
Science of the Total Environment 763 (2021) 143027

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Schools exposure to air pollution sources in Brazil: A nationwide assess-
ment of more than 180 thousand schools
Weeberb J. Requia a,⁎, Henrique L. Roig b, Joel D. Schwartz c

a School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
b Geoscience Institute, University of Brasilia, Brasília, Distrito Federal, Brazil
c Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• We estimate the exposure to air pollu-
tion sources at 186,080 schools in Brazil.

• 25% of the Brazilian schools evaluated in
our study are located within a distance
≤250 m of a major roadway.

• 25% of the Brazilian schools evaluated in
our study have ≥7 wildfires records
within a buffer of 10 km.

• We evaluated the exposure for more
than 40 million students who attended
Brazilian schools in 2015.

• Approximately 10 million students
were likely to be exposed to high levels
of air pollution from traffic and wildfire.
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A growing body of evidence demonstrates that children at schools who are exposed to increased concentrations
of air pollutants may have a higher risk for several health problems, including cognitive deficits. In this paper we
estimate the exposure to air pollution sources at 186,080 schools in Brazil. Specifically, we accounted for the ex-
posure to three proxies of air pollution source emissions, including distance to roadways, the extent of roadways
within a buffer around each school, and the number of wildfire occurrences within a buffer around each school.
About 25% of the Brazilian schools evaluated in our study are located within a distance ≤250 m of a major road-
way, have ≥2 km of roadwaywithin a buffer of 1 km, and have ≥7 wildfires records within a buffer of 10 km. Our
results indicate significant prevalence ratio of these schools exposed to air pollution sources when we stratified
the analyses by socioeconomic factors, including geographic (public schools had an increased likelihood of being
exposed), economic (low-income areas had an increased likelihood of being exposed), health (overall, areaswith
low public health status had an increased likelihood of being exposed), and educational conditions (overall, areas
with low educational indicator had an increased likelihood of being exposed). For example, we estimated that
private schools were 15% (95% CI: 13–17%) less likely to be located within 250 m of a major roadway compared
with public schools; schools in areas with low child mortality were 35% (95% CI: 34–37%) less likely to be within
250 m of a major roadway; and schools in regions with low expected years of schooling were 25% (95% CI:
22–28%) more likely to be located within 250 m of a major roadway. The analysis of the spatial patterns shows
that a substantial number of schools (36–54%, depending on the air pollution source) has a positive autocorrela-
tion, suggesting that exposure level at these schools are similar to their neighbors. Estimating children's exposure
to air pollutants at school is crucial for future public policies to develop effective environmental, transportation,
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educational, and urban planning interventions that may protect students from exposure to environmental haz-
ards and improve their safety, health, and learning performance.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Human exposure to air pollution source emissions has been associ-
ated with numerous chronic (Laumbach and Kipen, 2012; Xu et al.,
2016) and acute (Lee et al., 2015; Weichenthal et al., 2014) health ef-
fects. People with pre-existing health conditions (Pope et al., 2015),
older adults (Bell et al., 2014), and children (Du et al., 2012; Svendsen
et al., 2012) are considered the most vulnerable population groups
who experience a greater risk of morbidity and mortality compared
with the general population.

Population exposure to sources of air pollution has significant varia-
tion over space and population groups (Burnett et al., 2018; Marshall
et al., 2014). Studies have shown that its disparity can be determined by
geographical factors, including people's location (Soares et al., 2014; Zou
et al., 2014). For example, while adults spend a large portion of the day
at workplaces and homes, and these locations can be considered areas
where they receivemost of their exposure (Requia et al., 2017b), for chil-
dren and adolescents, the greatest exposure occurs in another indoor en-
vironment - at schools (Adams and Requia, n.d.; Requia et al., 2017a).

Air pollution around schools is a crucial concern worldwide. Studies
have shown that numerous schools are located in areas with a high
level of air pollutants (Guo et al., 2010; Richmond-Bryant et al., 2009;
Rivas et al., 2014). Most of these studies have used distance to road as a
proxy variable to represent a source of air pollution. For example, in the
United States, a nationwide survey of nine large metropolitan areas
found that 30% of the schools are within 400 m of a major roadway (im-
portant indicator of air pollution), and over 10% are within 100 m
(Appatova et al., 2008). In Canada, Amram et al. (2011) assessed 1556
public elementary schools and reported that 16.3% of schools are located
within 75 m of a major road. Other investigations have accounted for di-
rect air pollution metrics (e.g., mass or concentration of air pollutants) to
assess the exposure to air pollution at schools. For example, Requia et al.
(2017a) evaluated PM2.5 intake fractions (iF) for vehicular emissions in
32,298 students from86 elementary schools inHamilton, Canada. The au-
thors showed that, on average, each student inhales 13.06 ppm(this is the
unit when studies account for iF approach) daily during class hours (in-
door exposure at schools presented the highest iF). Raysoni et al. (2016)
show that while indoor PM2.5 concentrations at schools in Quito,
Ecuador, ranged from 0.4 μg/m3 to 72.1 μg/m3, the outdoor PM2.5 concen-
trations varied from 4.0 μg/m3 to 34.6 μg/m3.

