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Abstract: Fire is widely used in the Amazon as a ubiquitous driver of land management and land
cover change. Regardless of their purpose, fires release a considerable amount of pollutants into the
atmosphere, with severe consequences for human health. This paper adds to the extant literature by
measuring the causal effect of fires on hospitalizations, using the approach of instrumental variables,
whose validity is assessed with multiple statistical tests. A wide range of confounders are added as
covariates, seizing on the accuracy enhancement potential of a broad and fine-grained dataset that
covers 14 years of the whole Amazon territory at a municipal–monthly level. The results reveal a
positive effect of fire on hospitalizations due to respiratory illnesses in general, and particularly in
those due to asthma. A 1% increase in pollution concentration would increase hospitalizations by
0.14% at a municipality–monthly level. A total of 5% of respiratory hospitalizations were estimated
to be attributable to fire-induced pollution, corresponding to 822 cases per month. The analysis
demonstrates that the coupling of econometrics and remote sensing data is a promising avenue
towards the assessment of impacts caused by fires, which may be applied to other regions of the
world subjected to anthropogenic fires.

Keywords: wildfire; instrumental variable; econometrics

1. Introduction

Biomass burning in agriculture is a global source of air pollution and, consequently, of
morbimortality. The practice, which is more frequently reported in developing countries—
such as China, India, and Brazil [1], but also Indonesia [2]—has been evidenced as a source
of respiratory illnesses and related hospitalizations [2–7]. In addition to the impairment
of health and eventual premature mortality [8], already overloaded national healthcare
systems are subjected to higher pressure.

The Amazon biome is the region with the highest frequency of point fire detections in
Brazil [9]. Historically, fires have been set as part of the process of deforestation, and also
to manage fallow vegetation and pasture, but they may also run out of control and cause
forest fires [10]. In addition to the fact that these events in the Amazon are mainly driven
by humans, they are also boosted by climate extremes, such as the anomalous temperatures
and droughts [11,12] that have become severer and more frequent in recent years (e.g.,
1997/98, 2005, 2010, 2015/16).

These fire events release a massive load of pollutants into the atmosphere. However,
the smoke is usually composed of primary pollutants—such as particulate matter (PM),
carbon monoxide (CO), nitrogen oxides (NOx), and non-methane organic compounds
(NMOCs)—along with some precursors of secondary pollutants, such ozone (O3) and
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other secondary organic aerosols (SOAs) [13]. When in contact with the human respiratory
system, these components can cause several negative consequences for health. For instance,
exposure to CO2 can induce shortness of breath, cough, and fatigue, and can also lead to
convulsions, coma, and death depending on its concentration [14].

Since the process that connects pollution and health is a result of spontaneous social
and atmospheric forces, and not a consequence of a controlled experiment randomly
assigning pollution levels to locations, the available data for analysis are observational.
Thus, the observable variations in health levels—for instance, in the form of increased
hospitalizations—are not only due to the variation in pollution levels, but both may occur
synchronously and at the same place because, for instance, in the dry season, when fires
are set, roads become more suitable for travelling and, thus, transporting household
members who have become ill due to the lower temperature of the wet season. In this
case, the econometric approach of quasi-experimental identification is useful, because
under reasonable assumptions and after considering the variation of key variables, it
manages to retrieve the random portion of pollution variation. One particularly useful
technique is that of instrumental variables (IVs). An instrument variable is a proxy used to
substitute the explanatory variable in the main model. Such a variable needs to preserve
the cause–effect context and the nature of the relationships between the explanatory and
the response variables. In addition, the IV must satisfy two statistical criteria: (1) it must
be exogenous—that is, uncorrelated with the error term of the structural equation—and
(2) it must be partially correlated with the endogenous explanatory variable [15]; IVs were
used elsewhere to identify the effects of pollution on health [7,16,17]. This approach is also
applied here for the specific case of the Brazilian Amazon from 2001 to 2020.

It should be highlighted that, in this article, fire is used as an instrumental variable
to support the identification of the effect of pollution on hospitalizations, exploring the
positive relationship that fire and pollution generally exhibit [7,17,18], and yielding the
additional benefit of quantifying fire’s contribution to hospitalizations [17]. The latter was
assessed both statistically, with results from the first-stage regression, and numerically, as
the fraction of hospitalizations attributable to fires. In addition to fire, and in accordance
with the findings of Deryugina et al. [16] and Sheldon and Sankaran [7], wind speed and
wind direction were used as additional instrumental variables.

The knowledge available in the extant literature on the health consequences of pollu-
tion in general—and especially of fire-induced pollution in the Amazon—is significantly
expanded in this paper by addressing two key gaps: The first is the failure to apply an
identification strategy, which biases the available estimates of fire-induced pollution on
health (this applies, for instance, to the findings of Do Carmo et al. [3], Smith et al. [19],
and Machado Silva et al. [20]). Secondly, studies that cover the whole Amazon across long
periods are rare, with most evidence circumscribed to particular Amazonian states and even
smaller subregions, and generally to particularly fire-critical periods ranging from one to a
few years (as in the case of De Mendonça et al. [21], Carmo et al. [22], Jacobson et al. [23],
and Machado-Silva et al. [20]).

We used a dataset at a municipal–monthly level from 2005 to 2018, covering 805 Brazilian
municipalities and totalizing 118,335 observations. The comprehensive character of our
effort is also demonstrated by the 4 combinations among the 3 instrumental variables that
were considered, the 4 classes of respiratory illness and 3 age groups examined, and the
12 covariates included. Our estimates suggest a positive effect of fire on hospitalization due to
respiratory illnesses in general, and due to asthma in particular. Considering the total range of
respiratory illnesses, a 1% increase in the fire count of the average municipality–month would
raise the hospitalization count by 0.14%—an effect that could be higher in the fire season
(August to October).
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2. Materials and Methods
2.1. Study Area

The study area comprises the Brazilian Legal Amazon (BLA), which covers approx-
imately 5 million km2 and includes the states of Acre, Amapá, Amazonas, Mato Grosso,
Rondônia, Roraima, Tocantins, Pará, and a subset of Maranhão’s municipalities over the
44th Meridian [24] (Figure 1, red contour). This area represents ~59% of the Brazilian
territory [25], totalizing 805 municipalities.

