
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/354144653

Logging Amazon forest increased the severity and spread of fires during the

2015-2016 El Niño

Article  in  Forest Ecology and Management · August 2021

DOI: 10.1016/j.foreco.2021.119652

CITATIONS

4
READS

146

8 authors, including:

Some of the authors of this publication are also working on these related projects:

TERRAMZ: Knowledge Shared for Local Territorial Management in The Amazon; TERRAMZ: Conhecimento Compartilhado para Gestão Territorial Local na Amazônia

View project

Manejo Florestal na Amazônia View project

Paulo Eduardo Barni

Universidade Estadual de Roraima

85 PUBLICATIONS   318 CITATIONS   

SEE PROFILE

Richard Anderson Silva Lopes

Roraima Military Fire Department

8 PUBLICATIONS   17 CITATIONS   

SEE PROFILE

Haron ABRAHIM MAGALHÃES Xaud

Brazilian Agricultural Research Corporation (EMBRAPA)

53 PUBLICATIONS   423 CITATIONS   

SEE PROFILE

Maristela Xaud

Brazilian Agricultural Research Corporation (EMBRAPA)

32 PUBLICATIONS   118 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Paulo Eduardo Barni on 18 November 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/354144653_Logging_Amazon_forest_increased_the_severity_and_spread_of_fires_during_the_2015-2016_El_Nino?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/354144653_Logging_Amazon_forest_increased_the_severity_and_spread_of_fires_during_the_2015-2016_El_Nino?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/TERRAMZ-Knowledge-Shared-for-Local-Territorial-Management-in-The-Amazon-TERRAMZ-Conhecimento-Compartilhado-para-Gestao-Territorial-Local-na-Amazonia?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Manejo-Florestal-na-Amazonia?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paulo-Barni?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paulo-Barni?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Estadual_de_Roraima?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paulo-Barni?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Lopes?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Lopes?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Lopes?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haron-Xaud?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haron-Xaud?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Brazilian-Agricultural-Research-Corporation-EMBRAPA?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haron-Xaud?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maristela-Xaud?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maristela-Xaud?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Brazilian-Agricultural-Research-Corporation-EMBRAPA?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maristela-Xaud?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paulo-Barni?enrichId=rgreq-422491ba3e6eef289f1348bcdcf357c4-XXX&enrichSource=Y292ZXJQYWdlOzM1NDE0NDY1MztBUzoxMDkxNTI0NTM2MzUyNzY4QDE2MzcyNTExMzc2NzI%3D&el=1_x_10&_esc=publicationCoverPdf


Forest Ecology and Management 500 (2021) 119652

Available online 10 September 2021
0378-1127/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Logging Amazon forest increased the severity and spread of fires during the 
2015–2016 El Niño 

Paulo Eduardo Barni a,*, Anelícia Cleide Martins Rego a, Francisco das Chagas Ferreira Silva a, 
Richard Anderson Silva Lopes b, Haron Abrahim Magalhães Xaud c, Maristela Ramalho Xaud c, 
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A B S T R A C T   

Forest fires degrade Amazon forest and its natural functions. Logging, deforestation and the increased frequency 
of prolonged droughts have contributed to the high recurrence of forest fires in the Amazon. Fires have impacted 
areas that, until recently, were considered immune to fire, such as the southern portion of the Brazilian state of 
Roraima, which is characterized by forest types that occur in environments with high natural humidity but that 
are now strongly impacted by selective logging (SL). The objective of this study was to determine the severity and 
spread of fire in the forests of southern Roraima, taking as a reference the great forest fire that occurred during 
the 2015–2016 El Niño. We mapped fire scars and forest biomass from remote sensing and data from forest 
inventories in a 6657.3 km2 study area, of which 6512.4 km2 (97.8%) had originally been forest and 5412.3 km2 

(81.3%) was still forest in 2016. The 2015/2016 fires affected an estimated at 682.2 km2, or 12.6% of the area 
that was still forest in 2016. Vulnerability maps of the forest were made using the weights-of-evidence method. 
The biomass impacted by fire totaled 26.4 × 106 Mg, representing 9.5% of the total mapped for the study area 
(277.4 × 106 Mg). The biomass killed by the fire totaled 5.9 × 106 Mg, representing 22.3% of the biomass 
affected by the fires. The highest level of fire severity (very strong) proportionally affected 84.6% more forest 
biomass inside than outside SL areas. Forest vulnerability to fires increased by 265.5% in terms of area and by 
400.7% in terms of biomass when exposed to SL. Logging also increased the severity of fires when they occurred: 
a hectare of burned forest was 85.9% more likely to have a “very strong” fire if it had been previously logged, and 
burned areas that had been logged lost, on average, 2.9% more of their pre-fire biomass to the fire than those that 
had not been logged (86.5 Mg ha− 1 versus 84.0 Mg ha− 1). Considering only the ombrophilous forest, the mean 
biomass of forest that was logged and burned was 310.7 Mg ha− 1, or 30.8% lower than the mean biomass of 
448.7 Mg ha− 1 in logged but unburned areas, showing a substantial biomass loss to fire (average of 138.0 Mg 
ha− 1). SL more than doubled the impact of fire on biomass loss as compared to the impact of the logging itself. In 
addition to its contribution to carbon emissions and other impacts, the amplifying effect of SL on forest fires 
indicates that the assumption that authorized forest management projects in Amazonia are sustainable is un-
warranted. The future role of this practice should be rethought, existing projects should be subject to close in-
spection and control, and unauthorized logging should be identified and repressed. The policy of allowing sale of 
wood from clearcutting projects should be rethought because it provides a loophole for laundering wood from 
illegal logging.  
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1. Introduction 

Forest fires are a threat to the integrity and biodiversity of forests 
(McLauchlan et al., 2020), and to the Amazon forest’s carbon storage 
and hydrological cycling functions (da Silva et al., 2018; Fearnside, 
2008; Fearnside et al., 2013; Rappaport et al., 2018; Ziccardi et al., 
2019). The ignition sources of forest fires in the Amazon are the result of 
human actions, such as burning in nearby newly cleared forest or for 
pasture maintenance or for slash-and-burn family farming, while se-
lective logging (SL) plays an important role in making the forest 
vulnerable to the entry and propagation of fire (Alencar et al., 2006; 
Aragão and Shimabukuro, 2010; Berenguer et al., 2014; Brando et al., 
2014, 2019; Uhl and Buschbacher, 1985; Xaud et al., 2013). SL has been 
indicated as one of the factors for the spread of forest fires even in places 
that are distant from the main foci of deforestation (Alencar et al., 2015; 
Broadbent et al., 2008; Hethcoat et al., 2020; Silva et al., 2018). 

Prolonged drought events driven by the increasing frequency of se-
vere El Niño events have a direct effect on the spread of forest fires in the 
Amazon (Aragão et al., 2018; Jiménez-Muñhoz et al., 2016; Meira- 
Junior et al., 2020; Nepstad et al., 2004, 2007), as do the effects of 
changes in land use and cover and predatory logging (Brando et al., 
2014, 2019). The frequency of forest fires has increased in areas that 
(until recently) were considered immune to fire due to the natural hu-
midity of the forest; however, the factors that attenuate or amplify fire 
occurrence are still little studied (Barni et al., 2015a; da Silva et al., 
2018; Fonseca et al., 2017; Turubanova et al., 2018). 

The Amazon provides essential environmental services (e.g., Fearn-
side, 2008), and conserving these requires understanding of the in-
teractions between climatic phenomena and human activities and their 
effects on the degradation of forest biomass. Systematic mapping is one 
of the remote-sensing tools of great importance for the understanding 
the spatial distribution and the spreading behavior of forest fires and it is 
an intelligent way to provide input for the improvement of public pol-
icies to combat the indiscriminate use of fire. Systematic mapping can 
provide estimates of greenhouse-gas (GHG) emissions on a large scale 
and contribute to improving the calculations representing biomass and 
carbon affected by fire and deforestation (Aragão et al., 2018; Baccini 
et al., 2012). Brazil’s current National Inventory of GHG Emissions 
(Brazil, MCTI, 2020) does not consider emissions from understory forest 
fires when calculating emissions from land-use change and forestry. This 
fact persists, in part, due to the small volume of work carried out in this 
area of knowledge and the large uncertainties involved in calculating the 
emission factors. 

Several spectral indices have been developed or adapted to improve 
the mapping of burned areas: NDVI, SAVI, EVI, EVI2, GEMI, BAI, BAIM, 
NBR, NBR2, CSI and MIRBI (Bastarrika et al., 2011; Chuvieco et al., 
2002; Stropianna et al., 2012). New approaches based on spectral 
mixture analysis (SMA) and image fractions (Quintano et al., 2006) are 
useful for mapping burned areas. Canopy damage by selective logging 
and fire, including their severity (capacity to damage the forest), have 
been successfully mapped using the Normalized Difference Fraction 
Index (NDFI) (Souza Jr. et al., 2005a, 2005b, 2013). 

Halting or greatly reducing deforestation would clearly have a sub-
stantial benefit in avoiding forest fires because the burning of felled trees 
in newly cleared areas is a major source of ignition for fire in adjacent 
forests. Note that the forest is not intentionally set on fire, but rather fire 
escapes from nearby areas that are being burned either as part of the 
initial clearing or in subsequent management of the agricultural and 
ranching systems. 