Wildfire is another source of air pollution that is potentially hazardous
for children. Emissions from forest fires can travel over large distances, af-
fecting air quality and human health far from the originating fires
(Youssouf et al., 2014). Fine particulatematter (PM2.5) is themajor pollut-
ant emitted by wildfires. In the United States, according to the National
Emissions Inventory (NEI), in 2014 wildfires represented more than
20% of total PM2.5 emissions annually (EPA, 2014). While quantification
about schools' exposure to wildfire emissions is very limited, some stud-
ies have focused on the health impacts of wildfire emissions on the gen-
eral population. For example, Liu et al. (2017) estimated a 7.2% increase
in risk for respiratory admissions during smoke wave days with high
wildfire-specific PM2.5 (>37 μg/m3) compared to matched non-smoke
wave days during 2004 and 2009 in theWestern U.S. In Southern Califor-
nia, children's exposure to the wildfire smoke in 2003 was associated
with increased eye and respiratory symptoms,medication use, and physi-
cian visits (Künzli et al., 2006).

A growing body of evidence demonstrates that children at schools
who are exposed to increased concentrations of air pollutants may have
a higher risk for several health problems, including cardiorespiratory
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diseases (Andersen et al., 2007; Fan et al., 2016), dysfunction (Lin et al.,
2013), acute neuropsychological effects (Sunyer et al., 2017), and cogni-
tive deficits (Calderón-Garcidueñas et al., 2008; Suglia et al., 2008). For
example, Mohai et al. (2011) found that schools located in areas with
the highest air pollution levels in Michigan, United States, presented the
lowest academic performance. In California, children who live within
500 m of a freeway have substantially reduced lung development
(Gauderman et al., 2007). Wang et al. (2009) showed a significant rela-
tionship between chronic low-level traffic-related air pollution exposure
and neurobehavioral function in children at schools in Quanzhou, China.
In Porto, Portugal, exposure to PM2.5 and PM10 at schools (indoor air pol-
lution)were associatedwith higher odds of respiratory symptoms in chil-
dren (Madureira et al., 2015).

Estimating children's exposure to air pollutants at school is crucial to
advance environmental health effects research and byproviding evidence
to develop school and environmental policies that will protect children
from exposure to environmental hazards. Although some environmental
studies have estimated the level of air pollution exposure at schools,
others have used distance to road as a proxy variable for air pollution ex-
posure, and others have examined its health effects on students, we are
unaware of studies that have looked at the Brazilian population. Aswede-
scribed above,most of the studieswere performed in theUSA. Also, to our
knowledge, there are no investigations (even in the U.S.) that have
assessed the spatial patterns of the school's exposure to different air pol-
lution sources (most of the studies have considered only distance to road)
by stratifying the exposure level by different socio-economic factors. To
address this research gap, in this paper we estimate the exposure to air
pollution sources at more than 180 thousand schools in Brazil. Specifi-
cally, we accounted for the exposure to three proxies of air pollution
source emissions, including distance to roadways, the extent of roadways
within a buffer around each school, and the number of wildfire occur-
rences within a buffer around each school. We assessed the social
variation of school exposure to distance to roadways andwildfire by strat-
ifying the results by 12 socio-economic factors, including geographic, de-
mographic, health, and educational conditions. Then, we evaluated the
spatial patterns of the exposure at the Brazilian schools.

2. Materials and methods

2.1. School data

School data were obtained from the National Institute for Educa-
tional Research in Brazil (http://portal.inep.gov.br/web/guest/inicio),
known as INEP - Instituto Nacional de Estudos e Pesquisas Educacionais
Anísio Teixeira. This institute is a governmental agency under the
Brazilian Ministry of Education.

The school dataset included a list of addresses (including street
number, city, state, and postal code) for 186,080 schools grouped by
schools in urban areas and schools in rural areas in Brazil. This list in-
cludes public and private schools for the following educational stages:
early childhood education - preschool, elementary school, middle
school, and high school. Using the addresses from each school, we
geocoded the data by spatially creating the latitude and longitude for
each school and displaying the schools over Brazil.

The school dataset also includes a categorical variable representing
the number of students. This variable has four categories – 0-100 stu-
dents, 101–300 students, 301–800 students, and more than 800 stu-
dents. We converted these categories into the following numbers, 50,
150, 550, and 1000 students, respectively.

http://portal.inep.gov.br/web/guest/inicio


Table 1
Summary statistics for the air pollution source emissions data.