Remote Sens. 2022, 13, x FOR PEER REVIEW 3 of 20 
 

 
Remote Sens. 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/remotesensing 

average municipality–month would raise the hospitalization count by 0.14%—an effect 
that could be higher in the fire season (August to October). 

2. Materials and Methods 
2.1. Study Area 

The study area comprises the Brazilian Legal Amazon (BLA), which covers ap-
proximately 5 million km2 and includes the states of Acre, Amapá, Amazonas, Mato 
Grosso, Rondônia, Roraima, Tocantins, Pará, and a subset of Maranhão’s municipalities 
over the 44th Meridian [24] (Figure 1, red contour). This area represents ~59% of the Bra-
zilian territory [25], totalizing 805 municipalities. 

 
Figure 1. Municipalities within the nine states of the BLA used in this study. 

2.2. Data 
The variables considered may be classified into three categories: instrumental vari-

ables (IVs) and the main explanatory variable (ExpV), dependent variables (DpVs), and 
control variables (CrVs) (Table 1). Such categories are suggested by the data analysis 
approach of two-stage least squares regressions, which estimate the effect of the main 
explanatory variable (pollution; ExpV) on health dependent variables (DpVs). For this, 
(1) other relevant predictors were added as control variables (CrVs), and (2) instrumental 
variables (fire and wind; IVs) were explored as a means of effect identification. Therefore, 
variables’ categories were strictly due to their roles (or positions) in the regression mod-
els. Detailing only the less common factors, mortality of infants and mortality due to the 
four most deadly chronic diseases in Brazil were used to proxy populations’ health levels 
(in accordance with Aquino et al. [26] and Harris and Kohn [27]). Health professionals, 
hospital beds, and facilities were sued to proxy the supply of healthcare. Other sources of 
pollution were proxied by urban zones, road density, and vehicle fleets. 

Table 1. Variables’ description and summary. 

Variable Time Spatial Source 

Tp. Abr. Description Agg. Period Res. Agg Res. Agg.  

IV 
BA Burned area Sum 2000–2020 m m 500 m mc MCD64A1 

TA Thermal anomalies * Sum 2003–2020 m m 1 km mc MYD14A1 

Figure 1. Municipalities within the nine states of the BLA used in this study.

2.2. Data

The variables considered may be classified into three categories: instrumental variables
(IVs) and the main explanatory variable (ExpV), dependent variables (DpVs), and control
variables (CrVs) (Table 1). Such categories are suggested by the data analysis approach
of two-stage least squares regressions, which estimate the effect of the main explanatory
variable (pollution; ExpV) on health dependent variables (DpVs). For this, (1) other relevant
predictors were added as control variables (CrVs), and (2) instrumental variables (fire and
wind; IVs) were explored as a means of effect identification. Therefore, variables’ categories
were strictly due to their roles (or positions) in the regression models. Detailing only
the less common factors, mortality of infants and mortality due to the four most deadly
chronic diseases in Brazil were used to proxy populations’ health levels (in accordance
with Aquino et al. [26] and Harris and Kohn [27]). Health professionals, hospital beds, and
facilities were sued to proxy the supply of healthcare. Other sources of pollution were
proxied by urban zones, road density, and vehicle fleets.

2.2.1. Instrumental Variable Data

It is useful to clarify that an instrumental variable (IV) is understood first of all a
strategy of identification—that is, a procedure that enables the estimation of a parameter
capturing the specific effect of a particular explanatory variable (ExpV) on the target
dependent variable (DpV) [15]. In addition, and relatedly, an IV is needed because, due
to the observational nature of data, an ExpV is assigned to locations in a way that is not
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random, but rather correlated with omitted unobservable predictors; thus, its effect is not
identified and, consequently, not measurable as a standard regression coefficient. In short,
an IV is any variable correlated with the ExpV and not correlated with the DpV through
any other causal path besides the one mediated by the ExpV [15].

Table 1. Variables’ description and summary.

Variable Time Spatial Source

Tp. Abr. Description Agg. Period Res. Agg Res. Agg.

IV

BA Burned area Sum 2000–2020 m m 500 m mc MCD64A1

TA Thermal anomalies * Sum 2003–2020 m m 1 km mc MYD14A1

WDirec Wind direction (degree)
Mean 2001–2020 m m 0.25◦ mc ERA5

WSpeed Wind speed (m/s)

ExpV AOD Land aerosol optical
depth (AOD) Mean 2001–2020 m m 1 km mc MCD19A2

DpV

Hosp.

Hospitalization due to
respiratory illnesses (ICD 10,

Chapter X), by municipality of
residence and age

Sum 2001–2020 m m - mc DataSUS

Asthma Hospitalization due to asthma

Sum 2001–2020 m m - mc DataSUSPneumonia Hospitalization due
to pneumonia

Bronchitis Hospitalization due
to bronchitis

CrV

Pop Estimated population Sum 1992–2019 y y - uf DataSUS

GDP
Gross domestic product in

thousands of Brazilian
Reais (BRL)

Sum 2002–2017 y y - mc IBGE

Chd_d Infant mortality Sum 01/2001–12/2018

m m - mc DataSUS

Crn_d

Chronic disease mortality (i.e.,
the total mortality due to

respiratory, cardiovascular,
diabetes, and

neoplasm diseases)

Sum 01/2001–12/2018

Employe Number of health professionals Sum 08/2005–12/2019

Beds Number of hospital beds Sum 10/2005–05/2020

Faci. Number of health facilities Sum 08/2005–05/2020

Temp Mean, minimum, and
maximum temperature (Kelvin)