One of the great challenges we currently face is a better under-
standing of the relationship between deforestation behavior and the 
application of efficient public policies (West and Fearnside, 2021). 
Policies are also needed to help change the practices used in agriculture 
and ranching (which today are still based on fire) to the use of tech-
nologies that allow the incorporation into the soil of the biomass of 
second growth cut to prepare forest for planting and in the maintenance 

of pastures free of invading woody vegetation. However, implementa-
tion of these systems has proved to be difficult in the Amazon because 
these alternatives to fire demand increased production costs. 

In the southern portion of Brazil’s state of Roraima (in northern 
Amazonia), deforestation is strongly stimulated by both legal and illegal 
logging (Barni et al., 2020; Condé et al., 2019). In this region, authori-
zations to use wood from areas being deforested in projects licensed for 
clearcutting by Roraima’s State Foundation for the Environment and 
Water Resources (FEMARH) provide the documentation for most of the 
“legal” logs delivered to sawmills. However, much of the wood that 
theoretically comes from the areas approved for clearcutting or for forest 
management does not actually come from these areas, but rather from 
selective logging in forests that are not authorized for either activity. For 
example, based on a questionnaire applied to 38% of the sawmills in 
Rorainópolis in 2013, Crivelli et al. (2017) reported that 54% of the 
wood volume came from deforestation projects, 11% from forest- 
management projects, and for 35% of the wood the sawmill owners 
were “unable to specify” the source. 

The great majority of requests to FEMARH from landowners for 
deforestation authorizations are merely a means to legalize the sale of 
timber, rather than for the stated purpose of clearing land for agriculture 
and pasture. This is clearly shown by the fact that the 12,480.9 ha of 
deforestation authorized by FEMARH in southern Roraima between 
2010 and 2015, only 26.2% was actually deforested, as shown by our 
mapping based on data from INPE’s PRODES program (Brazil, INPE, 
2020). If the authorized areas are, in fact, deforested, they are logged 
before the deforestation is done; if these areas are not in fact deforested, 
the logging is done, and the unharvested trees are left standing. The 
volume harvested in the authorized areas is less than the authorized 
amount. It is reasonable to suppose that this is because, given the lack of 
inspections, it is more profitable for the loggers to cut trees of the most- 
valuable species in a wider area of forest than it is to harvest the 
permitted volume only within the authorized area, where part of the 
harvest would be composed of less-valuable species. 

In January 2021 the municipality (county) of Rorainópolis (in 
southern Roraima) was added to the federal “blacklist” of priority lo-
cations for actions to prevent, monitor and control deforestation in the 
Amazon (Oliveira, 2021). Logging in this area has only minimal control, 
and, due to insufficient staff, FEMARH, does not make field inspections 
to verify that the specified limits and procedures are respected. The lack 
of inspections at the sites undergoing logging or deforestation does not 
mean that all parts of the production chain are free of influence from 
regulations. The federal environmental agency (the Brazilian Institute 
for the Environment and Renewable Natural Resources, or IBAMA) oc-
casionally inspects sawmills to see if the amount of wood present is 
compatible with the documentation. In 2018 such an inspection in 
Rorainópolis found that virtually none of the sawmills were in compli-
ance, and the sawmills were shut down (G1, 2018a). Note that 2018 was 
after the 2015–2016 El Niño fires that are the subject of the current 
study and was before the Jair Bolsonaro presidential administration 
began in January 2019, with a notable relaxation of environmental 
controls and gutting of IBAMA (see Ferrante and Fearnside, 2019). 

Logging is not done by the owners of the land, but instead is done 
either by logging teams working for sawmills or by independent loggers 
who pay a landowner to allow the timber to be harvested and sold to 
sawmills. There is clearly no motivation for sustainability, and those 
doing the logging may also invade adjacent properties or government 
land to remove additional timber. Inspection is limited to visits to 
sawmills to check if the volume of stockpiled wood is compatible with 
the maximum amounts specified in the licenses. Logging trucks are oc-
casionally stopped by IBAMA to check the permit for transporting timber 
(the “document of forest origin,” or DOF), but if a truck is not stopped 
the transport permit is often reused multiple times (Barni and Silva, 
2017). 

Throughout Brazilian Amazonia the permits issued for transporting 
timber from authorized forest-management projects are frequently used 

P.E. Barni et al.                                                                                                                                                                                                                                 



Forest Ecology and Management 500 (2021) 119652

3

in the same way as those for deforestation projects, with the volume for 
which the permits are issued coming, in reality, from logging in other 
areas, including indigenous lands and other protected areas where log-
ging is forbidden (Brancalion et al., 2018). Regardless of any official 
authorization for “sustainable” forest management in rural properties in 
our study area, the actual implementation of such practices was “null or 
incipient” at the time of our study (Gimenez et al., 2015). 

The present case study aims to determine the effects of SL on the 
severity and spread of understory fire in southern Roraima considering 
the mega forest fire that occurred in this part of the Amazon during the 
El Niño event of 2015–2016 (Fonseca et al., 2017). Areas “affected” by 
forest fire are areas where an understory fire occurred during the 
2015–2016 El Niño as indicated by burned litter and charring at the base 
of trees. Our hypothesis is that SL favored an increase in the severity of 
fire and its spread (increased area affected by fire, both by the increased 
sizes of the fire scars and by increased number of scars) both within the 
logged areas and in neighboring unlogged areas, contributing to greater 
exposure of forest biomass to fire. The specific questions the study ad-
dresses are: (i) What was the extent of the area affected by fires and the 
amount of forest biomass lost in the study area considering four levels of 
fire severity? (ii) What was the proportional contribution of SL in 
spreading the fire? (iii) What was the area of the exposed forest and what 
was the magnitude of forest biomass vulnerable to new forest fires in the 
study area? 

To answer question (i) we used a geographic information system 
(GIS) and geoprocessing tools, combined with inventory data, to assess 
the loss of forest biomass at four levels of fire severity as defined by 
Fernandes-Manso et al. (2016) in areas with signs of SL and in areas 
without signs of SL. To answer questions (ii) and (iii) we used the 

weights-of-evidence method (Barni et al., 2015b, 2020; Soares-Filho 
et al., 2006; Leite-Filho et al., 2021). Maps of weights-of-evidence 
have the ability to capture the influence of variables that are spatially 
related to the occurrence of forest fire (Silvestrini et al., 2011). 

Our study will provide improvements for understanding the rela-
tionship between the severity of fire and previous disturbance by SL. 
Among the uses for this information is improvement of carbon-emission 
calculations due to forest degradation in the Amazon (e.g., Brazil, MCTI, 
2020). 

2. Materials and methods 

2.1. Study area 

The study area is located in the southern portion of the state of 
Roraima, covering the areas that include the seat of the municipality 
(county) of Rorainópolis and the towns (vilas) of Colina and Equador. 
The area also includes small parts of the municipalities of Caracaraí 
(90.5 km2, 1.4% of the study area) and São Luiz (164.2 km2, 2.5%) 
(Table S1 in the Supplementary Material). The area includes 130.6 km of 
Highway BR-174 and 1249.4 km of secondary roads in the settlement 
projects and their surroundings (Fig. 1). The study area, which com-
prises 6657.3 km2, was delimited by clipping a Landsat 8 image for 9 
June 2016 (row 231, path 60) and intersecting it with part of scenes 
20NQG and 20NQF of the vector grid of the Sentinel-2 satellite (https 
://www.instrutorgis.com.br/download-da-grade-do-satelite-senti 
nel2/). The vegetation cover is composed of dense rain forest (in its vast 
majority), in addition to mosaics of campinarana (oligotrophic woody 
vegetation) and ecotone areas between campinarana and dense rain 

Fig. 1. (A) Map of South America showing the state of Roraima. (B) Municipalities and the location of the study area. (C) Detailed map of the study area.  
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forest (Barni et al., 2016). Under the Köppen classification system, the 
region’s climate is Af (equatorial forest climate) (Alvares et al., 2014). 

2.2. Databases 

The database consisted of 1.) A vector grid from the Sentinel-2 sat-
ellite (which was used to delimit the study area), 2.) Landsat 5 and 8 
images from 2007 to 2016 for path/row 231/60, obtained from the US 
Geological Survey (USGS, 2016) (which were used to map the dynamics 
of SL and fire) 3.) A Shuttle Radar Topography Mission (SRTM) image 
(USGS, 2016) (which served to represent the altitude and the slope in the 
study area), 4.) A vector map of forest types (Brazil, PROBIO, 2013), 5.) 
A map of deforestation and non-forest obtained from PRODES (Brazil, 
INPE, 2020), 6.) A vector map of forest fires (Barni et al., 2017) (used to 
represent the burned area), 7). A map of total forest biomass (live + dead 
and above + belowground) in Roraima (Barni et al., 2016) (used to 
estimate biomass loss and affect by fire), 8.) Vector maps of roads and 
rivers, 9.) A vector map of hot spots between 1 December 2015 and 23 
March 2016 from the AQUA-MT reference satellite (http://queimadas. 
dgi.inpe.br/queimadas/bdqueimadas/) (used to represent the initial 
scenario of fires in the study area using the weights-of-evidence 
method), 10.) Forest inventory data on observed fire and tree mortal-
ity in 17 transects measuring 4 × 250 m (1.7 ha) at the locations of fires 
that occurred in the study area during the 2015/2016 El Niño event 
(Table S2) (used to estimate the biomass loss at the plot level). 