Distance to road
(m)

Extent of road
(km)

Wildfire occurrences within
10 km

Minimum 0 0 0
First quartile 260.20 0 1.00
Mean 4166.70 1.43 6.25
Standard
deviation

21,522.76 1.41 10.29

Third quartile 1386.00 2.07 7.00
Maximum 380,230.70 10.81 132.00
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2.2. Socio-economic data

Socio-economic data were accessed from the Human Development
Atlas in Brazil (http://www.atlasbrasil.org.br/2013/en/download/).
This dataset is structured by the United Nations Development Pro-
gramme (UNDP) and by the Institute for Applied Economic Research
(IPEA). These data include numerous indicators about demographic, ed-
ucation, income, employment, housing, and vulnerability in the
Brazilian municipalities extracted from the demographic censuses of
1991, 2000, and 2010. We accounted for the data from the last census
(2010) and the following socio-economic indicators: Gross Domestic
Product (GDP) per capita, income (in Brazilian currency, Real, R$), pop-
ulation, childmortality (mortality rate of children under the age of five),
probability of survival up to 40 years old, expected years of schooling
(number of years of schooling that a child of school entrance age can ex-
pect to receive if prevailing patterns of age-specific enrolment rates per-
sist throughout the child's life), percentage of the population in the
elementary school and middle school (6–14 years old) that is not
over-age, percentage of children (4–5 years old) that is not going to
school, percentage of children (6–14 years old) that is not going to
school, and Human Development Index (HDI). Using spatial join tech-
niques, we aggregated these data by school, based on themunicipal dis-
trict where each school is located.
Table 2
Number of schools and students by air pollution sources and stratification parameters.

Stratification parameter Distance to roadway (

Schools Stud

N % N

Land use Urban 27,996 15.05 9,130
Rural 16,822 9.04 1,676

School type Private 8493 4.56 1,848
Public 36,325 19.52 8,959

GDP per capita <Q1 13,040 7.01 2,242
>Q3 8428 4.53 2,663

Income <Q1 11,163 6.00 2,198
>Q3 7937 4.27 2,556

Population <Q1 13,189 7.09 2,450
>Q3 6756 3.63 2,353

Child mortality <Q1 9123 4.90 2,666
>Q3 13,618 7.32 2,446

Probability of survival up to at 40 years old <Q1 12,896 6.93 2,886
>Q3 9533 5.12 2,677

Expected years of schooling <Q1 12,658 6.80 2,266
>Q3 10,115 5.44 2,734

% of the population (6–14 years old) that is not over-age <Q1 12,711 6.83 2,282
>Q3 9716 5.22 2,691

% of children (4–5 years old) that is not going to school <Q1 12,627 6.79 3,003
>Q3 10,866 5.84 2,390

% of children (6–14 years old) that is not going to school <Q1 12,574 6.76 2,907
>Q3 9970 5.36 2,167

Human Development Index (HDI) <Q1 12,700 6.83 2,113
>Q3 7878 4.23 2,539

Note 1: first quartile (Q1), third quartile (Q3).
Note 2: the percentage of schools was based on the total number of schools (186,080 Brazilian s
estimated (47,813,200 students).
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2.3. Air pollution source data

As described above, we accounted for three variables to represent air
pollution exposure at Brazilian schools. We describe each air pollution
exposure data in the following sections.

2.3.1. Distance to major roadway
Using Geographic Information System (GIS) techniques we estimated

the straight-line distance between each school and the nearest major
roadway. The road spatial data was provided by the Brazilian Ministry of
Infrastructure (http://transportes.gov.br/bit/63-bit/5124-bittemas.html).

2.3.2. Extent of major roadway
We used the same road network data provided by the Brazilian Min-

istry of Infrastructure (described above) to estimate the extent of major
roadway around each school. This estimationwas performed by GIS tech-
niques. First, we generated buffers of 1 km around each school and then
we calculated the extent (km) of all major roadway inside the buffers.

2.3.3. Wildfire
Wildfire data were provided by the National Institute of Spatial Re-

search (INPE) of Brazil (http://queimadas.dgi.inpe.br/queimadas/portal).
The data obtained contain wildfire records, including the date of wildfire
occurrence (we used the data from 2015) and the geographical location.
These data are derived from seven satellite remote sensing observations,
including NOAA-18, NOAA-19, METOP-B, MODIS (NASA TERRA and
AQUA), VIIRS (NPP-Suomi and NOAA-20), GOES-16, and MSG-3. We
use GIS techniques to summarize the number of wildfire occurrences in-
side buffers with 10 km (buffers around each school).

