to air pollution at the locality. We find that exposure to air pollution,
measured by PM2.5 concentration levels, is robustly associated with an increase in hospital admissions
for respiratory conditions. The effects are higher among children and the elderly, and increase non-
linearly with pollution levels. Our benchmark estimates indicate that an increase of one standard devia-
tion in PM2.5 is related to an increase of 1.5% of the monthly hospitalization rate for respiratory condi-
tions. The latter estimate reaches 14% if monthly average PM2.5 crosses thresholds as high as 75 lg/m3.
We do not observe significant effects on hospitalization rates related to other health conditions nor on
mortality rates.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction million inhabitants and spans over a large and heterogeneous area
Some of the poorest regions of the world have been severely
exposed to greenhouse gas emissions originated from landscape
fires, which release around two petagrams of carbon into the atmo-
sphere every year, in particular stemming from tropical forests,
grasslands and the savanna (Van der Werf et al., 2010). While there
exist increasingly concerns as well as understanding about how
fire activity and related deforestation have contributed to global
greenhouse gas emissions, reshaped the environment, and influ-
enced the Earth system, less attention has been paid to their poten-
tially detrimental health impacts on local populations (Johnston
et al., 2012; Van der Werf et al., 2010). Yet, many of the chemical
components in biomass smoke are known to be hazardous to
human health, specially fine particulate matter, which can pene-
trate the pulmonary alveolus, reach the blood, accumulate in other
human organs and cause DNA damage (de Oliveira Alves et al.,
2017; Guan, Zheng, Chung, & Zhong, 2016).

In this paper we assess the effects of fire-related air pollution on
population health in the Brazilian Amazon, which is home of 23
in terms of population characteristics and patterns of land-use and
deforestation. The economic activity is mostly driven by agricul-
ture, the region is sparsely inhabited and there are relatively few
and scattered urban settlements. In that sense, ambient air pollu-
tion is mainly related to fires and biomass burning (Reddington
et al., 2015). While fire activity tends to increase with droughts
in specific years, it is often related to anthropogenic degradation
and agricultural practices. Most deforested plots in the Brazilian
Amazon are burned in preparation for cattle ranching, crop and
mining activities (Motta, 2002). Approximately 42% of the total
Brazilian greenhouse gas emissions have originated from land
cover change in the region, which has recently witnessed an out-
break of deforestation-related fires and a surge in biomass smoke
(Silvério, Silva, Alencar, & and Moutinho, 2019; Brasil, 2018).

More specifically, in this paper we empirically assess and char-
acterize the extent to which air pollution, as a relevant by-product
of fire activity and environmental degradation, affects health out-
comes in the Amazon. We focus on the Brazilian Legal Amazon,
which is a sociopolitical division that encompasses 772 municipal-
ities, covers approximately 5 million km2 and 59% of the Brazilian
territory. Our empirical strategy is based on a municipality-by-
month fixed effects model, coupled with an instrumental variables
approach, which exploits sources of exogenous variation in air pol-
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lution to elicit causality and overcome identification concerns—in
particular those related to the potentially confounding influence
of economic activity as well as to measurement error in environ-
mental indicators. Our instrument is a composite term that combi-
nes monthly variation in wind direction with air pollution in
surrounding municipalities. More precisely, the first-stage rela-
tionship relies on the fact that air pollution levels in a given munic-
ipality and time positively respond to levels in neighboring
municipalities when winds blow from these surrounding areas.
Our identifying assumption is that, conditional on fixed-effects
and time-varying controls, in a high-frequency setting, the remain-
ing variation in wind direction in neighboring areas is arguably
exogenous to the municipality. If this assumption is valid, the
instrument is expected to exogenously shift local air pollution
levels.

Our analysis is based on a panel of monthly data at the munic-
ipality level on concentrations of fine particulate matter (PM2.5)
and health outcomes throughout the 2010 decade. We use admin-
istrative microdata on mortality and hospital admissions from the
Brazilian Ministry of Health (MS/Datasus), which are converted
into monthly death and hospitalization rates by age groups and
specific causes (ICD-10). We mainly focus on respiratory condi-
tions but also analyze other infectious and chronic diseases. These
data are matched at the municipality of residence level and time of
the event (death or hospital admission) to monthly data on air pol-
lution, wind direction and other weather indicators, originally col-
lected from satellite imagery and processed by the Environmental
Health Information System (Sistema de Informações Ambientais
Integrado à Saúde, SISAM), a joint-initiative by the National Insti-
tute for Space Research (INPE), Fiocruz, and the Brazilian Ministry
of Health.

We find that exposure to PM2.5 concentration is robustly asso-
ciated with an increase in hospital admissions for respiratory con-
ditions. Our benchmark estimates indicate that an increase of one
standard deviation in PM2.5 concentration (SD = 17.3 lg/m3) is
related to an increase of 0.95 hospital admissions per 100,000
inhabitants per month, or 1.5% of the monthly average rate. Yet,
we uncover relevant heterogeneous and non-linear effects. We find
that children and the elderly are hit the most, and that hospital
admissions by respiratory conditions increase as much as 14% of
the average rate if monthly PM2.5 levels cross thresholds as high
as 75 lg/m3—this corresponds to three times the threshold of
25 lg/m3 in the 24 h mean, above which we can expect higher risk
for acute and chronic health effects from air pollution according to
the WHO air quality guidelines for short-term exposures (WTO,
2006). We do not observe any significant effects on hospitalization
rates related to other conditions nor on mortality rates. In short,
we find that acute variation in exposure to air pollution in the
Brazilian Amazon, as marked by monthly changes in PM2.5 con-
centration levels, is associated with an increase in hospital admis-
sions for respiratory conditions specifically, in particular among
age groups that are typically more sensitive to air pollution.

The dense research on the health consequences of exposure to
air pollution has mainly focused on urban environments and atmo-
spheric pollution related to fossil fuels [eg.] (Deryugina, Heutel,
Miller, Molitor, & Reif, 2019; He, Gouveia, & Salvo, 2019;
Schlenker & Walker, 2016; Ward, 2015; Currie & Neidell, 2005),
while the causal effects of pollutants released by biomass smoke
have been less extensively examined. Much of the existing evi-
dence comes from indoor environments where pollutants stem
from household solid fuel use or from global accounting exercises
[eg.] (Hanna, Duflo, & Greenstone, 2016; Johnston et al., 2012;
Ezzati & Kammen, 2001). Evidence on the causal effects of outdoor
air pollution related to biomass burning is scarcer in general.
Rangel and Vogl (2019) document that in utero exposure to upwind
smoke related to agricultural fires in the state of São Paulo, Brazil,
2

has detrimental impacts on birth outcomes. He, Liu, and and Zhou
(1024) show that the elderly in China are sensitive to exposure to
air pollution related to straw burning. Causal evidence related to
forest fires is even scarcer, and comes from context-specific mas-
sive pollution shocks, as in the case of wildfires in the US (Burke
et al., 2742) and the major forest fires that hit Indonesia in the late
1990s [eg.] (Tan-Soo & Pattanayak, 2019; Jayachandran, 2009;
Frankenberg, McKee, & Thomas, 2005). In that latter case, the
24 h total suspended particulate concentration reached atypically
impressive levels as high as 4,000 lg/m3 in October 1997 in parts
of Sumatra. Regarding the Amazon context, the existing literature
often relies on correlational methods and concentrates on case
studies targeted at specific localities. For instance, Jacobson et al.
(2014) study the effects of biomass smoke from seasonal fires on
schoolchildren’s health in Tangará da Serra, a municipality of the
state of Mato Grosso. Carmo et al. (2010) study the time-series
relationship between particulate matter and respiratory diseases
in the municipality of Alta Floresta, also in Mato Grosso.

We contribute novel evidence to the literature by assessing and
fully characterizing the causal effects of deforestation-related
smoke on health outcomes in the Brazilian Amazon. Whether rou-
tine, moderate variations in exposure to biomass smoke affect
health conditions in a vast, open and sparsely inhabited setting is
an open question. Yet, it is relevant as local populations are over-
whelmingly poor and generally underserved by public services
and economic opportunities, as is typically the case of agricultural
contexts of developing countries. Still, the Amazon hosts a large
stock of carbon at risk of being released to the atmosphere as
greenhouse gas emissions, with consequences that might extend
far beyond the limits of the region (Fearnside, 2018). Particulate
matter may travel hundreds of kilometers and reach regions not
directly affected by deforestation (Barcellos et al., 2019).