For the processing of variables (maps), analyses were performed 
using the Quantum Gis (QGis) Desktop 2.18.15 (https://www.qgis.org/) 
geographical information system (GIS). Maps 2 to 9 (except map 7) and 
products derived from these have been used for analyzes with the 
weights-of-evidence method (Barni et al., 2015b, 2020; Soares-Filho 
et al., 2006; Leite-Filho et al., 2021) in Dinamica-EGO 5.0 software 
(https://csr.ufmg.br/dinamica/). Statistical analyses were performed 
using R version 3.6.0 software (https://www.r-project.org/). 

The database included information on authorizations for logging 
(authorized area in ha and volume in m3) in the area licensed for 
“alternative land use” (deforestation) from 2010 to 2015 (Table S3); the 
database also included information on “Sustainable Forest Management 
Plans” from 2017 to 2020 (Table S4), which were used to support the 
analyses. These data were provided by the State Foundation for the 
Environment and Water Resources (FEMARH) under the technical 
collaboration agreement 001/2020 between FEMARH and the State 
University of Roraima (UERR). The methodological sequence for 
obtaining and analyzing the data followed the flowchart in Fig. 2. 

2.3. Methods 

2.3.1. Fire severity 
Assessment of the severity of the fire consuming the combustible 

material and killing a fraction of the living forest biomass above and 
below ground was conducted according to the technique recommended 
by Fernándes-Manso et al. (2016), using vegetation indices, including 
the normalized difference vegetation index (NDVI). In this approach, the 
NDVI values were extracted from the Landsat 8 image for 9 June 2016 
(231/60) corresponding to the burned forest in the study area, and 
discrimination was made among four increasing levels of fire severity: 
light, moderate, strong and very strong (Table 1). The break points of the 
classification intervals for NDVI values were set automatically by the 
software (Jenks natural breaks: Dent, 1990; Slocum, 1999) in five 
classes, with the fifth class (-1 to 0.2246) corresponding to pixels with 
spurious values, which were excluded from the analysis. In the study by 
Fernándes-Manso et al. (2016), based on visual interpretation of images 
from the Pleiades-1A/1B sensor, the ‘light’ class corresponded to minor 
or insignificant damage from the fire scar; the ‘moderate’ class corre-
sponded to a moderately damaged area; the ’strong’ severity level cor-
responded to a highly damaged area and; the ’very strong’ severity level 
corresponded to an area totally destroyed by fire. Although the study by 

Fernandes-Manso et al. (2016) was carried out in a region of Spain 
dominated by Pinus pinaster Ait and Quercus pyrenaica Wild, which is a 
type of a vegetation completely different from that in the Amazon, it is 
important to highlight that in our study we only used the nomenclature 
for fire-severity classes based on these authors, corresponding to the 
classes for separation of the NDVI values obtained in our study area. Our 
choice was based on the familiarity with the use of NDVI and the eval-
uation of various vegetation indexes carried out by Fernandes-Manso 
et al. (2016). These authors indicated that the NDVI achieved scores 
similar to that of the normalized burn ratio (NBR) in a Cox and Snell 
pseudo-R2 test (0.430 and 0.450) and in a McFadden pseudo-R2 test 
(0.289 and 0.247) for NDVI and NBR respectively. In our study, NDVI 
was highly correlated with NBR (Figure S1 and S2; Table S5). 

2.3.2. Estimation of biomass loss by fire-severity class 
We used tree mortality or biomass-loss levels (inventory data) to 

numerically define these classes and associate them with the corre-
sponding severity levels. To estimate biomass loss by fire-severity class, 
we used loss fractions of forest biomass (Mg ha− 1) derived from the 
database for the forest inventory in the 17 transects (4 × 250 m: 1.7 ha) 
carried out between 11 March and 6 April 2016 for trees with DBH ≥ 10 
cm. In the 17 plots (14 plots with SL and three plots without SL), 1180 
individuals (694 individuals ha− 1) were inventoried, of which 239 

Fig. 2. Flowchart of the methodology applied in the study area to obtain and 
analyze the data. SL = selective logging; NDVI = normalized difference vege-
tation index. WEM = weights-of-evidence method. Continuous variables (dis-
tance map): SL = selective logging, Def = deforestation, SR = secondary roads, 
BR = BR – 174 highway, UC = urban centers, PA = protected area and Wat =
water. Categorical variables: Veg = vegetation, Slo = slope and Alt = altitude. 

Table 1 
Increasing levels of fire severity observed in the study area.  

Level Class NDVI (this study) *NDVI 

0 Light 0.4082 to 0.6031 0.5840 to 0.6195 
1 Moderate 0.3641 to 0.4081 0.5225 to 0.5700 
2 Strong 0.3140 to 0.3640 0.4095 to 0.4495 
3 Very strong 0.2247 to 0.3139 0.2267 to 0.2637  

* Values estimated from Fernándes-Manso et al. (2016). 
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individuals (20.3%) had been killed by fire. Trees that were considered 
to have been “killed” were observed in the field (1–3 months after the 
fires) and judged to be dead based on lack of leaves, appearance of the 
bark and signs of severe damage from the fire. The percentages for 
estimating biomass loss in trees with DBH ≥ 10 cm were derived from 
the forest-inventory data. The 10.4% loss percentage represented by the 
aboveground dead biomass (litter) and the 2.4% aboveground biomass 
loss in dead trees with DBH < 10 cm were derived from the study by 
Barbosa and Fearnside (1999) (Table 2). 

The volume is converted to biomass using the average basic density 
of 0.770 of the 11 species that contributed the most wood volume to nine 
sawmills surveyed in 2013 in Rorainópolis by Crivelli et al. (2017), 
based on basic density values from Fearnside (1997), Nogueira et al. 
(2005) and Silveira et al. (2013), weighted by their respective per-
centages of the volume processed by the sawmills (Table S6). “Basic 
density” of wood is oven-dried mass divided by saturated volume. A 
calculation is made of the biomass removed in the harvested logs, 
together with the loss of aboveground live biomass in the crowns and 
stumps of the harvested trees and in collateral damage to unharvested 
trees caused by the logging operations (Supplementary Material, Section 
1.7: Table S7). The biomass lost (35.67 Mg ha− 1), when divided by the 
average total biomass value (435.3 Mg ha− 1) of the dense ombrophilous 
forest in the study area (Barni et al., 2016), results in a loss fraction of 
0.082. In this approach it is assumed that the SL had already been 
removed this fraction of the biomass, and the fraction is therefore 
applied as a constant regardless of the fire-severity class. 

To derive these loss percentages and assign the biomass values cor-
responding to each severity class, the DBH ≥ 10 cm information on the 
inventoried trees (1180 individuals) was converted into aboveground 
dry biomass according to the model ln (P) = β0 + β1 ln (DBH) + ε, 
proposed by Higuchi et al. (1998), where P is the fresh weight (kg− 1) of 
the biomass, β0 (-1.497) and β1 (2.548) represent the regression pa-
rameters (intercept and slope), ln is the natural logarithm and ε is the 
random error. Values for fresh biomass (kg ha− 1) were converted to dry 
biomass (Mg ha− 1) based on the mean water content of 40% found by 
Higuchi et al. (1998) (Table S2). 

In order to represent the fire-damage classes overlapping the in-
ventory transects, a 15-m buffer was created around the length of each 
transect. Next, the fire-severity class values were extracted from a raster 
file intersecting the buffer areas (Fig. 3A); the average percentages were 
attributed for the biomass loss corresponding to each class indicated in 
the pixels, which were estimated by the model, and the total biomass 
was calculated for the 17 transects (Fig. 3B). 

2.3.3. Biomass of fire-affected areas by forest type 
The biomass (Mg ha− 1) affected by the fires in each vegetation type 

was calculated using the biomass map prepared by Barni et al. (2016) in 
a grid-cell (raster) format. This biomass estimate was based on bole 
volumes of individual trees ≥ 31.8 cm DBH surveyed by the RADAM-
BRASIL project (Brazil, RADAMBRASIL, 1973-1983) in 298 1-ha plots 
(of which 119 were in Roraima and the remainder within 100 km of the 
state’s borders). Volumes were converted dry biomass based on the 
wood basic density by species from Fearnside (1997), and adjustments 
for crowns, small trees, hollow trees, irregular trunks and other com-
ponents were based on Nogueira et al. (2008). 

Initially the biomass map was intersected with the forest-typology 
map, also in raster format, and the study area was cut out. The study 

area contained three vegetation types: Dense ombrophilous forest (DS), 
Campinarana (Ld) and Ecotones (LO). Note: the two-letter vegetation 
codes are those used by the Brazilian Institute for Geography and Sta-
tistics (IBGE). The biomass map for the study area was intersected with 
the forest-fire raster map (value = 1). These map-algebra operations 
were performed using the raster calculator in the GIS: 
∑

Biomassi =
(∑

pixelsi*BMi*PA*Fi

)/
10, 000  

Where: ΣBiomassi is class i biomass (Mg); Σpixelsi are pixels of type / 
class i; BMi is the biomass map (Mg ha-1) of type / class i; PA is the pixel 
area and Fi is the fraction of severity class i. The same procedure (minus 
Fi) was carried out to calculate the biomass loss caused by deforestation 
up to 2016 in the study area (Brazil, INPE, 2020). 