2.4. Statistical analysis

2.4.1. Prevalence ratio of a school being exposed to air pollution sources
We calculated the prevalence ratio and 95% confidence intervals (CI)

to estimate the association between school-level indicators of socioeco-
nomic status and the probability of a school being near a major roadway,
≤250 m) ≥2 km of roadway within 1 km ≥7 wildfires within 10 km

ents Schools Students Schools Students

% N % N % N % N %

,450 19.10 29,584 15.90 9,673,400 20.23 23,753 12.76 8,467,100 17.71
,700 3.51 16,944 9.11 1,736,600 3.63 22,394 12.03 2,199,900 4.60
,150 3.87 9274 4.98 1,996,900 4.18 6814 3.66 1,506,100 3.15
,000 18.74 37,254 20.02 9,413,100 19.69 39,333 21.14 9,160,900 19.16
,150 4.69 12,579 6.76 2,187,450 4.57 19,938 10.71 3,253,100 6.80
,850 5.57 8586 4.61 2,682,750 5.61 5903 3.17 2,062,100 4.31
,000 4.60 10,282 5.53 2,095,850 4.38 15,746 8.46 2,672,950 5.59
,600 5.35 8247 4.43 2,652,800 5.55 6169 3.32 2,265,050 4.74
,300 5.12 11,106 5.97 2,095,550 4.38 12,687 6.82 2,145,250 4.49
,850 4.92 7103 3.82 2,470,550 5.17 8273 4.45 3,040,400 6.36
,300 5.58 9514 5.11 2,809,200 5.88 4359 2.34 1,325,100 2.77
,050 5.12 13,237 7.11 2,415,550 5.05 19,164 10.30 3,169,400 6.63
,200 6.04 12,142 6.53 2,846,150 5.95 12,157 6.53 2,291,750 4.79
,100 5.60 10,262 5.51 2,997,050 6.27 12,586 6.76 3,815,800 7.98
,300 4.74 12,183 6.55 2,310,150 4.83 16,443 8.84 2,790,350 5.84
,150 5.72 10,045 5.40 2,784,450 5.82 6254 3.36 1,693,350 3.54
,250 4.77 11,988 6.44 2,213,850 4.63 17,554 9.43 2,932,450 6.13
,550 5.63 9433 5.07 2,651,300 5.55 5299 2.85 1,554,550 3.25
,650 6.28 13,504 7.26 3,250,600 6.80 12,839 6.90 2,906,000 6.08
,250 5.00 10,501 5.64 2,401,700 5.02 11,528 6.20 2,346,600 4.91
,950 6.08 13,112 7.05 3,150,400 6.59 8888 4.78 1,989,200 4.16
,900 4.53 9508 5.11 2,192,950 4.59 15,073 8.10 3,195,650 6.68
,750 4.42 11,247 6.04 1,902,800 3.98 19,185 10.31 2,950,200 6.17
,600 5.31 8230 4.42 2,668,300 5.58 6014 3.23 2,118,250 4.43

chools), and the percentage of studentswas based on the total number of students that we

http://www.atlasbrasil.org.br/2013/en/download/
http://transportes.gov.br/bit/63-bit/5124-bittemas.html
http://queimadas.dgi.inpe.br/queimadas/portal
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the probability of a school being located in an areawith a high amount (in
km) of major roadway, and the probability of a school being located in
areas with high wildfire occurrence. Using the package “epitools” in R,
we estimated the prevalence ratio by unconditional maximum likelihood
estimation (Wald), and the 95%CI was calculated using the bootstrap
method with 10,000 replicates.
Fig. 1. Prevalence of schools being near a major roadway (≤250 m), in areas with a high amou
wildfire occurrence (≥7 wildfires within 10 km). Note 1: Gross Domestic Product per capita (
up to at 40 years old (PS40), expected years of schooling (EYS), % of the population in the e
children (4–5 years old) that is not going to school (%PopB), % of children (6–14 years old
quantitative socio-economic factors stratified by the first quartile (Q1). Note 3: rural areas (la
because they were defined as the reference for the prevalence ration calculation.

4

The categories of air pollution exposure (near major roadway, high
amount of major roadway, and high wildfire occurrences) were based
on the distribution of each air pollution variable. After the spatial
matching process between the location of each school and the air pollu-
tion data, we classified the schools into four quantiles. Then, for the
prevalence ratio estimates, we considered the first quartile for the air
nt of major roadway (≥2 km of roadway within a buffer of 1 km), and in areas with high
GDP), mortality rate of children under the age of five (Child Mort), probability of survival
lementary school and middle school (6–14 years old) that is not over-age (%PopA), % of
) that is not going to school (%PopC), and Human Development Index (HDI). Note 2:
nd use category) and public schools (school type categories) are not shown in the chart
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pollution variable distance to road, and the third quartile for the other
two air pollution variables, which included distance to major roadway
≤250 m (defined as schools near a major roadway), ≥2 km of roadway
within a buffer of 1 km (defined as schools located in areas with a
high amount ofmajor roadway), and ≥7wildfireswithin 10km(defined
as schools located in areas with high wildfire occurrence).