Min
2001–2020 m m 1 km mc MOD11A2Mean

Max

Precp Rainfall Mean 2001–2020 m m 0.05◦ mc Chirps

Road Road density (m/m2) 2019 - m - mc OSM

Urb Urban density (km2/km2) Sum 2001–2019 y y 30 m mc MapBiomas

Cars Vehicle fleet Sum 2005–2019 m m - mc Denatran

Variable Tp.—Variable type data: IV (instrumental variable data); ExpV (explanatory variable); DpV (dependent
variable data), and CrV (control variable data); Variable Abr.—abbreviation; Variable Agg.—aggregation method;
Time Res.—the time resolution of the data, as: d (daily); m (monthly), and; y (yearly). Time Agg.—the time
aggregation method used; Spatial Res.—the spatial resolution of the source; Spatial Agg.—the spatial aggregation
used, by municipality (mc) or states (uf). * Thermal anomalies were used as instrumental variables only in the
robustness procedures.

We used the MCD64A1-v6 Burned Area data product of the Moderate-Resolution
Imaging Spectroradiometer (MODIS) of the Terra and Aqua satellites, collected using the
R package “MODIStsp” [28]. The MCD64A1 has a monthly periodicity, spatial resolution
of 500 m, and data starting from November 2000. This product uses an association of
surface reflectance with active fires, along with an algorithm that checks the temporal
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changes in the vegetation index [29]. Globally, it presents 99.7% overall accuracy, with
40.2% commission error and 72.6% omission error [30]. In the Amazon region, it shows a
great similarity to regional and supervision-based products, underestimating 2.9% of the
total burned area, but detecting more fires in the northern and northwestern areas than in
the southwest [31].

For thermal anomalies, we used collection 6 of the product MYD14A1 from Aqua
MODIS, available on the BDQueimadas website [32]. This product presents active fires with
date and quality indices at a global scale, reproducing them at 1 km spatial resolution [33].
This product is considered a “reference satellite” to the Progama Queimadas of the INPE,
and it is the basis for comparisons and trend analysis for the whole Brazilian territory.

It is helpful to clarify how the two fire products are used in this paper. Given the
influence of cloud cover on the availability of burned area measurements [31,34,35], the
robustness of results generated with such data were subjected to an assessment with thermal
anomalies, which are cloud-free, in the place of burned area in the econometric analysis
(as reported in Section 3.4). Nevertheless, there was no municipal–monthly observation
for which missing burned area values at a finer level (for instance, at cell–grid–day) were
numerous enough to prevent calculation of burned area at the observational unit level
(what was due both to the monthly timescale of the dataset and to Brazilian Amazon
municipalities being large, at 6300 km2 on average).

The wind data were obtained using the ERA5 monthly aggregate product, which
combines model data with observations across the world, providing a global monthly
product with 0.25 degrees of spatial resolution [36]. This product provides the U and V
components of the wind, which we converted into wind speed and direction using the
“rWind” package [37].

2.2.2. Explanatory Variable

Pollutant information was introduced by the land aerosol optical depth (AOD), gath-
ered by the MCD19A2 version 6 data product, and reported in the blue band (0.47 µm).
This product is a daily MODIS Terra and Aqua combined multi-angle implementation of
atmospheric correction (MAIAC) at 1 km spatial resolution [38].

The measures of AOD reflect the sum of aerosols from natural and anthropogenic sources,
such as emission from industries, vehicles, water vapor, dust, and burned biomass [39]. The
product presents a high overall correlation with the ground measurements (∼=95%) over
South America, and is better over the forest, savannah, grassland, and cropland areas [40].
Moreover, the AOD has been widely used to estimate highly dangerous pollutants for the
human respiratory system, such as particulate matter (PM), with considerable accuracy [41,42].

Even with AOD being only one dimension of the atmospheric pollution process en-
gendered by biomass burning, previous studies have demonstrated its correlation with
pollutants such as PM2.5 [18], carbon monoxide [43], and sulfur dioxide [44], which also
play important roles with regards to impacts on human health. We also clarify that mea-
surements of pollutants’ concentrations were not available at the whole-Amazon level for
the period of analysis

2.2.3. Dependent Variables

Hospitalization counts were retrieved from TabNet [45], which is a governmental
platform maintained by the informatics department of the Brazilian Health System (“De-
partamento de Informações do SUS”, DataSUS). We collected three respiratory morbidities
(hospitalization code following the International Classification of Disease (ICD) number 10,
where diseases of the respiratory system are those between J00 and J99) that are commonly
accounted for in the literature as indicators of fire pollution impact: asthma (ICD10: J45–J46),
pneumonia (ICD-10: J12–J18), and bronchitis (ICD-10: J20–J21). The total hospitalization
due to respiratory illnesses was also considered.

This information was filtered by municipality of residence and month of attendance.
Due to the higher vulnerability of children and the elderly to pollution, hospitalizations
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of such age groups due to any respiratory illnesses were also counted separately, com-
prising small children (≤ 4 years old), children (between 5 and 14 years old), the elderly
(≥ 65 years old), and all ages.

2.2.4. Control Variables

Estimated population data were collected from the DataSUS portal [45], which com-
piles the yearly estimates produced by IBGE, being compatible with the Brazilian legal
provision. These data are available yearly for each Brazilian municipality from 1992 to 2019.

Gross domestic product (GDP) is provided by the IBGE [46], and it is released yearly
by municipality, in both current and aggregated prices.

Mortality of infants and mortality due to chronic diseases were collected from the
DataSUS portal, filtering by municipality of residence and month of attendance. Infant
mortality refers to the death of fetuses and children under one year old. For chronic disease
mortality, we considered four groups, in accordance with Malta et al. [47]: cardiovascular
diseases (ICD-10: I00 to I99), cancer (ICD-10: C00 to C97), respiratory issues (ICD-10: J30 to
J98), and diabetes (ICD-10: E10 to E14).