We also characterize the results in a series of heterogeneity
analyses, by documenting effects by age, specific health conditions,
and by intensity of exposure. Most studies on biomass burning
focus on infant health [eg.] (Rangel & Vogl, 2019; Tan-Soo &
Pattanayak, 2019; Jayachandran, 2009), with scant evidence on
older ages and across specific causes. By providing a comprehen-
sive characterization of biomass smoke effects on health outcomes,
we contribute potentially informative evidence to policymaking by
revealing socioeconomic costs beyond those directly associated
with environmental degradation and biodiversity loss. In particu-
lar, we document that air pollution related to forest fires has detri-
mental health impacts on local populations.

The remainder of this paper is organized as follows. Section 2
provides the background. Section 3 describes the data, while Sec-
tion 4 presents our empirical strategy. We present the main results
in Section 5, together with heterogeneity analyses, robustness
checks and additional discussion. Section 6 concludes.
2. Health and air pollution in the Brazilian Amazon

In 1988, Brazil established universal and egalitarian access to
health care as a constitutional right, and in the following years
introduced the Unified Health System (Sistema Único de Saúde,
SUS). The system follows a social insurance model of financing of
health care, designed with the aim of guaranteeing free universal
health coverage. Over the last decades, SUS has successfully
expanded access to health services throughout the country,
improved health outcomes, and reduced health inequalities
(Castro, Massuda, Menezes-Filho, Andrade, & De Souza Noronha,
2019; Bhalotra, Rocha, & Soares, 2019). However, inequalities in
access to health care persist and many regions and populations
remain underserved. This is particularly the case of the Brazilian
Amazon, where hospital capacity as well as physical and human
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resources in health are scarce (Rache et al., 2020). Yet, the 23 mil-
lion inhabitants of the region are overwhelmingly poor and typi-
cally resort to SUS for health care (Garnelo, 2019; Viana & Iozzi,
2019).

The Brazilian Amazon spans over a large and heterogeneous
area in terms of ethnical settlements, demographics, epidemiolog-
ical characteristics, drivers of economic growth and patterns of
land-use and deforestation. In this paper we focus on municipali-
ties located in the Brazilian Legal Amazon, which is a sociopolitical
division that encompasses the states of Acre, Amapá, Amazonas,
Mato Grosso, Pará, Rondônia, Roraima, Tocantins, and the western
part of Maranhão state, and has long been used to territorially
define and implement public regulation and policy efforts. The
Brazilian Legal Amazon covers approximately 5 million km2 and
59% of the Brazilian territory (IBGE, 2004). Much of its Southern
area overlaps with the so-called Arc of Deforestation, a region
strained by the agricultural frontier and that has experienced acute
deforestation (Assunção, Gandour, Rocha, & Rocha, 2020).

In the Amazon, economic activity is mostly driven by agricul-
ture, the region is sparsely inhabited and there are relatively few
and scattered urban settlements. In that sense, air pollution is
mainly related to fires and deforestation (Reddington et al.,
2015). Most deforested plots in the Amazon are burned in prepara-
tion for cattle ranching, crop and mining activities (Motta, 2002).
As mentioned by Barlow, Berenguer, Carmenta, and and França
(2020), deforestation is key driver of fires ad forest clearance is a
major source of ignition and augments the flammability of remain-
ing forests. Fire activity tends to increase because of droughts as
well, which are often triggered by El Niño in specific years. The
burned biomass generates many pollutants, such as CO2, CO,
NOx and particulate matter, especially PM2.5, which refers to par-
ticles with aerodynamic diameter � 2:5lm, and consists of organic
and black carbon components along with contributions from inor-
ganic compounds (Johnston et al., 2012). PM2.5 may have signifi-
cant impacts on human health as they can penetrate the
pulmonary alveolus, reach the blood, accumulate in other human
organs and cause DNA damage (de Oliveira Alves et al., 2017;
Guan et al., 2016; Kim, Kabir, & Kabir, 2015).

Fires, air pollution and health outcomes are thus potentially
linked in the region. In this paper, we empirically assess whether
and to what extent air pollution, as a relevant by-product of fires
and deforestation, affects health outcomes in the Brazilian Legal
Amazon. In what follows, we describe the data used in our analysis
and document descriptive statistics for our main variables.
2 SIH is an administrative system of hospitalization payments that includes the
universe of all admissions covered by SUS, both in public and in private hospitals
accredited to SUS. According to data from the National Agency of Supplementary
Health (ANS), the share of the population covered by private insurance plans in the
municipalities of the Legal Amazon Region is the lowest in the country, oscillating
between 8.5% around 2010 to 9.8% in the late 2010s. In that sense, SIH data are
expected to cover the greatest share of hospital admissions in the region. Also
3. Data and descriptive analysis

3.1. Data

Our analysis relies on a balanced panel of monthly data at the
municipality level on air pollution and health outcomes through-
out the 2010 decade. The sample covers all the 772 municipalities
of the Brazilian Legal Amazon.

We use data on mortality and hospital admissions from the
Brazilian Ministry of Health (MS/Datasus). We obtain mortality
microdata from the Brazilian National System of Mortality Records
(Datasus/SIM), which collects records on every death officially reg-
istered in Brazil and includes the deceased’s age, gender, as well as
the diagnostic codes according to the International Classification of
Diseases, 10th Revision (ICD-10).1 Hospitalization microdata are
1 While there does not exist any systematic assessments about its coverage and
precision, SIM has gradually improved over time, particularly in the Northern Region,
and is expected to be relatively more complete in more recent years (Frias,
Szwarcwald, & and Lira, 2019).
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obtained from the National System of Information on Hospitaliza-
tions (Datasus/SIH), which contains administrative information at
the hospital admission level and are managed by the Health Care
Agency (SAS/Ministry of Health). The system includes all hospital
admissions covered by SUS, both in public facilities and private hos-
pitals accredited by the government, and provides information on
patients’ age, sex and cause of hospitalization (ICD-10).2 Both SIM
and SIH microdata sets include patients’ municipality of residence
and the date of the event (death or hospital admission). The date
of the event and the code of the municipality of residence are used
to aggregate the microdata into a municipality-by-month data set
and to match with data from other sources.

We follow the literature on the effects of air pollution on health
and focus specifically on concentration of PM2.5 and respiratory
diseases, but extend our analysis to other conditions in additional
exercises (infectious, circulatory, neoplasms and digestive dis-
eases).3 We also compute outcome indicators by age brackets sepa-
rately to shed light on heterogeneities. He et al. (1024) document
that the elderly in China suffer more from ambient air pollution
related to straw burning. Rangel and Vogl (2019) focus on birth out-
comes in a study on the effects of agricultural fires at São Paulo state,
Brazil. Most of the research on air pollution related to forest fires
concentrates on infant outcomes [eg.] (Tan-Soo & Pattanayak,
2019; Jayachandran, 2009; Frankenberg et al., 2005). We therefore
analyze in detail outcomes for children (<1yo and 1–5yo) and the
elderly (>60yo) as these groups are potentially the most susceptible
to variations in air pollution in our empirical setting as well.

We standardize health outcomes in order to facilitate compar-
isons across municipalities and time. Age-stratified population is
not available at the municipality-by-month level, so we compute
health outcomes (such as hospitalizations related to respiratory
diseases) in rates per 100,000 municipality inhabitants, which is
estimated in an annual basis by the Brazilian Institute of Geogra-
phy and Statistics (IBGE). Our analysis relies on a fixed-effects esti-
mation and focus on a relatively short period of time, so the age
distribution of the population is not expected to vary substantially
nor to affect our estimates.

We use monthly data on ambient air pollution at the municipal-
ity level also from January 2010 throughout December 2019, orig-
inally collected by the Environmental Health Information System
(Sistema de Informações Ambientais Integrado à Saúde, SISAM), a
joint-initiative by the National Institute for Space Research (INPE),
Fiocruz, and the Ministry of Health. SISAM was officially developed
to allow the analysis of environmental data and to support
research on the effects of emissions and atmospheric pollution
on human health. The system is particularly relevant for the Ama-
zon region, which faces scarcity in infrastructure and relies on a
limited number of ground-level meteorological stations that col-
lect air pollutants. We mainly utilize data on the concentration of
fine particulate near surface, PM2.5, as measured in lg=m3. This
variable is originally obtained from the Copernicus Atmosphere
Monitoring Service (CAMS/ European Centre for Medium-Range
Weather Forecasts). Original data are gathered at 6-h intervals
important to mention, SIH has not undergone through any major revisions since 1998.
Payment schedules for specific procedures have changed over time, and this is
expected to affect incentives regarding misclassification of causes, but we have not
identified any specific revisions during the period of analysis that could influence our
results.