2.3.4. Characterization of selective logging in the study area 
To characterize SL in terms of the area that was logged and affected 

by understory forest fires in the entire study area, a systematic mapping 
of timber activity in the region was carried out between 2007 and 2015 
using 16 satellite images (path/row 231/59 and 231/60) from Landsat 5 
(2007 to 2011) and Landsat 8 (from 2013 to 2015) (Table S8 and 
Figure S3). For this purpose, RGB and NDVI images were interpreted 
visually, proceeding to manual editing in vector files of the SL areas in 
each image, as in Barni et al. (2015a) (Supplementary material: Section 
1.8). As a way of assessing the influence of SL on the spread of fire and on 
the severity classes in the study area, tests were carried out to compare 
the NDVI values from 2016 with the NDVI values of the images from 
2010, 2013, 2014 and 2015 at the same geographical coordinates in 
areas affected by fires and with a history of SL. Additionally, analyses of 
severity of fire were carried out according to the year of selective logging 
occurrence (Table S9). 

2.3.5. Fire-vulnerability map with weights-of-evidence method 
The map of the forest’s vulnerability to fire was obtained from the 

calculation of the transition-probability map using the weights-of- 
evidence method (Supplementary material: Figures S4, S5 and S6). 
This method stores information as numerical values that are spatially 
referenced (x and y coordinates) representing the contribution (evi-
dence) of each variable in favoring or inhibiting the occurrence of the 
event under study (in our case, fire), based on the occurrence of this 
event in the past. In other words, the weights-of-evidence method has 
the ability to capture the influence of a set of variables related to the 
spatial occurrence of a given event in the past and use that evidence 
(weights-of-evidence coefficients) to build a spatial-probability map for 
the occurrence of the event in question. This ability has often been 
exploited in simulating future deforestation and forest-fire scenarios in 
the Amazon (Barni et al., 2015b, 2020; Leite-Filho et al., 2021; Silves-
trini et al., 2011; Soares-Filho et al., 2006). 

For the preparation of the vulnerability map of the forest to under-
story forest fires, a methodological sequence was used that involved the 
preparation of initial and final scenario maps in Dinamica-EGO soft-
ware. First, a land-use map was prepared with the value classes (1) 
Deforested, (2) Forest and (3) Fire. The latter consists of 216 hot spots 
detected in the study area by the AQUA-MT satellite between 1 
December 2015 and 23 March 2016 (the time window when fire oc-
currences intensified in the study area), transformed into pixels, repre-
senting the fire class (value = 3) before the spread of the fire (initial 
scenario). Second, a land-use map was prepared with the same classes, 
but with the fire class applied to all of the fire spread detected in the 
study area in 2016 (final scenario), which was obtained from the map-
ping carried out by Barni et al. (2017) (Fig. 4). 

Twelve maps were created with the same number of columns and 
rows. Seven of the maps were for environmental variables: (1) forest 
(vegetation), (2) deforestation, (3) fire, (4) SL, (5) SL class year (area of 
polygons of SL mapped each year), (6) hydrography (water courses), (7) 
relief and (8) slope. Four maps were for infrastructure: (9) urban centers, 

Table 2 
Fractions of biomass loss from fire used in the GIS raster calculator for calcu-
lations of biomass loss by fire severity class.  

Severity Litter DBH < 10 cm DBH ≥ 10 cm Loss fraction 

Light  0.104  0.024  0.022  0.150 
Moderate  0.104  0.024  0.074  0.202 
Strong  0.104  0.024  0.151  0.279 
Very strong  0.104  0.024  0.329  0.457  
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(10) secondary roads, (11) BR-174 and (12) protected areas (Indigenous 
Lands + conservation units). This step also involves the creation of maps 
of distance-intervals (ranges) to fire scars for eight continuous variables 
and creation of class intervals for the other four variables (vegetation, 
altitude, slope and SL class year), which are considered to be categorical. 
The mapped variables (as a data stack) served as inputs for calculating 
the weights-of-evidence coefficients (Figures S3 and S4) using 
Dinamica-EGO software. 

In addition to these initial procedures, a transition matrix was also 
calculated, which is an array of the rates that the software uses to 
perform the transitions of pixels between states. For example, a pixel 
representing forest (value = 2) at time t1 can convert to a pixel repre-
senting fire (value = 3) at time t2, in a simulated scenario. In the 
simulation model, the transition matrix provides the number of pixels 
that are ready for the change of state, while the transition probability 
map directs the change to the areas of greatest probability. 

Correlation tests were performed to determine the association be-
tween variables and to assess their spatial dependence (Bonham-Carter, 
1994). Correlations with a value of r ≥ 0.5 were considered to represent 
a strong association between the variables (Cohen, 1988). These steps 
were performed using Dinamica-EGO software (Supplementary 
Material). 

2.3.5.1. Assessment of the effect of SL on fire spread. It is important to 
note that fire-severity classes were not considered in assessing the effect 
of SL on the spread of fire in the forest. To assess fire spread we 
considered five vulnerability classes that were calculated and mapped 
using the weights-of-evidence method. The following procedures were 
performed to test the effect of SL on the spread of fire in the study area: 
1.) making a transition-probability map using all of the variables in the 
database; 2.) making a transition-probability map using all of the 
database variables except for the SL variable; 3.) making a transition- 
probability map using only database variables with little or no correla-
tion with SL and SL class year and; 4.) making a transition-probability 
map using only SL and SL class year together with the database vari-
ables with little or no correlation with SL. These procedures were also 
carried out for the variables “deforestation” and “secondary roads,” 
which were highly correlated with SL in the study area (Table S10). The 
sizes (km2) of five classes of vulnerability of the forest to fire were then 
compared on the maps. The difference (in %) in the size of the area of the 
class with the greatest vulnerability to fire was calculated by comparing 
the map made using the set of variables that included both SL and the 
variables without correlation with SL with the probability map calcu-
lated only with the set of variables without correlation with SL. The 
percentage difference was considered to represent the effect of SL on the 
spread of fire in the study area. For the purpose of comparison and to 
serve as a reference in order to support the discussions, the same pro-
cedure described above was performed for the variables “deforestation” 
and “secondary roads.” The effects of the variables were also expressed 
in terms of biomass (Mg) vulnerable to fire in the study area. In this case, 
only the area in the class with the highest probability of fire was 
considered for the purpose of applying the biomass calculations in 
making the comparison between the models. 

2.3.6. Validation of models 
To validate the simulation models, the reciprocal-similarity com-

parison technique was used (Soares-Filho et al., 2008) based on adap-
tation of the fuzzy-similarity method and the Kfuzzy method, which is 
considered to be equivalent to the Kappa statistic and takes into account 
the fuzziness of both location and category within a cell neighborhood 
(Hagen, 2003). The method is based on the state of the central cell of 
each window, observing the similar and divergent states of the cells in its 
neighborhood (or proximity) as a parameter of comparison between the 
maps. In this approach, the simulated fire scenario is compared with the 
2015–2016 scenario (initial scenario) and with the 2016 scenario (map 
of fire that actually occurred) using “windows” of different sizes in an 
exponential decay function (truncated outside of a window size of 11 ×
11 cells) (Figure S7). The exponential decay function records the scores 
of the comparisons between maps produced with increasing window 
sizes (3 × 3 pixels, 5 × 5 pixels, …, 11 × 11 pixels), and the test result 
(%) is returned as a .csv table file (Figure S7). The window acts as a filter 
covering all of the lines in the raster map to make the comparison 

Fig. 3. (A) Levels of fire severity along a plot inventoried in the field and (B) corresponding rates (fractions) of biomass loss. Equal letters = not significant; * =
significant at 5%; *** = significant at 0.1% statistical probability. 

Fig. 4. Input scenarios for the method of calculating the weights-of-evidence 
using Dinamica-EGO software. (A) 2015–2016 Scenario (initial map) pre-
pared with hot spots between 1 December 2015 and 23 March 2016. (B) Sce-
nario in 2016 (final map) after the occurrence of fires in the region. 
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(Figure S7). Models are generally considered to be valid for simulation 
when the similarity value for the maps being compared is ≥ 50% (Barni 
et al., 2015b, 2020). The tests were carried out in a sub-model of the 
Dinamica-EGO software (Figure S8). 

3. Results 

3.1. Areas of occurrence 

The area of understory forest fires that occurred in our study area 
during the 2015–2016 El Niño event totaled 682.2 km2, affecting 12.6% 
of the remaining original forest. The cumulative deforestation in 2016 
(observed since the 1970s and 1980s) in this region (1102.1 km2) rep-
resented 16.6% of the study area and 16.9% of the area that was orig-
inally forest (Table S11). The cumulative deforestation attributed to the 
portion of the municipality of Rorainópolis located within the study area 
represented 90.8% of the deforestation observed in the entire munici-
pality up to 2016 (1151.2 km2: Brazil, INPE, 2020) (Table S1). 

