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A B S T R A C T   

The Cerrado biome in Brazil is characterized by a mosaic of vegetation types similar to African savanna and has 
one of the highest levels of biodiversity in the world. Wildfires have historically contributed to shaping the 
natural vegetation and are now being used in the establishment and management of agricultural systems and 
pastures. Consequently, the fire regime has been changing over the last few decades and increasingly affecting 
native vegetation, natural habitats, and ecosystem services in tropical regions. Mapping fire dynamics and spatial 
distribution are crucial to assess impacts on ecosystems and to define and enforce strategies and measures of fire 
control and prevention. In this study, we developed an alternative approach for mapping burned areas in the 
Cerrado biome in Brazil, using Landsat imagery and Deep Learning algorithm, implemented on the Google Earth 
Engine and on Google Cloud Storage platform. We compared our mapping results with two Burned Area products 
developed by INPE (30 m resolution) and MODIS MCD64A1 Burned Area Product (500 m resolution). Addi
tionally, we assessed the accuracies of these three mapping products using 2,200 validation points within the 
study area. By comparing our mapping result with MCD64A1 and INPE burn scar products, we estimated an 
average agreement of 34% for both. We observed that most mapping disagreements were mainly because of the 
effects of clouds/shadow conditions that affected the ability for spectral observations, differences in method
ologies, and spatial resolution of each remotely sensed datasets used for mapping burned areas. Our validation 
results indicated an overall accuracy of 97% of our methodological approach for mapping burned areas and, 
therefore, it can be successfully applied across savanna regions. Our results showed that 202,230 km2 was 
affected by fires within the Cerrado biome in 2017, in which 31% overlapped cropping lands (agricultural fields 
and pastures) and 67% overlapped various types of native vegetation (forest, savanna and grassland). Our 
proposed methodological approach and its results can be useful to enforce environmental command and control 
policies and to estimate carbon emissions, analyses interactions between climate and ecological drivers of fire, 
develop predictive models of fire risk dynamics, and providing spatial information that can help public policies 
and fire management/prevention actions for the Cerrado conservation.   

1. Introduction 

The Brazilian Cerrado is the second largest biome in Brazil and one of 
the most species-rich savannas of the world (Lewinsohn and Prado, 
2005; Munhoz and Felfili, 2005). It plays a central role in continental 
hydrology, by spanning three of the largest watersheds in South America 
(Strassburg et al., 2017) and it maintains other fundamental ecosystem 
services such as carbon storage, both below- and above-ground (De 

Miranda et al., 2014), contributing towards reducing greenhouse gas 
emissions (Noojipady et al., 2017). 

The climate of the Cerrado biome is characterized by strong sea
sonality and variations, with dry winters and rainy summers. Temper
ature and precipitation vary greatly across the approximately 2 million 
square kilometers of the Cerrado, which is also characterized by great 
variability in soil, nutrient, and water availability (Sano et al., 2019). 
These factors have contributed to the existence of a large variety of 
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distinct vegetation types, including closed-canopy forests, savannas, and 
grassland formations (De Miranda et al., 2014; Ribeiro and Walter, 
1998). 

Currently, the Cerrado biome is under threat from increasing 
anthropogenic pressure, which has led to the accelerated conversion of 
natural ecosystems into cropping lands, pastures, and infrastructure 
developments (Alencar et al., 2020). Those land use and land cover 
changes (LULC) have resulted in several environmental impacts, 
including loss and fragmentation of natural habitats, increasing the risk 
of species extinction and affecting the hydrological cycle, biogeochem
ical processes, and ecosystem functioning (Strassburg et al., 2017). 

Fire events are a common and determinant phenomenon in the 
Cerrado vegetation, which have greatly contributed to the evolution of 
its flora (Simon et al., 2009). However, rapid regional LULC has been 
affecting the natural fire regime (size, pattern, frequency, and magni
tude) with consequences on native vegetation structure/composition, 
natural habitats, and ecosystem processes. Those changes in the fire 
regime contribute to increasing fire frequency and intensity, affecting 
ecosystem resilience (Miranda et al., 2002). 

Spatiotemporal mapping of areas affected by fires may support 
analysis to better understand the occurrence and frequency of fire events 
and their impacts on vegetation and provide information for policy
makers and firefighters to ensure efficient and organized fire manage
ment/prevention actions (Piromal et al., 2008). In this context, remote 
sensing can be useful for monitoring and mapping the occurrence of fires 
at regional and global scales, with different spatial, temporal, and 
spectral resolution (Daldegan et al., 2019; Matricardi et al., 2013; Oliva 
et al., 2011). 

Global burned area products from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellites 
provided by the National Aeronautics and Space Administration (NASA) 
have been used to estimate global emissions, with a coarse spatial res
olution (500 m), in 15 days-based products available for worldwide 
download (Andela et al., 2017; Chen et al., 2013; Randerson et al., 2012; 
Zhang et al., 2016). Those products, however, are not suitable for the 
identification of small burned areas due to their spatial resolution 
(Giglio et al., 2016). Despite the increasing frequency and intensity of 
fire events in the Cerrado biome, burned area products and studies 
conducted using medium and high spatial resolution are limited to local 
estimations (Alvarado et al., 2017; Daldegan et al., 2019) or simply to a 
specific year (Long et al., 2018). Automatic mapping for burned areas 
using medium and high spatial resolutions, cloud computing, and free 
remotely sensed data is not available and is still a scientific challenge. 