Data on health professionals, hospital beds, and facilities were also obtained from the
DataSUS portal.

Weather information came from two different products: the temperature was acquired
from MOD11A2, which provides an 8-day average of land surface temperature with a
1 km spatial resolution [48], while precipitation data came from CHIRPS (the Climate
Hazards Group InfraRed Precipitation with Station data), which is a global rainfall dataset
with 0.05◦ spatial resolution [49]. This product has a good performance both globally and
locally, and particularly in the BLA, where its values explain 73% of the precipitation, with
a root-mean-square error (RMSE) below 15 mm [50].

Regarding the proxies for other sources of pollution, road density was generated by ex-
tracting the road component from the total road network provided by OpenStreetMap [51],
while the area of the municipalities was provided by the IBGE. The fleet of cars was found
on the DENATRAN website [52], which provides the number of registered cars by month
and by municipality for the whole of Brazil.

Lastly, urban density (km2/km2) was measured using the MapBiomas product. These
land use and land cover data are available annually from 1985 to 2019, with 30 m spatial
resolution, based on Landsat images and produced using pixel-based classification and
machine learning [53,54].

2.3. Spatial Aggregation

Spatial variables (BA, TA, wind, AOD, temperature, precipitation, roads, and urban
zones) were assembled with Google Earth Engine, and were clipped and aggregated
at municipal–monthly level. Then, the exported tables were processed in the RStudio
environment to merge all variables (spatially and non-spatially explicitly) into a single
table compatible with the Stata 14.1 format.

It is worth mentioning that over 20 years of data, the municipalities’ boundaries
experienced several legal updates, including the creation of new municipalities. To follow
those changes, we used each annual current delimitation provided by the IBGE to perform
each clip and aggregation.

2.4. Empirical Analysis

First, we present the main assumption grounding our data analysis, which is sug-
gested by atmospheric science and epidemiological literature [18,22,55]. Once burnings of
considerable size and number occur in a location, pollutants are released and transported
through the atmosphere, causing considerable appearance or exacerbation of respiratory
illnesses. This process is a function of many variables. Fire emissions are primarily affected
by fuel type, the temperature of the fire, and climatic conditions [56]. In the atmosphere,
fire pollution may be mixed with pollutants of vehicular or industrial sources, and is also
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affected by weather conditions [57]. Finally, the number of hospitalizations is influenced
by the size of population, its health level and income, and the availability of healthcare
facilities and staff [6,58].

With that in mind, to evaluate the impact of fire-induced pollution on health, we
followed the methodology proposed in [7,16,17,59], which used the instrumental variable
(IV) technique with wind as the exogenous source of variation that identifies the effects of
endogenous pollution on respiratory morbidity; He et al. [17] and Sheldon and Sankaran [7]
also adopted fire as a second instrument. The IV method is based on the two-stage least
squares estimator (2SLS) that corresponds to Equations (1) and (2) below, with “i” indexing
the spatial unit and “t” the time period:

LogAODit= α0+IVitγ+ α2CrVit+bi+εit (1)

LogHospit= β0+β1LogAODit+β2CrVit+ci+uit (2)

LogAODit is the logarithm of atmospheric optical depth; IVit is a set of instrumental
variables; CrVit is the control variable vector; LogHospit is the logarithm of hospitalization
count;
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disturbance terms. The Greek letters represent parameters to be estimated.

Regarding the IVit vector, three instrumental variables were employed: burned area
(Ba) in logarithmic form (LogBA), wind direction (WDirec), and wind speed (WSpeed).
These were combined, either in original form or as interactions (denoted with “*”), into
four alternative sets of instrumental variables, all of which included LogBA separately.
The first and most comprehensive set included the two interactions of burned area with
the two wind measures (i.e., Ba * WSpeed, and Ba * WDirec). The second and third
sets included only one of the possible fire–wind interactions (either Ba * WSpeed or Ba *
WDirec). The fourth and least comprehensive set did not include any interactions (only
LogBA). The last three sets were used as potential alternatives to estimation when the most
comprehensive set was rejected in its validity by the overidentification test. In this way, the
least comprehensive was the last possible alternative in case the two double-instrument
sets were rejected.

Now, regarding the CrVit vector, the control variables captured factors influencing
supply and demand for healthcare belonging to the following thematic classes:

• Health level of the population, represented by infant mortality (Chd_d) [26,60] and
chronic disease mortality (Crn_d);

• Healthcare supply capacity, represented by the number of health professionals (Emp),
number of hospital beds (Beds), and number of health facilities (Faci);

• Sociodemographic factors, such as estimated population (Pop), gross domestic product
(GDP), urban zones (Urb), road density (Road), and fleet of cars (Cars);

• Weather, indicated here by the temperature (Temp) and rainfall (Precp).

These variables are crucial to estimate when they address weather and socioeconomic
confounders that could bias the estimation of the causal effect of pollution on hospitaliza-
tions. If these variables were not included, they would be left to the disturbance term, thus
potentially creating omitted variable bias [15].

The identification strategy was applied both to the whole count of hospitalizations
and to counts associated with specific ages and illnesses. Confounders, whose influence is
mitigated by the IV approach, may affect illness propensity in the form of viral, bacteriolog-
ical, and environmental factors varying across illnesses [61,62]. Therefore, since distinct
definitions of the dependent variable may be subject to distinct levels of influence from
sources of illnesses not related to pollution, the performance of the identification strategy
was more broadly assessed.