2.4.2. Spatial patterns of the exposure at the Brazilian schools
We employed the Univariate Local Moran's I approach to assess the

spatial patterns of the air pollution exposure over the 186,080 Brazilian
schools evaluated in our study. Initially, we generated a spatial weight
matrix to represent the spatial constraints parameter. This refers to
the conceptualization of spatial relationships (spatial neighboring)
among the 186,080 schools. To create this matrix, we chose the k-
nearest neighbors algorithm considering the following criteria:
Eucledian, as distance method; k nearest neighbors with a minimum
of 8 neighbors, as spatial relationships; and no standardization of spatial
weights was applied. The spatial weight matrix generated here was
used as input data in the Univariate Local Moran's I analysis.

The method Univariate Local Moran's I reflects the goal of targeting
specific regions where there are local clusters and local spatial outliers.
The approach allows us to provide a classification of schools into four
categories related to the spatial association - high-high and low-low
spatial clusters, and high-low and low-high spatial outliers. The refer-
ence to high and low is relative to the mean of the exposure variable
(distance tomajor roadway, the extent ofmajor roadway, andwildfire).
We evaluated cluster/outlier membership likelihood using 999 permu-
tations, with p-value ≤0.05 for the classification of schools into signifi-
cant spatial clusters and outliers.

3. Results

Table 1 presents a summary of descriptive statistics for the air pollu-
tion source emissions data. On average, the 186,080 Brazilian schools
assessed in our study are located approximately at 4 km (standard devi-
ation = 21 km) from a nearest major roadway; the average extent of
major roadway within a buffer of 1 km around each school was
1.43 km (standard deviation = 1.41 km), and there were on average 6
wildfire records (standard deviation = 10 wildfires) within a buffer of
10 km around the schools.
Fig. 2. Spatial distribution of the exposure to each air pollution source categorized by the quartil
third quartile for the other two air pollution variables, which included distance to major roadw
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The number of schools and students by air pollution sources (dis-
tance to road ≤250 m, ≥2 km of roadway within a buffer of 1 km, and
≥7 wildfires within a buffer of 10 km) and stratified by socio-
economic parameters is shown in Table 2. Almost ¼ of the Brazilian
schools evaluated in our study (24.9%, totaling 44,818 schools) are lo-
cated within a distance ≤250 m of a major roadway. The majority of
the schools closest to major roadways (≤250 m) are public educational
institutions, totaling 36,325 public schools. We also observed that
most of those schools closest to major roadways are in urban areas
(15% of all schools evaluated), inmunicipalitieswith lowGDP per capita
(7%), in regions with low income (6%), in areas with a low population
(7%), inmunicipalitieswith a high rate of childmortality (7%), inmunic-
ipalities with a low probability of survival up to 40 years old (7%), in
areas with a low probability of expected years of schooling (6.8%), in re-
gions with low % of the population (6–14 years old) in the elementary
and middle school that is not over-age (6.8%), in areas with low % of
children that are not going to school (6.8%), and in regions with low
HDI (6.8%). The results for the exposure variable defined as ≥2 km of
roadway within a buffer of 1 km were similar to the results obtained
for the distance to road. For wildfire exposure, we estimated that
46,147 Brazilian schools (24.8% of the schools evaluated) were exposed
to ≥7wildfires records within a buffer of 10 km. Over more than 10mil-
lion students were at risk of this wildfire exposure. Among those educa-
tional institutions, 21% are public schools, 10% are in areaswith lowGDP
per capita, 8% in regions with low income, 6.8% in areas with low popu-
lation, 10% in municipalities with a high rate of child mortality, 8.8% in
areas with a low probability of expected years of schooling, 9.4% in re-
gions with low % of the population (6–14 years old) in the elementary
and middle school that is not over-age, and 10% in regions with low
HDI (Table 2).