In the study area, SL mapped between 2007 and 2015 totaled 644.8 
km2. Of this SL area, 28.0% (180.7 km2) was also affected by understory 
forest fire (Table S11 and Figure S3). 

3.2. Estimation of biomass in areas affected by forest fires 

The largest amount of biomass affected by the fires (22.7 × 106 Mg) 
was under ombrophilous forest (dense rain forest) and the smallest (0.3 
× 106 Mg) was found in ecotone forests (Table S12). The fire scars 
spread along the BR-174 and its secondary roads from the vicinity of the 
Rorainópolis municipal seat to an area near Vila Equador (Fig. 1). 

The total biomass affected by fires in our study area was estimated at 
26.2 × 106 Mg, while the biomass affected by fires in the SL area was 
estimated at 6.7 × 106 Mg (Table S12). This represents 24.1% of the 
total biomass in areas subjected to SL, estimated at 27.9 × 106 Mg. 
Estimation of forest biomass was performed for each forest type, sepa-
rating areas of SL and areas without SL are presented in Table S13. Es-
timates of biomass loss from deforestation until 2016 are presented in 
Table S14 for in the study area as a whole and separately for each forest 
type. 

3.3. Fire-severity gradient area 

The most widespread severity level in the study area was the light- 
intensity class (39.1%), considering areas burned without SL. When 
considering the same severity level but in areas with SL, the light- 
intensity class decreased by 27.9% in relation to the area without SL. 
On the other hand, when considering the highest level of fire severity 
(very strong) the area under SL shows an increase of 85.9% in terms of 
incident area of this class in relation to the area without SL (Table 3). 
This means that, if a hectare of forest burns, it is 85.9% more likely to be 
a very-strong burn if that hectare had been previously logged. 

3.4. Vulnerability of the forest to understory fires in SL areas 

The assessment of the vulnerability maps showed that SL influenced 
the spread of fire in the study area during the 2015/2016 El Niño event 

within the fire-severity classes. Analyses of NDVI images show a positive 
correlation between fires and the logging carried out in years immedi-
ately prior to the fires. On the other hand, this effect was not observed 
when comparing the NDVI values of the images of locations that had 
been subjected to SL in 2010 with the NDVI values obtained in the same 
places after the 2015/2016 fires (Figure S9). 

These results are confirmed by annual SL data from satellite images 
(Table S8) and analysis of the distances from the edge of the forest to the 
locations of the fires and the SL. The largest fire recorded in areas 
affected by SL (161.2 km2) occurred in the distance range from 0 to 
1200 m, representing 89.3% of the total spread of fire (180.5 km2) in the 
area with SL. The years that contributed most to the area of SL were 
2013, 2014 and 2015, providing the SL-disturbed area through which 
the fires crossed and spread to neighboring areas (Fig. 5A). Beginning in 
2011 there is a strong inversion of the severity classes, with locations 
with more-recent SL burning with greater severity in the 2015/2016 
fires (Fig. 5B, Table S9). 

3.5. Estimation of biomass loss by fire-severity class 

The biomass affected by forest fires totaled 26.4 × 106 Mg (Table 4), 
with the biomass in the fire-affected SL areas totaling 6.7 × 106 Mg (25.4 
of the fire-affected biomass), while the biomass computed outside of the 
SL areas represented 74.6%. The highest severity level (“very strong”) 
affected, proportionally, 84.6% (14.4% versus 7.8%) more biomass in SL 
areas than outside of these areas (Table 4). 

The largest amount of biomass killed by fires (1.8 × 106 Mg; mean 
79.1 Mg ha− 1) was in the “moderate-loss” class, representing 30.8% of 
the total estimated biomass. The smallest amount of biomass (1.1 × 106 

Mg; mean 176.3 Mg ha− 1) was in the class with the highest fire severity, 
representing 19.5% of the total biomass killed by the fires. Considering 
the level of greatest severity, the loss in the SL areas was, proportionally, 
68.3% greater than in the areas without SL (27.6% versus 16.4%, 
respectively) (Table 5). 

An increase in biomass loss with increasing fire severity is apparent, 
and the loss is greater at each intensity of fire if the area had been 
subjected to SL. If one considers only omprophilous forest, which rep-
resents 78.1% of the area affected by fire and 87.8% of the logged area, 
the differences between logged versus unlogged areas are significant 
Kruskal-Wallis test, p < 0.05) (Fig. 6). If all forest types are considered, 
the data suggest the same pattern but the added variation from forest- 
type effects makes the difference statistically nonsignificant 
(Figure S13). 

3.6. Calculation of the weights-of-evidence coefficients 

Of the 12 variables used to calculate the coefficients of the WEs, six 
showed a strong correlation between them (r ≥ 0.5). The highest cor-
relation was between cumulative deforestation in the study area and 
secondary roads, with r = 0.86, and the second-highest value was be-
tween SL areas with secondary roads, with r = 0.78 (Table S10). 
Theoretically, this means that these variables are overlapping in the 
model and would explain, basically, the same things. When two vari-
ables are correlated, it is recommended that one of them be removed 
from the prediction model, with the variable that remains being the one 

Table 3 
Area of severity classes of understory fire without selective logging and with.  

Severity Total Wo/SL W/SL Difference with SL% 

Area (km2) % Area (km2) % Area (km2) % 

Light  246.5 36.2  195.5  39.1  51.0  28.2 − 27.9 
Moderate  229.0 33.5  170.6  34.0  58.3  32.3 − 5.3 
Strong  140.7 20.7  95.5  19.1  45.2  25.0 31.2 
Very strong  64.9 9.6  38.8  7.8  26.1  14.5 85.9 
Total  681.1 100  500.4  73.5  180.7  26.5 _ 

W/SL = with selective logging. Wo/SL = without selective logging. 

P.E. Barni et al.                                                                                                                                                                                                                                 



Forest Ecology and Management 500 (2021) 119652

8

that is more consistent with the conceptual or theoretical model of the 
phenomenon to be modeled or predicted (Soares-Filho et al., 2008). 

The SL variable (a continuous variable) had the highest value for the 
weights-of-evidence coefficient (W = +1.15 to 0.99) between 0 and 480 

m away from the fires, and this coefficient decreased to a value close to 
zero at ~ 2000 m. Similar behavior was also observed for the variables 
“secondary roads” (W =+ 0.68 to 0.83) and “deforestation” (W =+ 0.44 
to 1.06) in the first 480 m from the areas affected by fires (Fig. 7). These 
distances were expressed as intervals of 120 m in the Dinamica-EGO 
software and are compatible with the 30-m pixel size of the Landsat 8 
image and of the weights-of-evidence maps of the variables used in the 
study. The response or dependent variable “fire” had the highest weights- 
of-evidence coefficients. These values indicate a high probability of 
transition from forest pixels (value = 2) located close to the edges of the 
forest (value = 1) to pixels representing burned areas (value = 3) on the 
simulated or modeled map. Note that most of the variables strongly repel 
the transition of pixels located from ~ 2500 to 5000 m, with the weights- 
of-evidence coefficients having values less than zero. 

The behavior of the weights-of-evidence coefficients of SL (and of 
other variables correlated with SL) shown in Fig. 7 can be explained by 
the heavy fragmentation of the forest in the study area. For example, on 
both sides of Highway BR-174 there are secondary roads and cumulative 
deforestation adjacent to these roads (both inside and outside of set-
tlement projects). The roads fragment the forest at regular intervals of 2 
to 4 km, depending on the degree of deforestation at each site. The sizes 
of the forest fragments limited the weights-of-evidence (W+) of the main 
variables that explain the behavior of fire in the study area at distances 
between 1000 and 2000 m from the edge of the fire scars in the forest 
(Fig. 7). 

Fig. 5. (A) Annual contribution of areas impacted by SL that were burned during the 2015/2016 El Niño event in the study area. (B) Gradient of fire severity 
depending on the year of logging. 

Table 4 
Estimated biomass affected by fire for each fire-severity class considering all forest types.  

Severity Area Wo/SL % of biomass Area W/SL % of biomass SL % of biomass Total % 
(km2) (106 Mg) (km2) (106 Mg) (106 Mg) (106 Mg) 

Light 195.5 7.5 38.1 51.1 1.9 28.2 0.17 28.3 9.4 35.6 
Moderate 170.6 6.8 34.6 58.3 2.2 32.3 0.19 32.4 9.0 34.0 
Strong 95.5 3.9 19.5 45.2 1.7 25.2 0.15 25.2 5.6 21.2 
Very strong 38.8 1.5 7.8 26.1 1.0 14.4 0.09 14.4 2.5 9.3 
Total 500.4 19.8 100.0 180.7 6.7 100.0 0.6 100.0 26.4 100.0 

W/SL = with selective logging. Wo/SL = without selective logging. 

Table 5 
Estimation of biomass killed by fire for each fire-severity class considering all forest types.  