The estimation was carried out on the Stata program, with a balanced panel struc-
ture (at a monthly–municipal level) with fixed effects (state, year, and month) and a
heteroscedasticity–autocorrelation “robust” variance–covariance matrix. To check whether
the approach used was valid, the following testing sequence was adopted:

https://doi.org/10.3390/xxxxx
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1. Generalized Hausman test for the null of consistency of the random-effects estimator
(no omitted heterogeneity bias) against the alternative of consistency of the fixed-
effects estimator only. Here, the “xtoverid” command developed by Schaffer and
Stillman [63] was applied;

2. Pollution exogeneity test for the null that ordinary least squares (OLS) would yield
consistent estimates over the IV estimates, i.e., pollution is exogenous. For this, the
“dmexogxt” command from Baum and Stillman [64] was applied;

3. Sargan’s overidentification test for instrument validity which assumes validity under
the null hypothesis that all instruments are valid, while rejection is interpreted as
indicating that at least one of the instruments is not valid [65]. For this, the “xtoverid”
command from Schaffer and Stillman [63] was used;

4. Tests for instrument weakness in the first stage, which were based on post-estimation
procedures with robust covariance matrix:

a. Joint significance of the instruments (robust F-test), with the test statistic com-
pared to the rule-of-thumb value of 10, as proposed by Staiger and Stock [66]
and Shao and Stoecker [67];

b. Stock and Yogo’s IV weakness test, which presumes homoscedastic errors in
the instruments, and its null hypothesis is that the instrument is weak. This is
rejected whenever the “minimum eigenvalue statistic” [65] exceeds the “critical
value” at a 10% level.

When exogeneity was not rejected in step 2, OLS estimation was applied. Conversely,
IV estimation was pursued, for which all three instruments were initially used. Then, if
such a set of instruments was not accepted in step 3, the list was reduced stepwise until no
instrument was deemed invalid or only one instrument remained.

2.5. Simulation: Hospitalizations Attributable to Fires

The count of hospitalizations attributable to fires was estimated as ˆHospit = β̂1.γ̂1.logBait +
β̂1.γ̂2.Bait ∗ Wspeedit + β̂1.γ̂3.Bait ∗ WDirecit. The first component is the product of the esti-
mated coefficients measuring the effect of fires on pollution (α̂1), and of pollution on total
hospitalizations (β̂1) and the observed value of fires. The two remaining components, in line
with estimated econometric models, incorporate the effects of interactions between fires and
wind speed and direction—the most comprehensive set of instrumental variables was used
(due to the linearity of the econometric models, such coefficient products yield the same result
as calculating the differences in predicted hospitalizations between the scenarios with observed
fire levels and with the counterfactual null fire level. It is in this sense that hospitalizations
attributable to fires are estimated). The results obtained at the level of the i-th municipality and
t-th month were summed across the whole dataset and then divided by the sum of observed
hospitalizations; the latter was also calculated for the whole dataset, which generated the
estimate for the share of hospitalizations attributable to fires.

3. Results
3.1. Data Description

Despite having available data for the last two decades (2001–2020), not all variables
were available for this whole period; therefore, the time window of analysis started in
August 2005 and ended in December 2018. Descriptive statistics are shown in Table 2. For
the main variables (burned area, AOD, and hospitalizations), graphical representations are
presented in both the space (Figure 2) and time (Figure 3) dimensions.

The average burned area by municipality is ~13 km2 (±87 km2), and the highest
values were found on the triple border of Mato Grosso–Tocantins–Pará and on the border
between Tocantins and Maranhão. The empirical distribution is asymmetrical across the
Amazon, with more municipalities with values below the time-series average (2005–2018).
Among the 805 municipalities in the dataset, approximately 11.20% (90 ± 88) have a
monthly burned area above the average, while 88.80% (715 ± 88) of them have values
below. Of those municipalities with values below the average, approximately 75% (538 ±
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163) have null values for burned area, but this feature varies throughout the year, reaching a
maximum of 783 municipalities at the beginning of the year, and a minimum of 203 during
the burning season.

Table 2. Descriptive statistics, subdivided by variable type and calculated at a municipal–monthly
level.

Type Variable Unit Mean Std.
Devia. Min Max

IV

BA km2 13.1 87 0 5010
TA # 14.25 73.06 0 6814

WDirec degree 1.39 1.02 0.002 7.72
WSpeed m/s 235.68 42.48 0.03 359.95

ExpV AOD - 0.24 0.17 0.03 3.35

DpV

Hosp. # 20.62 56.31 0 1676
Small

Children # 7.98 31.31 0 1215

Children # 2.54 7.60 0 232
Elders # 3.61 8.46 0 210

Asthma # 3.10 10.42 0 424
Pneumonia # 11.34 33.39 0 1092
Bronchitis # 0.73 5.42 0 264

CrV

Pop # 32,295 100,855 931 2,130,264
GDP mil R$ 463,997 2,493,686 5606 73,200,000

Chd_d # 0.83 2.69 0 71
Crn_d # 0.53 2.34 0 72

Employe # 288 1159 0 28,166
Beds # 65 267 0 5099
Faci. # 24 91 0 1999

Temp_max K 309.7 4.7 299.0 353.9
Temp_med K 303.6 3.3 290.6 320.0
Temp_min K 297.3 6.0 247.7 314.8

Precp mm 5.24 4.46 0.00 29.05
Road m/m2 4.65 14.41 0.01 242.00
Urb % 0.33 1.73 0.00 30.29
Cars # 6780.07 29,523.87 1.00 689,937

Type of data: IV (instrumental variable); ExpV (explanatory variable); DpV (dependent variable) and CrV (control
variable). Unit: # (number of).
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Figure 2. Spatialization of the time-series average for burned area, AOD, and total hospitalizations,
aggregated by municipalities The bar plot represents the histogram of the spatialized variable, the
bar shows the number of municipalities in each class, and the vertical lines exhibit the mean (yellow)
and the first and second deviations (red).
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On average, hospitalizations due to pneumonia (11.34) are more frequent than those
for asthma (3.10) and bronchitis (0.73), with the illnesses’ shares being 55%, 15%, and 4%,
respectively. Thus, the three illnesses together represent around 74% of all hospitalizations,
while the other 26% are composed of other respiratory diseases such as pharyngitis, laryn-
gitis, and flu. The distribution of hospitalizations for respiratory diseases follows an asym-
metric pattern, where the 15 municipalities with the highest values (over two deviations)
are mostly in the state of Pará.