3 Respiratory conditions refer to events classified under ICD-10 J00-J99.
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and have a spatial resolution of 12.5km2. The CAMS models deliver
near surface measures of air pollution after reanalysis of satellite
imagery through modelling systems and validation with existing
ground-based observations.4 INPE performs numerical and satellite
imagery analysis and provides a dataset at the municipality level,
still with a 6-h interval. We average the data at the monthly level,
which is considered informative and methodologically recom-
mended by INPE guidelines.

In order to characterize the relationship between air pollution
and fires in a descriptive analysis, we use monthly data on fire
occurrence as measured by the number of active fire hotspots.
These data are collected by the National Institute for Space
Research (INPE) to monitor the spatial and temporal dynamics of
fires in Brazil. The data are originally obtained from the MODIS
sensor on board of the Aqua satellite, which captures fire heat at
a resolution as small as 100 m2. The data are available from January
2010 to December 2019 and are converted into a dataset at the
municipality-by-month level containing indicators of fire activity.

Finally, we also collect weather variables to be used as controls
in our estimations as well as wind direction. Control variables
include monthly data on precipitation, relative humidity and tem-
perature. For each municipality and time, wind direction is mea-
sured as upcoming wind in azimuth degrees, which indicate the
direction from which the wind is blowing according to the location
in latitude/longitude degrees of the municipality’s population cen-
troid – where the main district is located in. The original data are
available on daily basis and averaged at the month-municipality
level. All weather variables are extracted from SISAM and cover
the January 2010 throughout December 2019 period, with few
missing observations. As in the case of other indicators, INPE gath-
ers original data from the European Centre for Medium-Range
Weather Forecasts as well as from the Weather Research and
Forescasting Model (for 2019 only).

Our final sample contains 92,640 observations (10 years �
12 months � 772 municipalities). Mortality outcomes are available
only until December 2018. There are 100 municipalities with miss-
ing observations in weather indicators in 2019, and 16 municipal-
ities with missing observations for wind direction in surrounding
areas in total. In our main tables and figures we present results
based on samples with valid observations, and provide robustness
checks for balanced samples in Appendix Section B, where we con-
sider only municipalities without any missing observations during
the entire period of analysis. The results are quantitatively similar.

3.2. Descriptive statistics

Table 1 provides descriptive statistics for our main variables as
well as their source of information and period of time for which the
data are available. All variables and descriptive statistics are com-
puted at the municipality-by-month level. We observe that the
monthly average hospital admission rate for respiratory conditions
ranks relatively high, at 63.5 per 100,000 inhabitants, together
with hospital admissions for infectious diseases, while mortality
rates are relatively lower. The average death rate for respiratory
conditions is 3 per 100,000 inhabitants.

The average hospitalization rate for respiratory conditions is
relatively high, but masks substantial seasonality within years.
The upper graphic of Fig. 1 plots hospitalizations related to respira-
tory diseases from January 2010 to December 2019 and shows that
the monthly average peaks in the first semester, specifically
around May of each year, which marks the beginning of the driest
4 CAMS measurement error is generally low for different pollutants, including
species measured by aerosol optical depth, though larger errors and outliers may
occur at high latitudes and close to specific sources such as volcanoes (Lambert et al.,
2019; Flemming et al., 2017).
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season in the Amazon. We also observe a salient rebound amidst
the decay of the series throughout the beginning of the second
semester. The bottom graphic plots hospitalization rates for other
conditions. We observe a stable pattern for most conditions, except
for infectious diseases, which generally follow a more erratic sea-
sonal trend within years.

As previously mentioned, in the Amazon the concentration of
air pollutants is mainly determined by fires related to deforestation
and land use (Reddington et al., 2015). This is clearly shown on the
upper plot of Fig. 2, which displays the patterns of PM2.5 concen-
tration and fire activity. The horizontal line represents the Air
Quality Guideline threshold at 25 lg/m3 for PM2.5 concentration,
established by the World Health Organization for the 24 h-mean
(WTO, 2006). We observe a seasonal pattern in which both
PM2.5 and fires trends go upwards around July and last until
September. It is also clear that PM2.5 concentration often crosses
the 24 h-threshold of air quality, above which we can expect
increased risk for acute and chronic health effects from short-
term exposure to air pollution. Notably, the bottom plot of Fig. 2
shows that fire activity is closely related to an upward rebound
along the decay of hospitalization rates for respiratory conditions
in the second semester. This suggests a positive association
between fire-related pollution and hospital admissions. Indeed,
while the rebound seems small in light of the seasonal aggregated
trend, not all municipalities are exposed to fires and PM2.5 concen-
tration in the region. In that sense, local effects can be sizable. In
the following sections, we assess in detail the relationship between
air pollution and health outcomes in the Brazilian Legal Amazon.
4. Empirical model

In this paper we empirically estimate the effects of air pollution
and health outcomes in the municipalities of the Brazilian Legal
Amazon. To do so, we rely on a municipality-by-month panel of
data and explore idiosyncratic variation in air pollution across
municipalities for causal identification. The following equation
provides the conceptual setup:

Ymt ¼ am þ ct þ bAirPollutionmt þ X0mtHþ tmt ð1Þ

where Ymt is an outcome of interest for municipality m in time
t;AirPollutionmt indicates PM2.5 concentration, and am and ct are
municipality and time fixed-effects, respectively. The term am

absorbs the confounding influence of persistent municipality char-
acteristics, such as climate and local epidemiological features as
well as access to public services and physical infrastructure that
are not expected to vary within a short span of time. The term ct
control for common time trends, such as macroeconomic condi-
tions, the political cycle and meteorological phenomena that might
potentially affect the region at large (e.g. droughts episodes trig-
gered by El Niño). The term Xmt is a vector of time-varying weather
controls, which should help absorb the independent influence of
temperature, rainfall and humidity conditions on outcome vari-
ables. In our most saturated specifications, the term Xmt also
includes municipality-specific linear trends in order to absorb any
confounding influence of non-observable time trends across munic-
ipalities. The term tmt is the error component, and we cluster stan-
dard errors at the municipality level to allow for serial correlation
within cross-sectional units, over time, as idiosyncratic distur-
bances may be persistently correlated within municipalities on a
monthly basis.

We rely on seasonal and cross-sectional variation in air pollu-
tion for identification, in particular on the fact that air pollution
levels vary across years as well as across municipalities, for a given
point in time and irrespective of the calendar month. This is shown
in Fig. 3. The upper graphic shows that average PM2.5 concentra-



Table 1
Descriptive Statistics and Main Sources of Data on Health Outcomes and Environmental Indicators.

Mean Std. Dev. Min Max Source Period

Hospitalization Rates
Respiratory 63,5 71,2 0 1471 Datasus Jan 2010/Dec 2019
Circulatory 32,0 33,8 0 1477 Datasus Jan 2010/Dec 2019
Infectious 66,8 85,0 0 1687 Datasus Jan 2010/Dec 2019
Neoplasms 15,2 18,3 0 322 Datasus Jan 2010/Dec 2019
Digestive 42,7 37,1 0 845 Datasus Jan 2010/Dec 2019
Total 480,7 254,7 0 4984 Datasus Jan 2010/Dec 2019

Mortality Rates
Respiratory 3,0 6,0 0 124 Datasus Jan 2010/Dec 2018
Circulatory 9,9 11,7 0 181 Datasus Jan 2010/Dec 2018
Infectious 1,5 3,9 0 92 Datasus Jan 2010/Dec 2018
Neoplasms 4,1 7,2 0 134 Datasus Jan 2010/Dec 2018
Digestive 1,6 4,4 0 93 Datasus Jan 2010/Dec 2018
Total 35,3 22,9 0 286 Datasus Jan 2010/Dec 2018

Environmental Indicators
PM2.5 16,1 17,3 0,87 658 INPE Jan 2010/Dec 2019
PM2.5 (upwind * PM2.5 in neighbors) 23,6 36,8 0,00 1822 INPE Jan 2010/Dec 2019
Precipitation 4,2 3,9 0,00 34 INPE Jan 2010/Dec 2019
Temperature 26,4 1,5 19,05 32 INPE Jan 2010/Dec 2019
Relative Humidity 80,9 13,7 25,69 99 INPE Jan 2010/Dec 2019
Fire Activity (n. of hotspots) 13,9 63,1 0 6383 INPE Jan 2010/Dec 2019

Notes: Descriptive statistics computed at the municipality-by-month level for the entire period of analysis for which data are available. Sources of information and reference
to the period for which data are available are reported in the last two columns, respectively.
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tion varies across calendar months, sharply increasing during the
dry season up to September. Notwithstanding that aggregated pat-
tern, the plot just below shows that not all municipalities are
exposed to high levels of air pollution, even in September, when
about 45% of the municipalities are exposed to average levels of
PM2.5 above 25 lg/m3. The bottom figure plots the same statistics
for the month of September, across different years. We observe
that the share of municipalities exposed to levels of PM2.5 above
25 lg/m3 varies from about 20% to 60%. For levels superior to
75 lg/m3, we find a range generally from 5% to nearly 20%.