Fig. 1 shows the prevalence of schools being near a major roadway
(≤250 m), in areas with a high amount of major roadway (≥2 km of
roadwaywithin a buffer of 1 km), and in areas with highwildfire occur-
rence (≥7 wildfires within 10 km). We estimated that private schools
were 15% (95% CI: 13–17%) less likely to be located within 250 m of a
major roadway compared with public schools. Schools inmunicipalities
with low GDP, low income, and low populations were associated with a
high probability to be near a major roadway. For these economic and
demographic factors, we estimated a prevalence ratio of 1.54 (95% CI:
1.50–1.58), 1.44 (95% CI: 1.40–1.48), and 1.95 (95% CI: 1.90–2.00),
es defined in this study (first quartile for the air pollution variable distance to road, and the
ay ≤250 m, ≥2 km of roadway within a buffer of 1 km, and ≥7 wildfires within 10 km).
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respectively. For the health factors, we found associations of schools
closest to major roadways in municipalities with high child mortality
and low probability of survival up to 40 years old. We estimated that
schools in areas with low child mortality were 35% (95% CI: 34–37%)
less likely to be within 250 m of a major roadway, and schools in
areas with a low probability of survival up to 40 years old were 40%
(95% CI: 36–43%) more likely to be within 250 m of a major roadway.
For the education factors, we also found associations between schools
closest to major roadways and low educational indicators. Our results
showed that schools in regions with low expected years of schooling,
a low percentage of the population (6–14 years old) that is not over-
age (older than their grade), a low percentage of children (4–5 years
old) that is not going to school, and a low percentage of children
(6–14 years old) that is not going to school were 25% (95% CI:
22–28%), 30% (95% CI: 27–22%), 16% (95% CI: 13–18%), and 25% (95%
CI: 23–28%) more likely to be locatedwithin 250m of a major roadway,
respectively. For HDI, we estimated a probability of 65% (95% CI:
61–69%) of schools with low HDI being near a major roadway. The re-
sults (the direction of the probability) for the other exposure variables
(≥2 km of roadway within a buffer of 1 km, and ≥7 wildfires within
10 km) were the same as we estimated for the distance to roadway, ex-
cept for the percentage of children (6–14 years old) that is not going to
school. For this educational factor, we estimated that schools closest to
roadways were associated with municipalities with a low percentage
of children that is not going to school (Fig. 1).

The spatial distribution of exposure to each air pollution source cat-
egorized by the quartiles is illustrated in Fig. 2. The results show that the
spatial distribution of the Brazilian schools near major roadway
(≤250 m) is very similar to schools exposed to a high number of road-
ways (≥2 km) within a buffer of 1 km. For wildfires, we observed that
most of the schools located in areas with high wildfire occurrence (≥7
wildfires within 10 km) are in the North, especially in the Northeast
region.

For the spatial pattern analyses, we estimated clusters with low
values of the exposure variables for most of the schools (Fig. 3). A
total of 73,337; 62,524; 50,232 schools presented low clusters when
we assessed the exposure to distance to major roadway, the extent of
major roadway within 1 km, and wildfire within 10 km, respectively.
Exposure to roadway within 1 km had the highest number of schools
with high clusters (39,340 schools), where most of the clusters are in
the coastal area in Brazil, the East region. High clusters for distance to
road and wildfires were estimated to occur at 5455 and 16,793 schools,
respectively (Fig. 3). Our results show that fewest schools were classi-
fied as outliers (high-low and low-high spatial outliers) compared to
the number of schools classified as clusters (Fig. 3). This relationship be-
tween the number of schools classified as clusters and the number of
schools classified as outliers is shown in theMoran's scatter plot (corre-
sponding to the location of the points in the four quadrants of the plot)
included in Fig. 3. Briefly, the upper right and lower left quadrants sug-
gest a positive autocorrelation (clusters of similar values). In contrast,
the lower right and the upper left quadrants suggest a negative spatial
autocorrelation (spatial outliers). Also, at the top of each scatter plot
in Fig. 3 we show the values of Moran's I, which indicates the slope in
the regression of the spatial lag versus the values of each exposure
variable.

4. Discussion

Our findings suggest that to assess the influence of air pollution
sources on schools the analyses must be assessed beyond the very
Fig. 3. Spatial patterns of the exposure at the Brazilian schools – results from themethod Univar
(low-low), outliers with high values (high-low), outliers with low values (low-high). Note 2:M
of spatial association into four categories (high-high, low-low, low-high and high-low, relative
The upper right quadrant indicates the high-high clusters, upper left quadrant indicates low-hi
quadrant indicates the low-low clusters.
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local level of the schools. About 25% of the Brazilian schools evaluated
in our study are located within a distance ≤250 m of a major roadway,
have ≥2 km of roadway within a buffer of 1 km, and have ≥7 wildfires
records within a buffer of 10 km. Our results indicate significant preva-
lence ratios of these schools exposed to air pollution sources when we
stratified the analyses by socioeconomic factors, including geographic
(public schools had an increased likelihood of being exposed), economic
(low-income areas had an increased likelihood of being exposed),
health (overall, areas with low public health status had an increased
likelihood of being exposed), and educational conditions (overall,
areas with low educational indicator had an increased likelihood of
being exposed). Some of these findings (given that, to our knowledge,
some of the exposure source and socio-economic factors considered in
our analyses were not evaluated in previous studies, as we described
in the introduction) are in agreement with previous investigations
that have examined air pollution exposure at schools in other locations.
This comparison is detailed below.