From the age group perspective, the average monthly contribution of the small chil-
dren group represents approximately 39% of the total, while children and the elderly
represent 12% and 18%, respectively. Thus, the contribution of small children and the
elderly, together, represents more than half of those hospitalized monthly for respiratory
diseases, emphasizing once again the vulnerability of these groups.

The AOD values vary between 0.03 and 3.35, with an average of 0.24 for the region;
their distribution follows a normal pattern, in which extreme values are found at the border
of the BLA (less than two deviations) and in an area that extends from Rondônia to the
northern border of Pará with Maranhão (more than two deviations).

The variation of the main variables over time (Figure 3) shows similar seasonal patterns
for fire and AOD, but a different pattern for hospitalizations. This discrepancy is clear from
the asynchronous peaks, with burned area having two distinct peaks—a smaller one at
the beginning of the year (February–March) and another at the end (August–September)—
while hospitalizations peak in May.

Figure 4 presents the monthly variation of the burned areas considering the wind
speed and the prevailing wind direction. Between June and September—the period that
covers the burning season in the region—there is the presence of winds coming from the
northwest, and the average wind speed increases, reaching a maximum between August
and September, at the peak of fires. Subsequently, the wind pattern returns to the southwest
direction, with winds that can reach up to 8 m/s.

3.2. Econometrics Estimates

A first and descriptive assessment of a “weak instrument”—that is, of the possibility
that the instrument is not significantly related to pollution—is provided by the correla-
tion between the instruments and pollution, as shown in Table 3. Only the logarithm of
burned area (LogBA) did not exhibit a significant correlation with pollution, violating the
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instrument relevance requirement. Nevertheless, this is not conclusive evidence, as it is
biased by socioeconomic and weather confounders that are addressed by the multivariate
approach presented subsequently (see “weak instrument test” in Table 4), as attested by
the positive and significant coefficients estimated in the first-stage regressions for all age
groups and illnesses.
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Table 3. Correlation between the instrumental variables and the explanatory variable.

LogBA BaWSpeed BaWDirec

AOD 0.0023 ns −0.0672 *** −0.0644 ***
Significance levels: *** p < 0.001, ns not significant.

Table 4 shows the results obtained with the estimator that was indicated by the
four-step test procedure for each dependent variable. Detailed estimation results, also
containing control variables and the complete set of instruments (LogBA, BAWSpeed, and
BAWDirec) and estimators (OLS, 2SLS, fixed effects, and random effects), are presented in
the Supplementary Materials.

It should be noted that for all models tested, the value of the Hausman test indicated a
significant difference between the coefficients generated by the fixed- and random-effects
estimators, indicating consistency only of the former.

Among the four IV sets, the IVc01 (LogBa + BaWSpeed + BaWDirec) and IVc02
(LogBa + BaWSpeed) were the only sets that met all criteria in the four-step testing for a
valid instrument (Section 2.4) for the total (respiratory) hospitalization dependent variable.
However, according to the predefined testing order, the larger set (IVc01) was the one
that grounded estimation of the effect of pollution from fires on total hospitalizations for
respiratory diseases in the BLA. The size of the estimate was such that if AOD increased
by 1%, total hospitalizations would increase by 0.1383%, in the average municipality–
month. An increase of one standard deviation (0.17) would imply an increase of 2.35%
in hospitalizations.

A positive effect was also estimated for asthma, bronchitis, and for the elderly. In
the former, the IVc04 instrument set was applied, revealing that hospitalizations would
increase by approximately 0.08% for each 1% rise in the AOD level. For bronchitis and the
elderly, pollution was exogenous and, thus, OLS estimation was implemented, resulting in
0.002% (p < 0.001) and 0.0103% (p < 0.01) effects on hospitalization, respectively.

https://doi.org/10.3390/xxxxx
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Table 4. Summary of estimates from the econometric specifications selected by the four-stage testing
for each definition of the dependent variable.

Disease Respiratory System Asthma Pneumonia Bronchitis

Age All Small
Children Children Elderly All All All

Estimator IV IV IV OLS IV IV OLS
IV set IVc01 IVc04 IVC04 - IVc01 IVc04 -

Pollution
coefficient 0.1383 *** −0.3381 *** −0.1815 * 0.00215 *** 0.0792 *** −0.1790 ns 0.0103 **

IV exogeneity and validity tests

Exog 13.82 *** 20.9530 *** 7.6436 ** - 6.63 ** 7.6513 ** -
Overid 1.20 ns - - - 3.56 ns - -
Weak instrument tests

Joint 1103.36 252.589 252.589 - 1103.36 252.589 -
Yogo: stat 1445.95 282.652 282.652 - 1445.95 282.652 -
Yogo: crit 22.3 16.38 16.38 - 22.3 16.38 -

Fixed effects Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y

Obs. 118,335 118,335 118,335 118,335 118,335 118,335 118,335

Notes: Estimator is the possible estimator method: IV for instrumental variable two-stage least squares method,
and OLS for ordinary least squares estimator. IV Set is the possible instrumental combination: IVc01 is the
Log_Ba plus the BaWSpeed and the BaWDirec; IVc02 is the Log_Ba plus the BaWSpeed; IVc03 is the Log_Ba
plus the BaWDirec; and IVc04 is Log_Ba alone. Exog. computes a test of exogeneity for pollution based on
a fixed-effects regression estimated via instrumental variables; Overid is the Sargan–Hansen statistic for the
instrument overidentification test. Joint is the joint significance test of the instruments in the first-stage regression;
Yogo: stat is the value of the Stock–Yogo test for instrument weakness. Yogo: crit is the table value for the
Stock–Yogo test. Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05, ns not significant.