Should variation in air pollution be random, conditional on
fixed-effects and time-varying controls, our parameter of interest
b would capture its causal effects on outcome variables. Air pollu-
tion indeed carries exogenous variation as winds tend to reallocate
air pollutants across different areas. Rangel and Vogl (2019), for
instance, explore wind direction as a source of exogenous variation
for exposure to fire-related pollution in the state of São Paulo, Bra-
zil. As Barcellos et al. (2019) argue, particulate matter may travel
hundreds of kilometers in the Brazilian Amazon as winds can
spread pollution to distant regions and away from fire sources.

However, even conditional on time and municipality fixed-
effects, there might still exist some remaining variation in air pol-
lution potentially endogenous to the municipality. The first main
potential confounder is economic activity, unobserved at high-
frequency, which might affect health outcomes through income
and other competing channels.5 While municipality GDP and
income data are observable in our setting in annual basis, unfortu-
nately these indicators are not available in high-frequency level,
such as on monthly basis, which is the unit of our analysis. This
leaves open the potentially confounding role that omitted economic
activity might play in the short-run, across months, within years. We
conjecture that the confounding influence of the economic activity
may attenuate our estimates as income is expected to be positively
correlated with health. In fact, fire-related pollution is typically led
by deforestation and land use choices in our empirical setting. We
may also face measurement error in our variables of interest. As
mentioned in Deryugina et al. (2019), OLS estimates might be prone
to bias because exposure to PM 2.5 is likely to be measured with
5 This concern is mentioned in studies that have explored even finer-level temporal
variation (e.g. Sheldon & Sankaran (2017)).
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error as pollution-monitor readings may not adequately measure
the average pollution exposure for local residents due to the sparse
placement of monitors.6 As also remarked by Graff Zivin and Neidell
(2013): ‘‘[g]iven the geographic information contained in large-scale
data sets, studies often approximate contemporaneous pollution
levels based on an individual’s general location and the location of
the monitor. This crude approach leads to measurement error that
increases with an individual’s distance from the monitor and the
degree to which pollutants disperse nonuniformly. This measure-
ment error will typically bias estimates downward” (pp.699–700).
Second, weather conditions might correlate both with health out-
comes and imagery quality, potentially leading to another source
of attenuation bias. This is expected if clouds and humidity are cor-
related both with better respiratory conditions and worse imagery
quality and detection capacity.

In order to overcome erogeneity concerns, we rely on two sets
of robustness checks. First, we rely on Eq. (1) to provide falsifica-
tion tests by assessing patterns in other health conditions that
are supposedly less directly affected by air pollution. We also check
the sensitivity of our estimates to the inclusion of weather controls
as a way of testing not only for the influence of other omitted vari-
ables but also measurement error. Overall, we find a robust con-
temporary effect of air pollution on respiratory conditions
specifically. We also find larger point estimates whenever we con-
trol for weather indicators. These patterns help reassure the exis-
tence of a causal impact of air pollution on respiratory
conditions, albeit eventually recovered as a lower bound of the true
effect.

Second, we complement our analysis by following an instru-
mental variable approach with the particular aim of exogenously
shifting and gaining variation in local air pollution irrespective of
local economic activity related to fire occurrence and land-use pat-
terns. In our instrumental variable approach, the term
AirPollutionmt in Eq. 1 is instrumented by a composite interaction
term between wind direction and air pollution in neighboring
municipalities.7 More specifically, the instrumental variable is
defined by:
6 A similar reasoning is presented in Rodrigues (2018).
7 The use of variation in wind direction as IV to local air pollution was originally

proposed by Deryugina et al. (2019) for the US context.



Fig. 1. Hospitalizations due to Respiratory Diseases and Other Conditions in the Brazilian Legal Amazon. (Notes: Microdata originally from Datasus/SIH. The plots show
monthly averages for municipalities in the Brazilian Legal Amazon.)
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AirPollutionN
mt ¼

X

i2N
AirPollutionit � 1ðLocationa

it �Winda
itÞ ð2Þ
8 We are not able to compute wind nor air pollution at source in a given quadrant if
the municipality meets terminus. Yet, the IV still captures variation in neighboring
places through the sum of upwind pollution from other quadrants.
where N refers to the group of municipalities i that share their bor-
ders with municipality m, and AirPollutionit corresponds to PM2.5
concentration recorded in municipality i and month t. The term
1ðLocationa

it �Winda
itÞ is a dummy that indicates whether (i) the

centroid of municipality i is located in the quadrant
a 2 ð0�—90�;91�—180�;181�—270�;271�—360�Þ, in respect to m’s
centroid, and (ii) the average wind direction in municipality i and
month t blowing towards municipality m as measured in terms of
quadrants as well. In that sense, we use the relative positions of
each municipality (measured in degrees) and consider the group
of all neighbor municipalities that share their borders with the ref-
erence municipality m, irrespective of the distance between their
centroids. According to Eq. 2, we define that a neighboring munici-
pality ‘‘exports” pollution to the reference municipality whenever
the direction separating the two is diametrically opposite to the
6

direction through which wind blows from the former. For instance,
suppose that a given municipality i is located Northeastern from
municipality m. In this case, we assign the air pollution recorded
in i and month t to municipality m if the average wind direction
recorded in i and t blew towards the Southwestern quadrant of i.

The term AirPollutionN
mt thus computes a proxy for the total PM2.5

that was carried by the wind from m’s neighboring municipalities
i 2 N and reached out municipality m in time t.8 Appendix Fig. A.1
depicts and further details the computation of the variable.

The term AirPollutionN
mt is a valid instrument as long as we have

sufficient variation in the first-stage relationship and the exclusion
restriction holds. We formally inspect the first stage in Appendix
Table A.1. All specifications follow Eq. (1), but we replace the
dependent variable by PM2.5 concentration. In the first column



Fig. 2. Fire Activity, PM2.5 Concentration and Respiratory Diseases in the Brazilian Legal Amazon. (Notes: Data displayed on the upper plot are originally from the
Environmental Health Information System (Sistema de Informações Ambientais Integrado à Saúde, SISAM). The trends show monthly averages on fire activity (number of
hotspots) and PM2.5 concentration for municipalities in the Brazilian Legal Amazon. On the bottom plot, data on hospital admissions are originally from Datasus/SIH.)
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we include only municipality and time fixed-effects. We add
weather controls in the second specification, and municipality-
specific linear time trends in the remaining one. We find robust
and stable coefficients in the range of 0.22–0.24, with partial F-
statistics no lower than 257. The point estimate in the third col-
umn suggests an implicit conversion of 1:0.24 PM2.5 of neighbor-
ing air pollution into local air pollution.

The exclusion restriction is valid if the instrumental variable is
uncorrelated with any other latent determinant of health out-
comes but air pollution in municipalitym. Our identifying assump-
tion is that, conditional on fixed-effects and time-varying controls
in a high-frequency setting, the remaining variation in wind direc-
tion in neighboring municipalities is arguably exogenous to munic-

ipality m. If this assumption is valid, the term AirPollutionN
mt is

therefore expected to exogenously shift air pollution levels in
municipality m. In fact, conditioned upon fixed-effects and time-
varying controls, the remaining variation in the instrument should
7

capture changes in local air pollution arguably attributable to
idiosyncratic changes in wind direction. In this case, we do not rely
on typical prevailing wind directions, which means that our
approach is expected to capture the effects of exposure of acute
variation in air pollution rather than in climatic conditions.

In column 4 of Appendix Table A.1, we observe that local PM2.5
is positively associated with an interaction term between a dummy
indicating winds blowing from southeast and PM2.5 levels in
southeastern neighbors, and negatively associated with a similar
interaction term, but computed with a dummy indicating winds
blowing from northwestern neighbors. This is consistent with the
fact that major atmospheric patterns generally blow air pollutants
from SE Amazon, where the Arc of Deforestation is located,
inwards the region. Yet, this pattern is only suggestive as neighbor-
ing air pollutants and winds are computed considering the only
immediate surrounding municipalities. In the remaining column
of Appendix Table A.1, we perform an additional consistency check.