A higher proportion of schools in Brazil is located near major road-
ways compared with American schools. Kingsley et al. (2014) assessed
114,644 US public and private schools and found that 15% of the schools
are located within 250 m of a major roadway, impacting about 6.4 mil-
lion American students. In our study, we estimated that over more than
10 million Brazilian students were likely exposed to traffic emissions
due to proximity (≤250 m) of schools to major roadways. Considering
the stratification by socio-economic status of the prevalence ratio of
schools beingwithin 250m of amajor roadway, our findings are similar
to those reported by Kingsley et al. (2014). Both in Brazil (our study)
and the US (Kingsley et al.,2014) the exposure to traffic emissions at
the schools is disproportionate for lower socio-economic statuses.

In Canada, Amram et al. (2011) assessed 1556 public elementary
schools (in Canada's 10 most populous cities) and reported schools in
regions with higher median income have a lower likelihood to be near
roads (similar to our results) and schools in areas with high population
density were more likely to be close to roads (different from our
results).

As we mentioned before, we did not find in the literature previous
studies that have accounted for wildfire records and length of road
within a specific buffer around schools. Therefore, we were unable to
perform a direct comparison of our results from these exposure sources
with previous investigations. For an inferred comparability purpose, we
contrasted these findings with a particular study (Requia et al., 2016) in
in the Federal District, Brazil (where Brazil's capital is located) that have
estimated the wildfire records and length of road around residences.
We assume here that many students live close to their schools and so
these exposure metrics may be similar at home and at schools. Requia
et al. (2016) estimated that on average, there are about 3.4 km of
major roadways within a buffer of 1 km around homes in the Federal
District. For the residences with 3.4 km of roads (at the buffer 1 km)
the authors found an increase of 15 hospital admissions due to cardiore-
spiratory diseases. For wildfire, Requia et al. (2016) reported an average
of 7 wildfire records within a buffer of 2.5 km (this was the maximum
buffer considered by the authors). At 1 km of buffer, with an average
of 2 wildfires, they estimated a risk of 4 hospital admissions.

For the analysis of the spatial patterns, our results show that a sub-
stantial number of schools (42, 54, and 36% when we accounted for
the exposure variables distance to road, roadwaywithin 1 km, andwild-
fire, respectively) has a positive autocorrelation, suggesting that expo-
sure level at these schools are similar to their neighbors. Only a small
proportion of schools (0.05, 1.47, and 3.95% respectively for the expo-
sure variables distance to road, roadway within 1 km, and wildfire,
iate LocalMoran's I. Note 1: clusters with high values (high-high), clusters with low values
oran scatter plots are shown in the bottompart. These scatter plots provide a classification
to the mean), corresponding to the location of the points in the four quadrants of the plot.
gh outliers, the bottom right quadrant indicates the high-low outliers, and the bottom left
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respectively) presented a negative spatial autocorrelation, indicating
spatial outliers and that their exposure levels are different from their
neighbors. An advantage of this spatial analysis is that we can identify
the schools classified as positive or negative autocorrelation. This allows
policymakers to create effective decisions at the local and regional
scales, given the possibility to recognize regions with similar or dissim-
ilar levels of exposure at the schools.

Most of the previous investigations on the school's exposure to air
pollution sources have considered only distance to road as a proxy of
air pollution sources. In our study,we added length of roadwithin a spe-
cific buffer, whichmay be a different metric of air pollution, allowing us
to compare the results with the most usedmetric in the literature - dis-
tance to road. In our analyses, we observed similar results for bothmet-
rics - distance to road and length of roads within a buffer, indicating
some consistency in the measurement of these exposure variables
across the Brazilian schools.

Note that these indicators related to roadways are surrogates for air
pollution exposure. For example, NO2 is a gaseous pollutant mainly
formed in the atmosphere from of NO and O3. Direct emissions of NO2

can occur from fossil fuel combustion. In urban environments, traffic-
Fig. 4. Air pollution in Brazil: air pollution stationswhere PM2.5 and NO2 were measured in 201
year 2016 (derived from satellite remote sensing observations), annual mean ambient concen
observations), annualmeanwildfire emission indicator at 25 km×295 km for the year 2016 (de
of PM2.5 with sea salt and dust removed at 10 km × 10 km for the year 2016 (derived from sa
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related combustion, especially diesel fueled vehicle, contributes sub-
stantially to ambient NO2 concentration (Lamsal et al., 2013). In urban
areas, both anthropogenic and natural NOx and VOC are important pre-
cursors of O3 formation. In contrast, in non-urban areas, the biogenic
VOC emitted from vegetation is themost important precursor of O3 for-
mation. The intra-urban variations of O3 levels are also linked to the
geographic variation of sources of O3 precursors and sources of oxidiz-
ing compounds such as road traffic-related NOx (Coelho et al., 2014;
Huo et al., 2009). For PM2.5, although important faction of particulate
matter attributable to roadways is secondary, studies show that the
total (primary and secondary particulate matter) motor-vehicle-
related emissions are considered a significant source of air pollution.
For example, traffic emissions are responsible for 30% of PM2.5 in To-
ronto, Canada (Brook et al., 2007), 22% of PM2.5 in Boston, United
States (Masri et al., 2015), 25% of PM10 and 30% of PM2.5 in five
Chilean metropolitan regions (Kavouras et al., 2001).