Counterintuitively, a negative coefficient was estimated for small children and chil-
dren. For these two hospitalization counts, the IVc04 set (LogBa) passed the four-step test
for a valid instrument, indicating that each increase of 1% in AOD levels decreases the
hospitalization of small children by 0.34% (p < 0.001), and of children by 0.18% (p < 0.01).
Hospitalization due to pneumonia was not significantly impacted by AOD.

3.3. Hospitalization Attributable to Fires

It was estimated that 5% of respiratory hospitalizations observed in the horizon of
analysis were attributable to fires. The monthly trend is shown in Figure 5 and, in absolute
terms, ~822 people were estimated to be hospitalized per month due to fire-induced
pollution, with a slight increase during the fire season.
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3.4. Robustness Check

As an assessment of the robustness of the results obtained, burned area was replaced
by point fire detections based on thermal anomalies, which are observed even under
weather conditions (e.g., severe cloud coverage) that prevent detection of burned areas. The
analysis was re-conducted as shown in Table 5, where all of the new instruments presented
positive and significant values.

Table 5. Correlation among the instrumental variables and AOD.

Log_TA TaWSpeed TaWDirec Log_BA

AOD 0.1672 *** 0.0323 *** 0.1002 *** 0.6892 ***
Significance levels: *** p < 0.001.

The variation over the years, and its average by month (Figure 6), show a similar
seasonality to that presented by the burned area, wherein the count increases from May
onwards, reaching its peak in August–September; however, the low peak of the beginning
of the year (February–March)—as observed for the burned area—is not visible.
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Table 6 presents the results based on specification selected by the four-stage testing
procedure. For each of the seven hospitalization counts, thermal anomaly count was
employed as an instrumental variable that interacted with wind direction and wind speed.
The use of this product returned negative effects of pollution for all models in which the IV
estimator was appropriate (i.e., total, small children, children, the elderly, pneumonia, and
bronchitis), whereas in the only model estimated with OLS (asthma), the effect was positive.

Such results suggest that, aside from the substantial correlation between point and
areal fire detections (0.95; Figure 7), their statistical behavior is not similar enough regarding
the relationship between pollution and hospitalizations. Even with the higher frequency
of point detections by the TA product [68], the correlation with BA at low levels (less than
5000 km2)—especially between February and April (Figure 7)—led to a mismatch in the
early peak of burning that occurs when hospitalizations start to increase (Figures 3 and 6).
This may have favored the appearance of negative estimates in the robustness check, due
to the appearance of a well-defined valley.

Table 6. Mean effect of the variation in aerosol optical depth (AOD) on hospitalization due to thermal
anomalies, presented by age and respiratory illness type.

Disease Respiratory System Asthma Pneumonia Bronchitis

Age All Small
Children Children Elders All All All

OLS

AOD 0.0443 *** 0.0177 ** −0.0061 ns 0.0215 *** 0.0265 *** 0.059401 *** 0.0103 **
(0.0072) (0.0067) (0.0051) (0.0051) (0.0060) (0.0069) (0.0032)

OLS sig. 2925.84 *** 2114.69 *** 1139.8 *** 1460.89 *** 1040.86 *** 2391.69 *** 677.16 ***

https://doi.org/10.3390/xxxxx
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Table 6. Cont.

Disease Respiratory System Asthma Pneumonia Bronchitis

Age All Small
Children Children Elders All All All

2SLS

AOD −0.0799 * −0.2493 *** −0.1250 *** −0.0405 * 0.0483 ** −0.1237 *** −0.0488 **
(0.0333) (0.0349) (0.0190) (0.0176) (0.0351) (0.0155)

1S sig. *** *** *** *** *** *** ***
2S sig. *** *** *** *** *** *** ***
Set of
Instr. 4 4 4 2 1 4 4

Exogeneity and IV validity tests:

Exog. 20.71 *** 128.64 *** 38.12 *** 14.79 *** 3.06 . 49.23 *** 22.67 ***
Overid. - - - 0.4 ns 8.25 * - -

Weak Instrument tests:

Joint 2876.23 *** 2876.23 *** 2876.23 *** 2177.03 *** 2482.61 *** 2876.23 *** 2876.23 ***
Yogo:
stat 4782.32 4782.32 4782.32 3915.95 4311.03 4782.32 4782.32

Yogo: crit 16.38 16.38 16.38 19.93 22.30 16.38 16.38

Notes: OLS sig. is the global significance calculated by the Wald test; 1S sig. stands for the global significance of
the F-test for the first stage; 2S sig. is the global significance of the Wald test for the second stage; Set of Instr. is
the order of the instrument set, where: 1 is LogTA + TaWSpeed + TaWDirec; 2 is LogTA + TaWDirec; 3 is LogTA
+ TaWSpeed; and 4 is LogTA. Exog. computes a test of exogeneity for a fixed-effects regression estimated via
instrumental variables; Overid is the Sargan–Hansen statistic for the instrument overidentification test; Joint is the
joint significance test of the instruments in the first-stage regression; Yogo: stat is the value of the Stock–Yogo test
for instrument weakness; Yogo: crit is the table value for the Stock–Yogo test. Significance levels: *** p < 0.001,
** p < 0.01, * p < 0.05, ns not significant.
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4. Discussion

The coefficient (0.1383%) here estimated for total hospitalization is tenfold larger
than the one calculated by Rocha and Sant’anna [59] for the BLA in which, using the
interaction between the wind direction and pollutants from neighboring municipalities as
an instrumental variable, the authors found that an increase of 17.3 µ/m3 (one standard
deviation, or a 107% increase compared to the average) in PM2.5 levels causes an average
increase of ~1.5% (0.95 hospitalizations per 100,000 inhabitants) in total hospitalizations. It
should be emphasized that the authors did not attempt to measure the effects of fire or of
fire-induced pollution, but of pollution in general. Nevertheless, larger coefficients were
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estimated in other papers, such those by Mendonça et al. [21] and Mendonça et al. [69],
suggesting that our estimates are not outside the range of the literature.