Fig. 3. Time and Cross-Sectional Variation in PM2.5 Concentration. (Notes: Data on PM2.5 concentration are originally from the Environmental Health Information System
(Sistema de Informações Ambientais Integrado à Saúde, SISAM). Upper and middle graphics plot monthly averages while the bottom graphic displays averages computed for
September in different years.)
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We created a variable that takes into consideration prevailing
winds and PM2.5 in all neighboring municipalities in order to cap-
ture a net dissipation effect. More precisely, for each reference
municipality m and quadrant a from m, we compute the sum of
8

PM2.5 in municipalities located in a multiplied by a dummy that
indicates prevailing wind away from m. We also discount the
sum of PM2.5 in municipalities located in the quadrant opposite
to a multiplied by a dummy that indicates prevailing wind towards
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m, i.e., the same prevailing wind. In that sense, we allow the com-
putation of a net PM2.5 blowing through the same prevailing
wind.9 We analogously repeated the exercise for all quadrants and
summed up a net dissipation effect: the net sum of neighboring
PM2.5 that was moved away by winds. A positive indicator means
that prevailing winds blew more PM2.5 outwards than inwards m.
Column 5 of Table A.1 shows a specification in which the dependent
variable is regressed on that net dissipation effect. We find a very
small partial-F and a small but negative point estimate, i.e., we
observe a reduction in local PM2.5 levels when the prevailing winds
blew more PM2.5 outwards than inwards m.

5. Results

In this section we first report our main results on hospitaliza-
tion and mortality rates for respiratory conditions. We then
explore heterogeneity by intensity of exposure, extend our analysis
to other health conditions and different age brackets, provide
robustness checks and discussion.

5.1. Air pollution and respiratory conditions

Table 2 presents the effects of air pollution on hospital admis-
sion and mortality rates for respiratory conditions. Panels A and
B report the results of OLS and 2SLS specifications, respectively.
The first three columns present results for hospital admissions. In
the first column we include only municipality and time fixed-
effects. We add weather controls in the second specification, and
municipality-specific linear time trends in the remaining one. Col-
umns 4–6 replicate the same series of specifications for mortality
rates. In the first column of Panel A, we find a positive but small
and borderline significant coefficient of 0.021 for hospitalization
rates, which increases to 0.06 and remain stable and robust at
0.055 as we include weather controls and municipality specific
time trends, respectively.10 The same pattern is observed across
2SLS specifications, standing out a remarkably similar point estimate
of column (0.055) in comparison to the OLS results. This suggests a
limited role for concerns related to attenuation bias in our empirical
setting.11 Regarding mortality rates, we observe small and statisti-
cally insignificant point estimates in the remaining columns, irre-
spective of the specification.12 As discussed in Schlenker and
Walker (2016), fluctuations in air pollution might not be fatal but
result in treatable sickness where exposure to pollutants is generally
low. In fact, air pollution levels in the Brazilian Amazon are generally
low on average, but peak in September. Yet, even in September the
share of municipalities with mean PM2.5 concentration above
75 lg/m3 is only 10%. In that sense, variations in PM2.5 in the region
9 For instance, for the NE quadrant from m we calculated the PM2.5 in NE
municipalities multiplied by a dummy that indicates prevailing wind in the NE
quadrant blowing away from m minus the PM2.5 in SW municipalities of m
multiplied by a dummy that indicates prevailing wind in the SW quadrant blowing
towards m. Appendix Fig. A.1 depicts the computation of this variable.
10 The point estimate increases when we include controls, but that comes together
with a small reduction in sample size. Additional checks indicate that this is not led
by changes in the number of observations as coefficients remain stable across
identical estimation samples (available upon request).
11 This result suggests that, conditional on fixed-effects and controls, the remaining
variation in economic activity is not a relevant confounder in our empirical setting.
The result also suggests a limited role for measurement error in our setting.
12 The Amazon region is extremely vast and heterogeneous both across geographical
and socioeconomic features, making the possibility of different seasonal patterns
across subregions a lingering concern. In further robustness checks, we included
month-of-the year � mesoregion fixed-effects, which are expected to absorb the
seasonal influence of more specific geographies over the period of analysis. Point
estimates remain stable (results upon request). Appendix Table B.1 presents the same
series of results for balanced samples of municipalities, i.e., those without any missing
observations during the entire period of analysis. We observe slightly higher, but
statistically similar coefficients.
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have impacts on hospitalization, but would not lead to more extreme
adverse outcomes such as death.

The point estimate of 0.055 means that a ten-unit increase (ten
extra micrograms per cubic metre) in PM 2.5 is associated with an
increase in hospitalizations in one half (0.55 units) or 0.9% of the
average rate (63.5). The former shock corresponds to an observed
variation of PM 2.5 as revealed roughly by 0.6 SD (10/17.3, where
SD = 17.3 lg/m3). Yet, air pollution can have nonlinear effects on
health (Graff Zivin & Neidell, 2013). We allow for nonlinear effects
by examining how outcomes vary in response to whether average
monthly PM2.5 levels crossed the World Health Organization Air
Quality thresholds. More specifically, we rely on our most com-
plete OLS specification, the same as reported in columns 3 and 6
of Table 2, and assess the relationship between health outcomes
and the following indicators: (i) WHO IT 3 refers to the Interim Tar-
get 3, which is equal to one if average PM2.5 is in the range
between 25 and 37.5 lg/m3; (ii) WHO IT 2 refers to the Interim
Target 2, which corresponds to the range between 37.5 and
50 lg/m3; (iii) WHO IT 1 refers to the Interim Target 1, between
50 and 75 lg/m3; (iv) finally, the marker above WHO IT 1 refers
to air pollution above interim target 1. We run the same specifica-
tion for hospitalization and mortality rates.

Fig. 4 reports point estimates and confidence intervals at 95%
for hospitalization and death rates of respiratory conditions,
respectively in the upper and bottom graphics. In both regressions
the omitted category is PM2.5 below 25 lg/m3, so interpretation of
point estimates refers to benchmark levels below which we can
expect lower risk for acute and chronic health effects from air pol-
lution. We observe a clear non-linear relationship for hospitaliza-
tion rates, with a statistically significant and large coefficient for
the indicator of PM2.5 levels above 75 lg/m3. The point estimate
is 8.88 (SD = 1.43), equivalent to 14% of the average rate.13 Regard-
ing mortality rates, we observe again insignificant and smaller point
estimates across all markers.
5.2. Effects on other health conditions

In Table 3 we assess whether air pollution has detrimental
effects on hospital admissions by other health conditions as well
as on the total hospitalization rate. In the first column, we replicate
again our most complete OLS and 2SLS specifications for hospital
admissions by respiratory conditions. We follow the same specifi-
cations in the following four columns, which report results for
infectious and cardiovascular diseases, neoplasms, and digestive
diseases. In the remaining column we assess effects on total hospi-
talization rates, which consider all causes. Overall, we find a robust
effect of air pollution on respiratory conditions specifically. While
the point estimate for hospital admissions for infectious diseases
is relatively large and statistically significant in the OLS panel, it
drops in magnitude and become insignificant in the 2SLS specifica-
tion. We observe statistically insignificant coefficients across all
the remaining conditions and for total hospital admissions.

Appendix Table A.2 replicates the same series of specifications
for mortality rates. Overall, we find small and statistically insignif-
icant point estimates across the board. Point estimates are gener-
ally positive, except for infectious diseases, and borderline
significant for neoplasms and significant at 5% for total mortality
in the OLS specification. Point estimates remain small in magni-
tude and are always statistically non-significant in the 2SLS speci-
fications. Considering the point estimate of 0.07 in the last column
of Panel B, we find that an increase of one standard deviation in
PM2.5 concentration (SD = 17.3 lg/m3) is associated with an
13 A F-test on the equality of the coefficients allows us to reject the null hypothesis
that estimates are statistically equal (F ¼ 15:12).



Table 2
PM2.5 Effects on Hospitalization and Mortality Rates by Respiratory Conditions: OLS and 2SLS Specifications.

Hospitalization Rate Death Rate

(1) (2) (3) (4) (5) (6)

Panel A – OLS
PM2.5 0.021 0.060 0.055 0.002 0.002 0.001

(0.012)* (0.012)*** (0.011)*** (0.001) (0.001) (0.001)

Observations 92,640 91,440 91,440 83,352 83,352 83,352

Panel B – 2SLS
PM2.5 0.007 0.063 0.055 0.001 0.001 0.000

(0.025) (0.027)** (0.027)** (0.002) (0.002) (0.002)

Observations 90,720 89,520 89,520 81,648 81,648 81,648

Time and Municipality FE Yes Yes Yes Yes Yes Yes
Controls No Yes Yes No Yes Yes

Time Trend No No Yes No No Yes

Notes: Panels A and B report the results of OLS and 2SLS specifications, respectively. The first three columns present results for hospital admissions. In the first column we
include only municipality and time fixed-effects. We add weather controls in the second specification, and municipality-specific linear time trends in the third one. Weather
controls include average precipitation, relative humidity and temperature. Columns 4–6 replicate the same series of specifications for mortality rates. Standard errors
clustered at the municipality level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.1.