Our study has some limitations, mostly, misclassification error. First,
the number of students was estimated based on a categorical variable
included in the dataset, this generates some classification error. Second,
we estimated the long-term exposure based only on the spatial analysis
6, annual mean ambient concentration of PM2.5 at 10 km× 10 km spatial resolution for the
tration of NO2 at 10 km × 10 km for the year 2012 (derived from satellite remote sensing
rived from satellite remote sensing observations), and annualmean ambient concentration
tellite remote sensing observations).
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(distance and buffer analyses) for the location of the schools and the ex-
posure sources, whichmay also generatemisclassification. Actual expo-
sure depends on numerous geographical factors (e.g., topography,
meteorological conditions, land use), transportation (e.g., type of vehi-
cles, transportation fleet, emission rates), and time-activity patterns
(e.g., time spent indoor and outdoor environment, exchange rates, infil-
tration) that represent the student exposure over the seasons (Carrion-
Matta et al., 2019). Also, socio-economic factors used for stratification
are at the municipality level, and not at the school level. Finally, given
that air pollution is the key consideration point by this study, would
be important to compare the air quality situation in Brazil (e.g., the spa-
tial distribution of the background annual concentrations of PM2.5 or
NO2) with the different clusters of schools. However, we were unable
to perform this analysis since Brazil has a limited number of air pollution
monitoring stations. There is a total of 5570municipalities in Brazil, but
only 1.7% of them have an air pollutionmonitoring network. Nationally,
there are 252monitoring stations, but not every stationmonitors all im-
portant pollutants such as PM2.5, NO2, and O3. Also, more than 50% of
these stations are located only in two Brazilian states – São Paulo and
Rio de Janeiro (Brazil has 26 states + the Federal District). We show
in Fig. 4 two maps illustrating the spatial distribution of the limited
number of air pollution stations in Brazil where PM2.5 and NO2 were
measured in 2016. In order to address this limitation related to the spa-
tial covering of air pollution levels, we also show in Fig. 4 the gridded
ambient air pollution concentrations inferred from satellite observa-
tions, including the annual mean ambient concentration of PM2.5 at
10 km × 10 km spatial resolution for the year 2016 (data downloaded
from https://sedac.ciesin.columbia.edu/data/), annual mean ambient
concentration of NO2 at 10 km × 10 km for the year 2012 (data
downloaded from https://sedac.ciesin.columbia.edu/data/), annual
mean wildfire emission indicator at 25 km × 25 km for the year 2016
(data downloaded from https://sedac.ciesin.columbia.edu/data/), and
annual mean ambient concentration of PM2.5 with sea salt and dust re-
moved at 10 km × 10 km for the year 2016 (data downloaded from
http://fizz.phys.dal.ca/~atmos/martin/?page_id=140). The maps
shown in Fig. 4 may help understanding the importance of this study
by comparing the air quality situation in Brazil with different level of
school's exposure to air pollution sources, including roadways andwild-
fires (Figs. 3 and 2). For example, looking at the maps showing the sur-
face PM2.5 (Fig. 4, top right) and the surface PM2.5 with sea salt and dust
removed (Fig. 4, bottom right)we see that in Brazil anthropogenic PM2.5

pollution is significant. According to previous studies, traffic emission
and wildfire emissions are the main anthropogenic sources in Brazil
(Réquia et al., 2016; Silva et al., 2016).

5. Conclusions

To our knowledge, this is the first study that estimates exposure to
air pollution sources at more than 180 thousand schools in Brazil, ac-
counting for three proxies of air pollution source emissions, and
assessing the variation of the exposure levels by 12 socio-economic fac-
tors. Our results showed significant variation of exposure over the
Brazilian schools, and by the socio-economic factors. This demonstrates
that efforts to reduce and control air pollution emissions need to be ap-
plied according to the characteristics of each area.

A large body of literature has showing that living, working, and
studying near roads and wildfires may involve many potentially haz-
ardous conditions for human health, including the increased risk of
certain diseases that are associated with the learning process –
e.g., neurobehavioral function (Wang et al., 2009) and cognitive def-
icits (Calderón-Garcidueñas et al., 2008; Suglia et al., 2008). In our
study, we evaluated the exposure for more than 40 million students
who attended Brazilian schools in 2015, and from those, approximately
10 million were likely to be exposed to high levels of air pollution from
traffic andwildfire. Our findings can be incorporated in future public pol-
icies to develop effective environmental, transportation, educational, and
9

urban planning interventions that may protect those Brazilian students
fromexposure to environmental hazards and improve their safety, health,
and learning performance.
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