Severity Wo/SL W/SL Total 

Biomass (106 Mg) % Mean (Mg ha¡1) Biomass (106 Mg) % Mean (Mg ha¡1) Biomass (106 Mg) % Mean (Mg ha¡1) 

Light 1.1 26.5 58.1 0.3 17.8 55.7 1.4 24.2 57.6 
Moderate 1.4 32.0 80.3 0.4 27.5 75.5 1.8 30.8 79.1 
Strong 1.1 25.0 111.8 0.5 29.5 104.6 1.5 26.2 109.5 
Very strong 0.7 16.4 181.1 0.4 27.6 169.3 1.1 19.5 176.3 
Dead 4.3 21.7 84.1 1.6 23.9 92.6 5.9 22.3 86.4 
Affected 19.7 7.9 _ 6.7 24.3 _ 26.4 9.5 387.6 
Total 249.8 90.1 _ 27.6 9.9 _ 277.4 100.0 _ 

W/SL = with selective logging. Wo/SL = without selective logging. 

Fig. 6. Biomass loss (Mg ha− 1) by fire-severity class in areas with SL (W/SL) 
and areas without SL (Wo/SL) considering only ombrophilous forest. The 
different lower-case letters above the boxes indicate that there was significant 
difference (p < 0.05) between the loss of biomass by fire in previously logged 
areas and unlogged areas within each severity class. 
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Corroborating these results, the areas affected by forest fires and SL 
gradually decreased in successive 120-m intervals from the edge of the 
forest up to a distance of 1200 m. The first interval (0 to 120 m) had the 
largest area affected by fire (114.9 km2; 20.1%) and also had the largest 
area affected by SL (113.8 km2; 24.3%). Considering the entire range of 
1200 m from the edge of the forest, the area burned totaled 571.7 km2 

(83.9% of the 682.2 km2), SL areas totaled 468.8 km2 (72.7% of the 
644.8 km2) and the SL areas in areas affected by fire totaled 161.2 km2, 
or 89.4% of the 180.4 km2 total (irrespective of distance: Table S15) 
burned in the SL areas (Fig. 8A; Table S15). The ratio of the area affected 
by SL to the area affected by fire (SL/Fire) showed a continuous growth 
beginning with the second distance interval (121–240 m from the forest 
edge) up to a distance of 1200 m (Fig. 8B). The SL area affected by fire as 
a percentage of the SL area as a whole (SL × Fire/SL) had behavior 
opposite to that of SL/Fire; that is, the areas of occurrence decreased 
with increasing distance from the edge of the forest. In turn, the area of 
SL affected by fire as a percentage of the area burned as a whole (SL ×
Fire/Fire) showed a more stable behavior when compared to the other 
variables, with 20.6% in the first interval, increasing to 26.5% in the 
second interval, and stabilizing at 31.1% (on average) from the third to 
the last interval (241–1200 m). 

These results indicate a strong influence of SL on the spread of the 
fire in the study area, especially as exemplified by SL/Fire and SL × Fire/ 
Fire (Fig. 8B). Although this analysis includes only the variable SL, all 
other variables were also exposed to the same environmental context in 
the study area. The values of the weights-of-evidence calculated for each 
distance range of the variables contained in the models ensure the sta-
tistical independence of the results (Bonham-Carter, 1994). 

3.7. Model-validation results 

The models were validated in windows that ranged in size from one 
pixel (30 m) to seven pixels (210 m). The greatest similarity (65.9%) be-
tween the models and considering all windows was observed in the model 
containing all variables. This map reaching 50% similarity in a ~ 65-m 
window. On the other hand, the worst performance was by the map from 
the model that used only the variables that were not correlated, reaching 
50% similarity in a ~ 108-m window. The other three models had 
approximately the same performance, with results between the two ex-
tremes and reaching 50% similarity in a window of ~ 80-m (Figure S10). 

3.8. Vulnerability of the forest to understory fires by probability range 

Considering ranges of vulnerability to the occurrence of forest fires in 
the probability map, areas vulnerable to fire increased by 266.2% in the 
range with the highest vulnerability when SL and SL class year were 
present, as compared to the reference model (Figure S11). Likewise, 
when the probability map was modeled with the presence of secondary 
roads, the area of greatest vulnerability to fire increased by 360.4% 
compared to the reference model (Fig. 9; Table S16). 

All of the vulnerability maps had the class with the lowest probability 
of fire (0.0004 to 0.1488) as the most representative area in the 
modeling. This can be explained simply by the fact that these areas are 
relatively far from the sources of ignition by human action and, there-
fore, would be naturally protected. This can be clearly seen in contin-
uous blocks of forest on both sides of Highway BR-174 in the map 
calculated with the entire set of variables (areas south of Vila Colina in 
the south-central part of the map) (Fig. 10A). To a lesser extent it can 
also be seen in Fig. 10C. On the other hand, the map considered as a 

Fig. 7. Coefficient of the weights-of-evidence (W + or W -) for seven variables 
that explain the occurrence of forest fires (dependent variable) in the study 
area. The distance is subdivided into multiple intervals of 120 m. 

Fig. 8. Fire and SL behavior as functions of distance from the forest edge (in 120-m intervals). (A) Areas (km2). (B) Interaction between fire and SL (%). Fire = Area 
affected by fire; SL = Area of SL; SL × Fire = Area of SL affected by fire; SL/Fire = Ratio of the area affected by SL to the area affected by fire; SL × Fire/SL = The SL 
area affected by fire as a percentage of the SL area as a whole; SL × Fire/Fire = Area of SL affected by fire as a percentage of the area burned as a whole. 

Fig. 9. Percentage of vulnerability of the forest as a function of the ranges of 
probability (0.1) of fire occurrence in the study area. 
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reference, which represented fires calculated by the model composed of 
three explanatory variables not correlated with the SL (altitude, slope, 
and vegetation) (Fig. 10B), showed these blocks of forest as vulnerable 
to fire. This effect can be explained by the absence of protected areas in 
the model’s data set. Because the protected areas were correlated with 
SL, this effect was less evident in the calculated map containing SL in the 
data set. The maps of vulnerability to fires calculated with the variables 
“secondary roads” and “deforestation” are shown in Figure S12. 

The exposure of forest biomass to fires in the study area was 457.2% 
higher when considering the variable “cumulative deforestation” compared 
to the reference model (Fig. 10B), while SL and SL class year exposed 407.0 % 
more forest biomass when compared to the reference model. This percentage 
(400.7 %) can be considered to represent the effect of SL on the spread of fire 
in the study area. The variable “secondary roads” exposed 591.2% more 
biomass to fire than the reference model (Fig. 11). Likewise, SL and SL class 
year exposed 266.2% more forest area to the range with the highest risk of 
vulnerability compared to the reference map, while deforestation exposed 
9.0% more area than SL. Back roads exposed 360.4% more forest area than 
the reference map (Figure S11). 

3.9. Effect of logging on biomass losses due to fire 

The biomass losses in burned areas are summarized in Table 6, indi-
cating a total loss of 5.22 × 106 Mg of biomass stock due to fire. In the 

burned areas the percentage of biomass lost is 23.2% in areas that had 
been selectively logged, and 21.6 % in areas without selective logging. 

The effects of selective logging on losses to fire are calculated in 
Table 7. The effect of logging in increasing the area burned resulted in 
1.22 × 106 Mg of biomass loss due to fire (Column G), while the effect of 
selective logging in increasing the severity of fire and resulting per- 
hectare biomass loss in the area that would have burned anyway even 
without logging represents 1.25 × 106 Mg of biomass loss (Column M). As 
compared to the biomass loss from the logging itself (including collateral 
damage) of 1.69 × 106 Mg of biomass, the effect of logging on increasing 
the area burned increases impact by 72.5% (Column AB), and the 
increased fire severity increases the total fire impact to 146.5% (Column 
AD), that is, more than doubling the impact of the logging itself. 

4. Discussion 

4.1. Role of selective logging in increasing fire severity 

In our study, the use of severity classes based on NDVI offered 
excellent insights into the severity of SL practiced in the studied area. 
Our approach can be considered to be a methodological advance 
because it can be easily used in calculating GHG emissions to the at-
mosphere using land-use models, reducing uncertainties, for example at 
the scale of Landsat pixels. Although it is a simplification for calculations 
of biomass loss, the use of constant values in our study (Table 2) can be 
justified by the difficulty (logistics and trained professionals) of 
obtaining the true parameters for the forest affected by the fires. This 
explains, in part, why the Brazilian inventories of greenhouse-gas 
emissions do not yet consider emissions from forest degradation by 
understory forest fires and selective logging (e.g., Brazil, MCTI, 2020). 

The highest occurrences of burned areas and SL in the first distance 
intervals from the edge are characteristic of the intense fragmentation of 
the forest caused by human occupation in the study area. This frag-
mentation increases the contact between the sources of fire ignition 
(burning of forest biomass from deforestation and in the management of 
pastures and agricultural fields) and the edge of the forest (Alencar et al., 
2006, 2015; Aragão and Shimabukuro, 2010). 

Estimates of the biomass in areas affected by logging must be 
adjusted for the amounts of biomass removed by the logging. Logging 
slash and additional trees killed in the logging operations will remain in 
the forest as dead biomass (necromass) and the carbon in these com-
ponents will eventually be emitted to the atmosphere either through 
burning or decay. An idea of the harvest intensity of the selective logging 
in the area can be derived from the officially reported volumes processed 
by sawmills in the municipality: a total of 455,347 m3 over the 
2007–2015 period (Brazil, IBGE, 2021). Although the part of our study 
area in Rorainópolis (Table S1) represents only 19.1% of the area of the 
municipality (33,579.7 km2), it represents virtually all of the accessible 
area of forest outside of protected areas. The concentration of logging 
pressure in a relatively small space in the municipality may have 
induced the loggers to exploit these forest resources at high intensity, 
exposing the forest to greater fire hazard. On the other hand, the con-
centration of logging in a small area protected the currently inaccessible 
areas from increased fire risk. 