Fig. 4. Non-Linear Effects of PM2.5 Concentration on Hospitalization and Mortality Rates by Respiratory Conditions: OLS Results. (Notes: The graphics report results from
regressions that follow the OLS specification reported in columns 3 and 6 of Table 2, but in which the PM2.5 variable is replaced by dummies that indicate monthly average
concentration levels within different ranges: (i) WHO IT 3 refers to the Interim Target 3, which is equal to one if average PM2.5 is in the range between 25 and 37.5 g/m3; (ii)
WHO IT 2 refers to the Interim Target 2, which corresponds to the range between 37.5 and 50 g/m3; (iii) WHO IT 1 refers to the Interim Target 1, between 50 and 75 g/m3; (iv)
above WHO IT 1 refers to air pollution above interim target 1. Confidence intervals estimated at 95% from standard errors clustered at the municipality level.)
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Table 3
PM2.5 Effects on Hospitalization Rates by Other Conditions: OLS and 2SLS Specifications.

Resp Infec Circulat Neoplas Digest Total
(1) (2) (3) (4) (5) (6)

Panel A – OLS
PM2.5 0.055 0.040 0.010 -0.001 -0.006 0.055

(0.011)*** (0.016)** (0.006) (0.004) (0.007) (0.035)

Observations 91,440 91,440 91,440 91,440 91,440 91,440

Panel B - 2SLS
PM2.5 0.055 0.014 0.006 0.011 -0.015 0.023

(0.027)** (0.028) (0.015) (0.007) (0.014) (0.079)

Observations 89,520 89,520 89,520 89,520 89,520 89,520

Time and Municipality FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Time Trend Yes Yes Yes Yes Yes Yes

Notes: Panels A and B report the results of OLS and 2SLS specifications, respectively. Dependent variables are hospital admission rates by specific conditions (columns 1–5)
and all-cause hospitalization rate (column 6). OLS and 2SLS specifications follow the same as reported in column 3 of Table 2, respectively in Panels A and B. Standard errors
clustered at the municipality level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 4
PM2.5 Effects on Hospitalization Rates for Respiratory Conditions by Age Brackets: OLS and 2SLS Specifications.

[0y–1y] [1y–5y] [6y–14y] [15y–59y] >60y
(1) (2) (3) (4) (5)

Panel A – OLS
PM2.5 0.009 0.001 0.000 0.012 0.026

(0.004)** (0.003) (0.002) (0.003)*** (0.005)***

Dep Var Mean 13.45 9.82 7.05 11.38 14.76
Observations 91,416 91,416 91,416 91,416 91,416

Panel B – 2SLS
PM2.5 0.012 �0.010 0.003 0.015 0.022

(0.009) (0.007) (0.005) (0.007)** (0.009)**

Dep Var Mean 13.41 9.91 7.13 11.51 14.89
Observations 89,520 89,520 89,520 89,520 89,520

Time and Municipality FE Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes

Time Trend Yes Yes Yes Yes Yes

Notes: Panels A and B report the results of OLS and 2SLS specifications, respectively. Dependent variables are hospital admission rates for respiratory conditions by age
groups. OLS and 2SLS specifications follow the same as reported in column 3 of Table 2, respectively in Panels A and B. Standard errors clustered at the municipality level.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.1.
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increase in increase of 0.12 in the total number of deaths per
100,000 inhabitants per month, or 0.3% of the average rate
(35.3). The magnitude of the effects on death rates by circulatory
conditions and neoplasms is relatively larger, but cannot be statis-
tically distinguished from zero.
14 For the sake of completeness, in Appendix Table A.3 we report effects on
mortality by age and specific cause. We focus on infants and the elderly, and report
only the results from the complete 2SLS specification so to keep the table concise. We
generally find small and insignificant coefficients, except for a potentially noisy result
for neoplasms among infants.
5.3. Heterogeneity by age

In Table 4 we assess whether effects are heterogeneous across
age groups. Given the results from the previous sections, we now
look specifically at hospitalization rates by respiratory conditions.
As mentioned in Section 3, many studies have focused on age
groups that are potentially the most susceptible to exposure to
air pollution. Deryugina et al. (2019) find detrimental effects of
high levels of PM2.5 concentration on hospital admissions and
deaths among the elderly in the US, while He et al. (1024) docu-
ment that the elderly in China suffer more from air pollution
related to straw burning. Rangel and Vogl (2019) focus on infant
health in a study on agricultural fires in the state of São Paulo, Bra-
zil, and find negative effects of exposure to upwind fires on birth
outcomes. We analyze outcomes separately for younger and older
children, adults and the elderly. The age group in column 1 of
Table 4 refers to children with less than one year old, in columns
2 and 3 we look at children of age between 1–5 and between 6–
11
14 years old, respectively. The remaining two columns report
results for individuals aged 15–59 and 60 or more. We follow
our most complete OLS and 2SLS specifications, the ones reported
in column 3 of Table 2.

Overall, we find that both children and the elderly are those
who suffer the most with exposure to air pollution. The 2SLS coef-
ficient for children below 1 year old is not statistically significant,
as the standard error is relatively large, but is greater in magnitude
in comparison to the OLS point estimate. Considering 2SLS esti-
mates, we find that an increase in one standard deviation in
PM2.5 levels is associated with an increase of 0.20 and 0.37 hospi-
tal admissions by respiratory conditions per 100,000 inhabitants
per month, or 1.5% and 2.5% of the average rate, respectively for
children and the elderly. Similarly to what is observed in other
contexts, these are the age groups that suffer the most with air pol-
lution in the Brazilian Amazon. Together with results from the pre-
vious sections, the overall findings indicate that the relationship
between exposure to air pollution and health conditions in the
Brazilian Amazon follows specific patterns by age and cause.14
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5.4. Robustness checks

We relied on alternative estimating approaches and checked
the sensitivity of our estimates to the inclusion of time-varying
controls in order to overcome identification concerns. We also
explored the sensitivity of the effects in a series of heterogeneity
analyses to further characterize the relationship between air pollu-
tion and health outcomes in the Brazilian Amazon as well as to
check the overall consistency of the results in light of the main
hypotheses and the previous evidence in the literature. We now
perform an additional set of robustness tests and provide further
discussion on the results.

We first test how sensitive are our main estimates to autocorre-
lation in weather and air pollution. In Appendix Table B.2, we repli-
cate our benchmark results in columns 1 and 4, respectively for
hospital admissions and mortality by respiratory conditions. In
the following columns 2 and 5, we control for two lags of local
weather indicators as well as for two lags of our instrument, as
variation in weather and surrounding air pollution can be poten-
tially autocorrelated and have lagged effects on health conditions.
We observe that point estimates for hospital admissions increase
both in the OLS and 2SLS specifications, while the effects remain
very small and statistically insignificant for death rates. In the fol-
lowing columns 3 and 6 we include two lags and two leads of local
PM2.5 in order to test how sensitive is the contemporary effect of
PM2.5 on health outcomes.15 We observe that the estimates for hos-
pital admissions slightly decrease but remain roughly in the range of
0.05 to 0.07. This result helps us reassure the interpretation that the
estimated effect of PM2.5 concentration levels on hospitalization
rates is contemporary and relatively stable across specifications.
The effects of death rates remain small and statistically insignificant.

Finally, in columns 4 and 8 we include an alternative composite
term that is the counterpart of our instrument, in the sense that it
computes a proxy for the total PM2.5 in surrounding areas that is
blew away from the municipality.16 As similarly discussed in Rangel
and Vogl (2019), this variable would capture potentially positive
spillovers of economic activity in surrounding areas on health out-
comes, eventually net of the negative effects of exposure to air pol-
lution. In column 4, we still observe robust positive effects of local
PM2.5 on hospital admissions by respiratory conditions, in the range
of 0.05 to 0.07. The point estimates for the alternative composite
term is actually negative, as predicted by the spillover hypothesis,
but small in magnitude and statistically insignificant.