Additionally, the negative coefficients obtained in this paper for Small Children and
Children are paralleled by the estimates by Smith et al. [19] along the eastern and southern
edges of the BLA region, using geographically weighted Poisson regression for AOD
and respiratory disease in children during the 2005 and 2010 droughts. This relationship
opposes results previously found for the BLA by Carmo et al. [22], Jacobson et al. [23],
and Rocha and Sant’anna [59]. This may be due to the larger hospitalization peak not
occurring in the dry season, when the fire level peaks, but towards the end of the wet
season, when humidity is still high and temperature low. This fact was not highlighted by
the cited studies, but has been observed by others [19,20,70,71]. Particularly, Silva et al. [70]
and Andrade Filho et al. [71] argued that the colder and more humid wet season weather
may drive hospitalization of children due to respiratory illnesses, with the former authors
having found such correlations in BLA data, and the latter authors arguing that such a
factor could exert stronger influence than aerosol pollution.

The wind analysis follows the patterns presented by Gatti et al. [72] and Cassol et al. [73]
for the Amazon region, including the dispersion of aerosols, in which there is a change in
the predominant wind direction at the beginning of the fire season. This factor can spread
smoke plumes to neighboring municipalities, states, and even other Amazonian countries,
representing a transboundary issue exemplified by the study of Sheldon and Sankaran 2017 [7].

The main limitations of this study are worth detailing. Related to the statistical
approach, the difficulty of establishing the causal effect of fire pollutants on hospitalizations
is also revealed in the data description (Section 3.1). At first, when looking strictly at
spatial variation, simultaneously high values of the three main variables (burned area,
AOD, and hospitalizations for respiratory diseases) were not geographically widespread.
This demonstrates the need for going beyond descriptive patterns and bivariate correlation
coefficients, and towards an identification strategy that also accounts for a range of potential
predictors as covariates. Such an approach to the estimation of pollution’s effect on health
proved successful in this paper, leading to results that are consistent with those of previous
studies. In particular, Souza et al. [74], analyzing the relationship between deforestation,
hot spots, pollutants (PM2.5), and hospitalizations of indigenous people from the BLA, also
found a positive relationship.

Finally, the outcome of the robustness test should be interpreted as a lack of robustness
of estimates specifically with regard to alternative measures of fire. Nevertheless, with
regard to statistical accuracy and precision, the effects estimated were robust with fire
measured as burned area.

Hospitalization data are also limited, including only patients who remain at the hos-
pital under supervision for a period equal to or longer than 24 h [75], which excludes
inpatients with mild symptoms, as well as outpatients. In other words, the level of pol-
lution exposure required for a person to be hospitalized is above that which triggers
mild symptoms and outpatient visits; is the former is less likely and, thus, generally less
prominent in the data.

Other dimensions of the fire phenomenon beyond the spatial domain embraced and
the count of active events—such as fire radiative power and combustion efficiency—may
also influence the amount of pollution released and the consequent health impact [56,76].
These could be considered in future analysis as control variables in order to further isolate
the pollution and health effects of the dimensions considered in this text from the influence
of other dimensions.

It is helpful for future research on this topic to emphasize the need for careful analysis
of the relationship between fires, pollution, and hospitalizations. This paper is proof that
in this matter, a descriptive analysis seeking patterns visible to the naked eye may be
misleading, as attested by the contrast between Section 3.1, in which such an endeavor
was pursued, and Section 3.2, in which a proper statistical analysis was conducted. More
precisely, the data description revealed no clear and directly proportional relationship
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between fires, pollution, and hospitalizations. Nevertheless, such a relationship was indeed
present in the data, as unveiled by a more detailed and statistically sound multivariate
analysis, which filtered out the influence of other variables that could act as drivers of
pollution and hospitalizations. Such filtering thus proved to be critical for observing how
the three main variables were actually related in the dataset. In this regard, we advise future
researchers both to not take visual patterns for granted—which can serve as refutations or
corroborations of hypotheses under test—as well as to guard against spurious correlations
by resorting to a multivariate analysis that includes other factors suggested by the available
knowledge, beyond the main variables of fires, pollution, and measure of health impact.
These recommendations are aligned with the state of the art of the emerging literature
on the econometrics of pollution, which also emphasizes the need to resort to causal
inference methods for accurately measuring the effect of fire-induced pollution on health
(Deryugina et al. [16], Rangel and Volg, [77], and He et al. [17]).

5. Conclusions

In this article, we estimated the hospitalization attributable to fire-induced pollution
in the Brazilian Legal Amazon (BLA), using a balanced panel at a monthly–municipal
level, with available data from the past 20 years (2005–2018). The impact of fire-induced
pollution on age groups and specific illnesses was detailed. For this, we applied the
instrumental variable approach by exploring the speed and direction of wind, along
with fires, as exogenous sources of variation. Therefore, the evidence on hospitalizations
was expanded by embracing the whole BLA with a 20-year time series. As a result,
of the seven measures of hospitalization frequency considered, four were significantly
increased by fire-induced pollution, indicating a considerable detrimental health impact
on regional inhabitants. Methodologically, the potential of econometric analysis of remote
sensing and georeferenced data to shed light on the impacts of anthropogenic burnings
was demonstrated for the specific case of the Brazilian Amazon.

To overcome the limitations that may prevent the detection of a positive relationship
between the key variables—the bias of hospitalization records towards severe symptoms,
and lack of robustness to alternative fire measures—alternative analytical strategies could
be pursued in future studies. These could include other identification strategies (such as
the one proposed by Rangel and Volg [77]), reliance on time-series methods able to better
model seasonality, consideration of other pollution measures, and even downscaling the
time aggregation to capture intra-monthly peaks.

Supplementary Materials: The detailed estimation for each dependent variable, containing the
control variables, the complete set of instruments and the estimators are available online at https:
//www.mdpi.com/article/10.3390/rs14010069/s1.
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