4.2. Logging intensities in SL 

Logging in the southern portion of the state is practiced in a manner 
similar to that practiced in other parts of the Brazilian Amazon (Nepstad 
et al., 1999). Like other areas in the Amazon, logging in our study area is 
characterized by exploitation of only a few commercial species, a low 
yield of sawn wood, deficiency in the application of forest management 
and widespread illegality in removal of wood from the forest (G1, 
2018b; Gimenez et al., 2015; Lentini et al., 2005; Monteiro et al., 2010; 
Pereira et al., 2010). 

The estimate of logging intensity that is needed in order to calculate 

Fig. 10. Maps of vulnerability of the forest to understory fire. In (A) forest 
vulnerability map calculated with the entire set of variables (n = 12). In (B) 
vulnerability map calculated from a set of three variables (altitude, vegetation 
and slope) that are not correlated with SL (reference model). In (C) forest 
vulnerability map calculated from the variables not correlated with SL and plus 
the SL and SL class year variables. The legend below the figure shows the ranges 
of probability [0.1] of the forest being affected by fires. 

Fig. 11. Biomass vulnerable to understory forest fires in the study area.  
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the biomass present in the logged areas at the time of the 2015–2016 
fires requires deduction based on the volume of logs removed and the 
area we mapped as affected by SL (see Supplementary Material, Section 
1.7). Officially, from 2010 to 2015, 350,147.0 m3 of logs were harvested 
in the municipality of Rorainópolis (Brazil, IBGE, 2021). If we consider 
that all of this volume of wood was obtained exclusively from our study 
area, where the areas authorized for deforestation totaled 124.8 km2 in 
the period from 2010 to 2015, the average volume removed would be 
28.1 m3 ha− 1. Although this value is 44.8% higher than the value used in 
our calculations, in terms of volume (19.4 m3 ha− 1), to deduce biomass 
removed by SL (35.67 Mg ha− 1; Supplementary material: Section 1.8) in 
areas that were burned and had signs of SL, the generated volume rea-
ches 1,009,770 m3 in 520.5 km2 of SL polygons (19.4 × 520.5 × 100) 
mapped in our study area from 2010 to 2015 (Table S8). This value 
indicates that there may have been a logging 2.9 times (188.4%) greater 
than the value officially reported by the loggers (Brazil, IBGE, 2021). 

Authorized forest-management projects provide another basis for 
comparison. Although FEMARH did not provide data on authorized 
forest-management plans for our study area before 2016, if we assume 
that in the period from 2010 to 2015 the same area was authorized 
annually for management as occurred between 2016 and 2019 (1,566.6 
ha year− 1) (i.e., before the substantial increase in authorization in 
2020), and we apply the average authorized harvest of 24 m3 ha− 1, this 
implies an annual authorized harvest of 37,597.2 m3 (Table S4). The 
total volume from deforestation authorizations in the 2010–2015 period 
(611,674.9 m3; Table S3), plus the assumed forest-management autho-
rizations (225,583.2 m3) total 837,758.1 m3, or 2.4 times the 350,147 
m3 officially reported as harvested in the municipality in the same 
period (Brazil, IBGE, 2021). This probably means that the officially re-
ported volume is greatly understated. 

Considering the 520.5 km2 of SL area mapped between 2010 and 
2015 (Table S8) and, using the same average harvest of 24 m3 ha− 1, the 
total exploited volume would be 1,249,200.0 m3, or ~ 3.6 times higher 
than that reported by Brazil, IBGE (2021) for the same time interval. 

Another important factor to be considered is that only 26.2% (3,114.1 
ha) of the area authorized for “alternative land use” between 2010 and 
2015 (12,480.9 ha) was effectively deforested by 2020. These facts hide 
a serious problem for the timber sector in southern Roraima and ex-
plains, in part, why many lumber companies were closed and stopped 
working after IBAMA inspection operations in Rorainópolis (G1, 2018a) 
and in the port of Manaus, Amazonas (G1, 2018b). In addition, it sup-
ports the supposition that permits for SL in areas released for “alterna-
tive land use” (deforestation) are used to launder wood. 

4.3. Wood laundering as a factor in selective logging and consequent fire 

While the 2015–2016 El Niño provided ideal climatic conditions for 
fires (Aragão et al., 2018; Burton et al., 2020; Fonseca et al., 2017; Ray 
et al., 2005), much of the “blame” for the fires and the damage they 
caused can be attributed to the roles of SL in increasing the probability of 
areas being burned and in increasing the damage when burning occurs. 
The large area of selective logging in our study area appears to be mainly 
the result of permits from authorized deforestation being used to provide 
cover for transporting the logs to sawmills (i.e., “laundering” wood) and 
a lesser amount from authorized forest-management projects. 

In our study area logging is done based on the approval of licenses for 
clearing forest for agriculture and pasture. In these projects FEMARH 
authorizes the sale of a restricted volume of wood, which generally 
varies between 20 and 100 m3 per ha of authorized clearing (e.g., Barni 
et al., 2020). These authorizations are often used to “launder” wood 
from illegal logging in nearby forests, including wood from outside of 
the properties where the clearcutting was licensed (Condé et al., 2019). 
In these clearcutting projects, the wood is harvested before the forest is 
cleared, and one to two years or more (See table S3) elapse before the 
remaining trees are cut when the area is deforested for pasture (this is 
recurrent throughout the southern portion of the state). In this case, the 
forest contains large clearings resulting from the opening of roads and 
log-storage yards, with the remaining trees left standing until the end of 

Table 6 
Summary of biomass losses in burned areas.   

Original forest 
(unlogged and unburned) 

SL loss Affected by fire Loss to fire Percent 
affected 
biomass 

Area Biomass 
stock 

Biomass 
per hectare 

Percent of 
original 
biomass 

Biomass 
stock 

Biomass 
per hectare 

Biomass 
stock 

Biomass 
per hectare 

Biomass 
stock 

Biomass 
per hectare 

(km2) (106 Mg) (Mg ha− 1) (%) (106 Mg) (Mg ha− 1) (106 Mg) (Mg ha− 1) (106 Mg) (Mg ha− 1) (%) 

Burned areas with SL 
in ombrophilous 
forest  

152.3  6.63  435.1 8.2 0.54 35.7  6.08  399.4  1.48  97.2  24.3 

Burned areas without 
SL in ombrophilous 
forest  

380.3  16.60  436.5 0 0 0  16.60  436.5  3.58  94.2  21.6 

Total in 
ombrophilous 
forest  

532.6  23.23  436.1 2.3 0.54 35.7  22.68  425.9  5.06  95.1  22.3 

Burned areas with SL 
in campinarana  

28.3  0.71  250.7 8.2 0.06 20.6  0.65  230.1  0.16  56.0  24.3 

Burned areas without 
SL in campinarana  

111.7  2.87  256.8 0 0 0  2.87  256.8  0.63  56.1  21.8 

Total in campinarana  140.0  3.58  255.6 1.6 0.06 20.6  3.52  251.4  0.78  56.1  22.3 
Burned areas with SL 

in ecotone forest  
1.2  0.04  333.3 8.2 0.0033 27.3  0.04  306.0  0.07  86.3  28.2 

Burned areas without 
SL in ecotone forest  

8.1  0.30  370.4 0 0 0  0.26  321.0  0.06  69.8  21.6 

Total in ecotone 
forest  

9.3  0.30  323.3 0 0 0  0.30  319.8  0.13  70.1  22.1 

Burned areas with SL 
in all forest types  

180.6  7.34  406.2 8.2 0.60 33.3  6.73  372.9  1.64  90.8  24.3 

Burned areas without 
SL in all forest 
types  

501.3  19.77  394.4 0 0 0  19.47  388.4  4.21  84.0  21.6 

Total in all forest 
types  

681.9  27.10  397.5 2.2 0.60 33.3  26.20  384.3  5.85  85.8  22.3  
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Table 7 
Effect of logging on area and biomass burned.   