In sum, the results from Appendix Table B.2 reinforce the exis-
tence of a direct causal effect of local PM2.5 levels on hospitaliza-
tion rates for respiratory conditions. We also observe that point
estimates are statistically similar across specifications in columns
1–4 and, among them, our benchmark coefficient of 0.055 can be
interpreted as a conservative parameter for the contemporary
effect of local PM2.5 on respiratory health. Notably, we find
pollution-related detrimental effects specifically on hospital
admissions for respiratory conditions, particularly among infant
and the elderly. We do not observe significant effects on hospital-
ization rates related to other health conditions (eg. on cardiovascu-
lar diseases) nor on mortality rates, as documented in other
contexts [eg.] (Deryugina et al., 2019; He et al., 1024).

Other two relevant conceptual issues may reinforce the view
that our benchmark estimates are conservative. First, our results
are contemporaneous and measure the relationship between
15 Deryugina et al. (2019) and Schlenker and Walker (2016) also include leads and
lags in PM2.5 concentrations to assess dynamics.
16 More specifically, we use Eq. (2) and replace the dummies that indicate upwind
by dummies that indicate winds blowing to the opposite direction. The dummy ‘‘Non-
Upwind” takes unitary value when wind is not blowing from neighbours towards the
reference municipality.

12
PM2.5 and hospitalizations or mortality in the same month of
occurrence. However, the unobservable chain connecting atmo-
spheric pollution to the onset of debilitating health consequences
is challenging. A limitation of our modelling choice is that exposure
to air pollution in a given month may have health consequences
that eventually spillover into the following month. The timing of
the connection between exposure to air pollution and debilitating
health consequences can be relatively short, but it is still conceptu-
ally contrived and empirically open (Deryugina et al., 2019).17 Our
estimates can be attenuated as long as the effects of exposure to air
pollution partially spillover into the future. Second, avoidance
behavior can also attenuate adverse effects. Our estimates are
reduced-form parameters that capture the overall effect of air pollu-
tion on health outcomes. Although not directly observable, if present
in the Amazon region, avoidance behavior can be considered part of
adaptive mechanisms that help mitigate adverse effects (e.g. see
Graff Zivin & Neidell (2013) and Hsiang, Oliva, & and Walker (2019)).

Finally, the exclusion restriction is valid in high-frequency
empirical settings (such as in daily, weekly or even monthly basis)
should other local determinants of health respond only very
weakly or relatively slowly in comparison to changes in wind pat-
terns and PM2.5 (e.g health care supply and GDP). In fact, our main
estimates are remarkably stable conditional upon the inclusion of
economic variables measured in the reference municipality. While
we conjecture that a similar or even weaker pattern should occur
across geographies, spatial dependence in determinants of health
outcomes may trivially exist in our empirical setting. A Moran’s I
tests for PM2.5 and hospitalization – by using a queen contiguity
matrix, which considers every neighbor that shares a common
edge or common vertex with the reference municipality – confirms
the presence of spatial autocorrelation for air pollution (Moran’s I
value of 0.77), and a positive but smaller spatial autocorrelation
for hospitalizations (Moran’s I value of 0.24). Additionally, we have
estimated a Bivariate Moran’s I test between spatial lagged PM2.5
and hospitalization. This test considers the correlation between
both variables, without taking into account the correlation
between PM2.5 and hospitalization in the same municipality. We
find that the Bivariate Moran’s I statistic is not distinguishable
from zero, which suggests that lagged PM2.5, eventually correlated
with determinants of health and other confounders from neigh-
bors, do not correlate with hospitalization in the reference munic-
ipality. We ran ordinary spatial panel models as an additional
consistency check and to further test whether our results are
robust to the inclusion of spatial lags. More specifically, we used
a queen contiguity matrix and ran a spatial error model, a spatial
autocorrelation model, and a spatial autoregressive model. We
observe that point estimates for the impact of PM2.5 on hospital-
ization rates remain positive, statistically significant, and quantita-
tively similar to our OLS results across all specifications.18
6. Discussion and final remarks

In this paper we evaluated the causal links between fire-related
air pollution on health outcomes in the Brazilian Amazon. Despite
being sparsely inhabited and driven by agriculture, the region
experiences important peaks in air pollution, which are mainly
related to fires and deforestation.

Relying on a municipality-by-month fixed effects model, cou-
pled with an instrumental variables approach based on a compos-
17 For the US context, for instance, Deryugina et al. (2019) estimate the dynamic
effects of a 1-day shock in exposure to PM2.5 on elderly mortality, and find that the
increase in the effect levels off throughout the following weeks, with the bulk of the
variation occurring in the first days. Their benchmark specification considers a 3-day
estimating window.
18 The results are presented in Appendix Table B.3.



Fig. A.1. Computation of IV: Illustrative Figure. (Notes: This figure depicts an
example to illustrate the computation of the IV (Eq. 2) and variations used in
consistency checks. The municipality m of reference is represented by the gray star.
Each yellow star represents a neighboring municipality (or group of municipalities).
In this example, the wind is blowing towards m from the SW quadrant. Thus, only
the air pollution from municipality 4 is assigned into the instrumental variable, as
defined by Eq. (2). As regards the Wind-Reverted PM2.5 measure in column 5 of
Table A.1, we compute the difference between the pollution in municipality 2 and
in municipality 4.)
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ite term that combines monthly variation in wind direction with
air pollution in surrounding municipalities, we documented a
robust association between exposure to PM2.5 concentration and
an increase in hospital admissions for respiratory conditions. More
specifically, our benchmark estimation indicates that an increase of
one standard deviation in PM2.5 concentration is related to an
increase of 1.5% of the monthly average rate. Moreover, we also
characterized the results in a series of heterogeneity analyses, by
documenting effects by age, specific causes, and by intensity of
exposure. We find that children and the elderly are hit the most,
and that hospital admissions by respiratory conditions increase
as much as 14% of the average rate if monthly PM2.5 levels cross
thresholds as high as 75 lg/m3, which corresponds to three times
the threshold of 25 lg/m3 24-h mean according to the WHO air
quality guidelines for short term exposures.

Our results contribute novel evidence to the literature. Despite
being a relevant topic, there has been scarce causal evidence on the
effects of ambient air pollution from biomass burning on health
outcomes. As deforestation-related fires rebound, these results
evince important negative externalities related to the process of
land-use change in the Brazilian Amazon. Indeed, by providing a
comprehensive characterization of biomass smoke effects on
health outcomes, we contribute potentially informative evidence
to policymaking by revealing socioeconomic costs beyond those
directly associated with environmental degradation and biodiver-
sity loss. In particular, we shed light on the detrimental health
impacts that air pollution related to forest fires have on local
populations.

The existing literature is not short of studies on the relationship
between air pollution and health outcomes in the Amazon region,
but has very often focused on specific sites or relied on more
descriptive empirical methods, such as cross-sectional and time-
series analysis (Rodrigues, Ignotti, & and Hacon,2013; Nunes,
Ignotti, & Hacon, 2005; Rodrigues et al., 2013; Jacobson et al.,
2014). As remarked by Smith, Aragao, Sabel, and and Nakaya
(2014), the existing estimates from the literature range from
increases of 2.9% to 5.6% in hospitalization rates for a positive vari-
ation of 10 lg/m3 in PM2.5. These results are somewhat higher
than our estimates, which are slightly less than 1% for the same
increase in PM2.5. Our non-linear results nevertheless shed light
on more extreme conditions as well, when air pollution peaks
and effects are larger, and closer to estimates from sites that face
relatively higher air pollution.

Our results reveal and characterize health costs associated with
deforestation in the Brazilian Amazon, which are not usually con-
sidered in the discussion of land-use patterns and of development
processes in the region. There is an important academic and policy
debate on whether the current pattern of occupation of the Brazil-
ian Amazon is conducive or not to development. This literature dis-
cusses the ‘‘boom and bust” hypothesis (Celentano et al., 2012; Hall
& Caviglia-Harris, 2013; Weinhold, Reis, & and Vale, 2015), without
reaching a conclusion. The adverse health effects of land-use pat-
terns bring an additional layer of costs and complexity to the
debate. In fact, the reduction in health effects of air pollution is rec-
ognized by the United Nations’ Sustainable Development Goals,
which explicitly state as target 3.9 that, by 2030, the number of
deaths and illnesses from hazardous chemicals and air, water
and soil pollution and contamination should be substantially
reduced. The consideration of health-related costs associated with
air pollution is therefore relevant for the assessment of alternative
development strategies for the region.

Finally, it is possible to break-down the trade-off between agri-
cultural expansion and forest conservation. As Barbier (2019) high-
lights, it is indeed important to decouple rural development from
13
land-use expansion. This was achieved in Brazil from the mid-
2000s until the early 2010s with a mix of policies intended to
enhance forest conservation in the Brazilian Amazon. These poli-
cies did not harm agricultural development, which became more
intensive (Assunção et al., 2020; ?). The results of this paper rein-
force the importance of strengthening previous successful conser-
vation policies in the region by documenting that the welfare costs
associated with deforestation and biomass burning are also lever-
aged by adverse health consequences.
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Appendix A. Illustration of IV, first-stage and additional results

See Fig. A.1 and Tables A.1–A.3.



Table A.1
First-Stage Results.

PM2.5

(1) (2) (3) (4) (5)

Instrument 0.243 0.227 0.227
(Wind from Neighbors*PM2.5 in Neighbors) (0.015)*** (0.014)*** (0.014)***
Wind from SE Neighbors * PM2.5 in SE Neighbors 0.238

(0.017)***
Wind from NW Neighbors * PM2.5 in SE Neighbors �0.280

(0.049)***
Wind-Reverted PM2.5 -0.029

(0.014)**

Observations 90,720 89,520 89,520 89,520 89,520
Partial-F IV 270.8 261.2 257.5 119.3 4.485

Common Specification:
Time and Municipality FE Yes Yes Yes Yes Yes
Controls No Yes Yes Yes Yes
Time Trend No No Yes Yes Yes

Notes: All specifications follow Eq. 1. In all columns the dependent variable is PM2.5. In columns 1–3, the instrument is defined by Eq. 2. In the first column we include only
municipality and time fixed-effects. We add weather controls in the second specification (average precipitation, relative humidity and temperature), and municipality-
specific linear time trends in the remaining ones. Standard errors clustered at the municipality level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A.2
PM2.5 Effects on Mortality Rates by Other Conditions and All-Cause Mortality: OLS and 2SLS Specifications.

Resp Infec Circulat Neoplas Digest Total
(1) (2) (3) (4) (5) (6)

Panel A – OLS
PM2.5 0.001 �0.001 0.004 0.003 0.000 0.010

(0.001) (0.001) (0.003) (0.002)* (0.002) (0.005)**

Observations 83,352 83,352 83,352 83,352 83,352 83,352

Panel B – 2SLS
PM2.5 0.000 �0.002 0.004 0.004 0.001 0.007

(0.002) (0.002) (0.005) (0.003) (0.002) (0.009)

Observations 81,648 81,648 81,648 81,648 81,648 81,648

Time and Municipality FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Time Trend Yes Yes Yes Yes Yes Yes

Notes: Panels A and B report the results of OLS and 2SLS specifications, respectively. Dependent variables are mortality rates by specific conditions (columns 1–5) and all-
cause mortality (column 6). OLS and 2SLS specifications follow the same as reported in column 3 of Table 2, respectively in Panels A and B. Standard errors clustered at the
municipality level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A.3
PM2.5 Effects on Mortality Rates by Age and Specific Causes: 2SLS Results.

Resp Infec Circulat Neoplas Digest Total
(1) (2) (3) (4) (5) (6)

[0y–1y] 0.0005 �0.0008 �0.0000 �0.0003 0.0004 �0.0006
(0.0007) (0.0006) (0.0002) (0.0001)*** (0.0005) (0.0019)

Observations 81,432 81,432 81,432 81,432 81,432 81,432

>60y �0.0007 0.0007 0.0042 0.0040 �0.0003 0.0036
(0.0021) (0.0011) (0.0044) (0.0028) (0.0012) (0.0068)

Observations 81,648 81,648 81,648 81,648 81,648 81,648

Time and Municipality FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Time Trend Yes Yes Yes Yes Yes Yes

Notes: The upper and bottom panels report the results of our most complete 2SLS specification, respectively for infants and the elderly. Dependent variables are mortality
rates by specific conditions (columns 1–5) and all-cause death rate (column 6). In all regressions, the 2SLS specification follows the same as reported in column 3 of Table 2,
Panel B. Standard errors clustered at the municipality level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Appendix B. Robustness checks

See Tables B.1–B.3.
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Table B.1
PM2.5 Effects on Hospitalization and Mortality Rates of Respiratory Conditions: OLS and 2SLS Specifications in Balanced Samples.

Respiratory Hospitalization Rate Respiratory Death Rate

(1) (2) (3) (4) (5) (6)

Panel A – OLS
PM2.5 0.028 0.070 0.061 0.002 0.002 0.001

(0.013)** (0.014)*** (0.012)*** (0.001) (0.001) (0.001)

Observations 78,720 78,720 78,720 70,848 70,848 70,848

Panel B – 2SLS
PM2.5 0.025 0.075 0.067 0.001 0.000 -0.000

(0.026) (0.029)*** (0.029)** (0.002) (0.003) (0.003)

Observations 78,720 78,720 78,720 70,848 70,848 70,848

Time and Municipality FE Yes Yes Yes Yes Yes Yes
Controls No Yes Yes No Yes Yes

Time Trend No No Yes No No Yes

Notes: Panels A and B report the results of OLS and 2SLS specifications, respectively. The samples are balanced and include municipalities without any missing observations
during the entire period of analysis. The first three columns present results for hospital admissions. In the first column we include only municipality and time fixed-effects.
We add weather controls in the second specification, and municipality-specific linear time trends in the remaining one. Weather controls include average precipitation,
relative humidity and temperature. Columns 4–6 replicate the same series of specifications for mortality rates. Standard errors clustered at the municipality level. Signifi-
cance: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table B.2
PM2.5 Effects on Hospitalization and Death Rates by Respiratory Conditions: OLS and 2SLS Specifications With Additional Controls.

Respiratory Hospitalization Respiratory Death Rate

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A – OLS
PM2.5 0.055 0.062 0.049 0.054 0.001 0.001 0.001 �0.001

(0.011)*** (0.012)*** (0.011)*** (0.012)*** (0.001) (0.001) (0.001) (0.002)
PM2.5 Neighb.*Non-Upwind �0.007 0.002

(0.007) (0.002)

Observations 91,440 88,008 86,696 86,696 83,352 80,136 80,136 80,136

Panel B – 2SLS
PM2.5 0.055 0.072 0.060 0.066 0.000 �0.000 �0.001 �0.002

(0.027)** (0.028)*** (0.031)* (0.034)* (0.002) (0.003) (0.003) (0.004)
PM2.5 Neighb.*Non-Upwind �0.009 0.002

(0.008) (0.002)

Observations 89,520 88,008 86,696 86,696 81,648 80,136 80,136 80,136

Time and Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes
Dynamic Controls No Yes Yes Yes No Yes Yes Yes
Two Lags and Leads of PM2.5 No No Yes Yes No No Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Panels A and B report the results of OLS and 2SLS specifications, respectively. Dependent variables are hospital admission rates and death rates by respiratory
conditions. OLS and 2SLS specifications in columns 1 and 5 follow the same as reported in columns 3 and 6 of Table 2, respectively in Panels A and B. Specifications in columns
2 and 6 add lagged weather variables and lagged instrument in two periods. Specifications in columns 3 and 7 add two lags and two leads of local PM2.5. Specifications in
columns 4 and 8 add the composite term of PM2.5 concentration in neighbor municipalities interacted non-upwind dummies. Standard errors clustered at the municipality
level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table B.3
Spatial Regression Models.

(1) (2) (3) (4) (5)
OLS OLS SEM SAC SAR

PM2.5 0.055 0.054 0.051 0.032 0.046
(0.011)*** (0.012)*** (0.013)*** (0.009)*** (0.012)***

rho 0.494 0.170
(0.045)*** (0.013)***

lambda 0.170 �0.411
(0.013)*** (0.065)***

Observations 91,440 92,640 92,640 92,640 92,640

Notes: The first column reproduces the results from column (2) of Table 2. The second column follows the same specification, but excludes specific controls which have some
missing observations so as to allow us to run a balanced panel of municipalities. As spatial models need a strongly balanced panel, columns (3)-(5) present estimates without
relative humidity as control. All specifications include municipality and time fixed-effects and weather controls (average precipitation and temperature). The spatial models
from columns (3)-(5) are estimated based on a queen contiguity matrix, which considers every neighbor that shares a common edge or common vertex with the municipality
of analysis. In the third column, it is estimated a Spatial Error Model, which considers a lag structure in the error term (the lambda estimated). The fourth column presents a
Spatial Autocorrelation Model, which considers a lag structure both in the error term (lambda) and in the lagged dependent variable (rho). Finally, the Spatial Autoregressive
Model considers a lag structure in the lagged dependent variable (rho). Standard errors clustered at the municipality level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.worlddev.2021.
105722.
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