A B C D E F G H I 

Forest type Total Area Area Average Fraction Average Total Fraction Area  
area burned burned biomass Killed by biomass biomass killed by that  
burned w/SL that w/SL fire W/SL killed by killed by fire would  
(km2) (km2) would (Mg ha− 1)  fire in fire in Wo/SL have    

have   burned burned  burned    
remained   area area  if there    
unburned   that that  had been    
w/o SL   would would  no SL    
(km2)   have have  in areas       

remained remained  that had       
unburned unburned  SL       
w/o SL (106 Mg)  (km2)       
(Mg ha− 1)    

Source Table 6 Table 6 B - I Table 4 Table 5 D × E C × 100 Table 6 B - C        
× F/106   

Ombrophilous 532.7 152.3  399.6 0.232 92.6  0.216  
Campinarana 140.0 28.3  230.3 0.232 61.0  0.218  
Ecotone 9.3       0.194  
All types 681.9 180.6 138.4 384.2 0.232 89.1 1.22 0.216 43.4  

J K L M N O P Q R  

Additional Average Total Total Fraction Average Average Total Percent  
fraction additional additional additional of biomass biomass biomass increase  
burned biomass biomass biomass original Wo/SL removed removed of impact  
W/SL killed by killed by killed by biomass (Mg ha− 1) or killed or killed of SL  
as fire in fire in fire removed  by SL by SL due to  
compared area area due to or killed  (Mg ha− 1) in study additional  
to Wo/SL W/SL W/SL SL by SL   area area   

that that (106 Mg)    w/SL burned   
would would     (106 Mg) (%)   
have have         
burned burned         
w/o SL w/o SL         
(Mg ha− 1) (106 Mg)       

Source E - H D × S ((B-D) × 100-T) G + U Section Table 6 W × X T × 100 × Y V/Z × 100    
/106  2.3.2   /106  

Ombrophilous 0.016 6.4   0.082 435.0 35.7 0.54  
Campinarana 0.014 3.1   0.082 250.8 20.6 0.06  
Ecotone      360.3    
All types 0.016 6.0 0.03 1.25 0.082 395.0 32.3 1.69 74.1  

S T U V W X     

Total Total Total Total Total Total     
area area area area area area     
present logged not burned burned burned     
(km2) (km2) logged w/SL wo/SL (km2)       

(km2) (km2) (km2)     

Source Table S-13 Section S - T Table 6 Table 6 V + W      
4.2.2        

Ombrophilous 5,720.8   152.3 380.3 532.7    
Campinarana 727.9   28.3 111.7 140.0    
Ecotone 63.7     9.3    
All types 6,512.4 520.5 5,991.9 180.6 501.3 681.9     

Y Z AA AB AC AD     

Percent Percent Area that Loss from Total Biomass     
burned burned would fire due biomass loss from     
of area of area have burned to logging loss from fire due to    
logged not in logged effect on fire due to logging     
(%) logged area if burned logging as % of      

(%) unlogged area as % (106 Mg) loss from       
(km2) of loss from logging (%)       

logging (%)     

Source V/T W/U Z/100 × AJ G/Q × 100 G + M AC/Q × 100    
×100 ×100        

All types 34.7 8.4 43.5 72.5 2.47 146.5     
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the logging operation before being cut. The burning of areas that are 
deforested in clearcutting projects serve as sources of ignition for the 
spread of fire to the adjacent forest. Logging disturbance can be more 
serious than the deforestation itself as a force for spreading fire. Under 
extreme climatic conditions such as the 2015/2016 El Niño event 
(Burton et al., 2020; Fonseca et al., 2017), logged areas become highly 
vulnerable to fires (Andrade et al., 2020; Cochrane et al., 1999; de Faria 
et al., 2017; Morton et al., 2011; Ziccardi et al., 2019). The logged areas 
served as “springboards” for fire to gain momentum and spread to 
adjacent areas, including those without evidence of SL. 

This effect of recent logging was shown by the correlation analysis 
between the incidence of fire and the difference between the NDVI 
values observed in SL areas carried out in years immediately before the 
fires and the NDVI values observed in the same places in 2016 
(Figure S9). The increasing correlation between these values over time is 
consistent with the more recently logged areas having greater fire 
severity (Fig. 5B). This corroborates the studies by (Souza Jr. et al., 
2005a, 2005b, 2013), who analyzed forest degradation by SL and fire 
using multitemporal images. 

4.4. Vulnerability of the forest to understory fires 

The variables that contributed the most to the vulnerability of the 
forest were, in decreasing order, the distance from secondary roads, the 
distance from previous or cumulative deforestation and the distance 
from selective logging. The effects of major and secondary roads on the 
occurrence of deforestation and forest fires in the Amazon are well 
known (Barni et al., 2015b; Fonseca et al., 2017, 2019; Silvestrini et al., 
2011; Soares-Filho et al., 2006). However, with regard to modeling the 
risk of forest fire using SL as an explanatory variable in the model, our 
results are unprecedented and demonstrate the importance of regulating 
this activity for combating and controlling forest fires in Brazilian 
Amazonia. 

Modeling the probability of the occurrence of fires in the study area 
using the weights-of-evidence method allowed us to produce a vulner-
ability map of the forest (map with all variables) with very high spatial 
resolution (compatible with the Landsat 8 pixel size of 30 m). Providing 
information for use in risk maps for the occurrence of catastrophic 
events, such as floods, hurricanes and forest fires, is valuable for plan-
ning and for preventing and mitigating the potential impacts these ca-
lamities cause to the economic, social and environmental sectors. 
Increasing the accuracy of models can make them more effective as a 
basis for public policies to reduce these risks (Ferrier et al., 2016; Fon-
seca et al., 2017, 2019; Marcelino, 2008). The map of forest vulnera-
bility to fire modeled in this study can serve as a tool for planning 
preventive measures for combating fires and for mitigating the effects of 
fire in Roraima (Barbosa et al., 2003). The increased vulnerability of 
selectively logged forest to fire implies that the simple assumption that 
authorized forest management projects in Amazonia are sustainable is 
unwarranted. One cannot simply assume that if government regulations 
on the intensity of logging and other factors in management systems are 
followed then the system will automatically be sustainable. Unfortu-
nately, fire was not considered in the forest-recovery studies underlying 
official regulations. Virtually all plans for forest management in Ama-
zonia assume that the managed areas will never burn (see Fearnside, 
2003). The falseness of this assumption is central to discussions of the 
appropriate role of forest management in Amazonian development. 

The roles of selective logging in facilitating forest fires and increasing 
their damage mean that SL can have harmful and unpredictable conse-
quences for the structure of the forest (Rappaport et al., 2018). Fires also 
affect the forest’s health, with repercussions for the survival of arboreal 
individuals in the years following the fires (Andrade et al., 2020; 
Trumbore et al., 2015; Watson et al., 2018; Ziccardi et al., 2019). The 
increase in fire severity provoked by logging implies direct impacts on 
greenhouse-gas emissions and global climate (Aragão et al., 2007, Assis 
et al., 2020; de Faria et al., 2017; Rappaport et al., 2018; Stark et al., 

2020; Trumbore et al., 2015). Fires like these are known to initiate a 
positive-feedback process, where the fire leaves dead wood in the forest 
that serves as fuel for the next fire at the time of another extreme 
drought event, making this and subsequent fires more intense, and this 
can completely destroy an area of forest after three or four fires 
(Berenguer et al., 2014; Cochrane et al., 1999; Nepstad et al., 1999). The 
effect of fire in more than doubling the impact of the logging itself, 
increasing the impact by 146.5%, affects the calculus for forest man-
agement. This level of impact is the result of a single fire, and this is only 
the beginning of the positive feedback process of degradation in a 
downward spiral of biomass stocks. The large impact of selective logging 
through the effect on fire should both serve as a warning to policy 
makers promoting forest management and add urgency to repressing the 
widespread illegal logging in Amazonia. 

5. Conclusions 

The methods developed here to estimate the effects of selective 
logging based on fire-severity classes and the modeling of fire spread 
based on weights-of-evidence can be used as a tool for creating public 
policies regarding logging and fire. The results these policies need to be 
more cautious in promoting forest management and more rigorous in 
controlling illegal logging, as well as increasing efforts to prevent fires. 

The selective logging practiced in the southern portion of Roraima 
contributed significantly to the increase in damage to forest biomass and 
consequent emission of carbon to the atmosphere, in addition to facili-
tating the spreading of forest fires and increasing their intensity. If a 
hectare of forest is burned, the fire intensity is 85.9% more likely to be in 
the “very strong” category if it had been previously logged. Fire 
increased the impact of logging on biomass reduction by 146.5% as 
compared to the impact of the logging itself, thus more than doubling 
the impact of logging with just one fire. These results cast doubt on the 
assumption that approved forest-management projects are sustainable 
on the long term. In addition, the connection of logging disturbance and 
resulting forest fires to authorized wood sales from areas licensed for 
clearcutting indicates the need for Roraima’s environmental agency 
(FEMARH) to revise its policies on the use of wood from forest-clearing 
projects. 
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Didático n◦ 1. Santa Maria, RS, Brazil: CRS, Instituto Nacional de Pesquisas Espaciais 
(INPE), 38 pp. https://bityl.co/5JdF. 

McLauchlan, K.K., Higuera, P.E., Miesel, J., Rogers, B.M., Schweitzer, J., Shuman, J.K., 
Tepley, A.J., Varner, J.M., Veblen, T.T., Adalsteinsson, S.A., et al., 2020. Fire as a 
fundamental ecological process: Research advances and frontiers. J. Ecol. 108 (5), 
2047–2069. https://doi.org/10.1111/jec.v108.510.1111/1365-2745.13403. 

Meira-Junior, M.S., Pinto, J.R.R., Ramos, N.O., Miguel, E.P., Gaspar, R.O., Phillips, O.L., 
2020. The impact of long dry periods on the aboveground biomass in a tropical 
forest: 20 years of monitoring. Carbon Balance Manage. 15, art. 12. https://doi.org/ 
10.1186/s13021-020-00147-2. 

Monteiro, A., Cardoso, D., Conrado, D., Veríssimo, A., Souza Jr, C., 2010. Boletim 
Transparência Manejo Florestal- Estado do Pará 2008 a 2009. Belém, PA, Brazil: 
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