By making the long-time series of Landsat imagery freely available, 
with a nominal 16- day repeat cycle since 1972, the United States 
Geological Survey (USGS)/NASA initiative has made those satellite data 
among the most frequently used for monitoring fire scars and impacts 
(USGS, 2020). However, a major challenge in mapping 30-meter spatial 
resolution Landsat images is the time required to process those images 
(Long et al., 2018). The Google Earth Engine (GEE) represents a new 
generation cloud computing platform that gives access to a vast catalog 
of satellite imagery, as well as global scale analysis capabilities, allowing 
efficient geospatial analyses (Gorelick et al., 2017). 

More recently, there has been a great effort to automate the process 
of classification/mapping of specific targets using Deep Learning (Lecun 
et al., 2015) algorithms, such as the Deep Neural Network (DNN), which 
includes a learning algorithm based on an artificial neural network 
(Langford et al., 2019). In this study, we developed a semi-automatic 
methodological approach for mapping burned areas in the entire Cer
rado biome in Brazil using Deep Learning techniques available on 
Google Cloud computing and Landsat 8 imagery, which consist of eleven 
spectral bands with a spatial resolution of 30 meters for bands 1-7 and 9, 
15 meters for band 8, and 100 meters for bands 10 and 11. We did not 
use Landsat-7 imagery because of the data gaps observed images ac
quired after 2003, which would substantially affect the spatial coverage 
of our analysis. We assessed accuracies and compared our mapping 

product with existing burn mapping products from NASA and INPE. We 
also identified the best time of year for mapping burn scars and esti
mated the total area affected by fire in 2017 in the Cerrado biome. 

2. Material and methods 

2.1. Study region 

The Brazilian savanna, locally known as Cerrado, encompasses an 
area of approximately 2 million square kilometers, spatially located 
between the parallels 2.30 S and 24.70 S and between the meridians 
41.70 W and 60.10 W (Fig. 1). It is an important biodiversity hotspot due 
to its high species richness (flora and fauna), the high proportion of 
endemic species, and the increasing anthropogenic pressure that has 
impacted more than 70% of its primary vegetation (Klink et al., 2005; 
Myers et al., 2010). Also, the Cerrado represents the most structurally 
diverse savanna in the world, consisting of vegetation gradients that 
range from closed-canopy forests to savanna and grassland formations 
(Ribeiro and Walter, 1998). Those vegetation mosaics are determined by 
distinct geomorphological and topographic features, as well as by dif
ferences in water and nutrient availability (Silva and Bates, 2002). 

The predominant climate in the Cerrado biome is tropical (Aw type 
according to the Köppen climate classification), characterized by a wet 
season, from October to March, and an extended dry season from April 
to September responsible for only 10% of the annual rainfall and the 
highest fire occurrence (Pereira et al., 2014). The annual precipitation 
ranges from 800 to 2,000 mm (an average of 1500 mm), while the 
annual average temperature is 22 ◦C (Alvares et al., 2013; Bustamante 
et al., 2012). 

Many of the vegetation types in the Cerrado biome are adapted to 
and partially dependent on fire occurrences. Wildfires ignited by light
ning usually burn small patches and are rapidly extinguished by the 
associated rains. However, the wildfire regime has been rapidly changed 
in the Cerrado biome in Brazil, increasing its frequency and intensity 
because of global climate changes and the accelerated anthropogenic 
land conversion and land management throughout the entire biome. 
Fires mostly occur during the dry season (May to September) and burn 
extensive areas of native vegetation, cropping fields, and pastures 
(Bowman et al., 2020; Pivello, 2011). Although wildfires have strongly 
shaped the Cerrado’s vegetation, changes in the fire regime observed in 
the last decades have increased environmental impacts, economical 
losses, air pollution, and emissions of greenhouse gases (Bowman et al., 
2020). 

2.2. Datasets 

We used the Landsat-8 OLI dataset, bands 2 to 7, as orthorectified 
Surface Reflectance available for downloading and processing on the 
Google Earth Engine platform. All Landsat images were atmospherically 
and geometrically corrected and included a cloud cover mask generated 
by a Function of Mask (FMASK) algorithm available on Google Earth 
Engine (Zhu and Woodcock, 2014). 

Additionally, we used the product MCD64A1 Burned Area Product 
for 2017, spatial resolution 500 meters, which provides a global monthly 
burn scar detected by an algorithm that discriminates “fire pixels” rep
resenting one or more active fires at the time of those image acquisition 
(Giglio et al., 2016). The MCD64A1 product is fully available on the 
Google Earth Engine platform. Finally, we used the fire hotspots and 
burned area products developed by the National Institute for Space 
Research (INPE) in Brazil. 

The INPE burned area product is based on a semiautomatic algorithm 
and Landsat images to estimate differences of Normalized Burned Ratio 
(NBR) among consecutive satellite scenes (Melchiori et al., 2014) to 
annually map burned areas within the entire Cerrado biome. The INPE 
fire hotspot product is based on an automatic mapping approach using 1 
km x 1 km pixel size and thermal bands of nine satellites, and the 
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AQUA_M-T (Sensor MODIS) as a reference satellite, providing daily data 
of fire hotspots since 2000, available at http://www.inpe.br/queimad 
as/bdqueimadas. 

In our study, we analyzed the fire hotspots detected in 2017 by the 
INPE burn area product to determine the fire detection time (months of 
the year). This analysis allowed us to identify months showing the 
highest fire frequency within the Cerrado biome, which was subse
quently used to define the priority months for mapping burned areas in 
2017. 

2.3. Cloud computing 

We used the Google Earth Engine platform to collect burned and non- 
burned spectral signatures in Landsat imagery to be used as training 
areas for the classification model. The training areas and Landsat im
agery were exported to Google Cloud Storage and used as input in a 
Virtual Machine to process the Deep Learning scripts. The Google Earth 
Engine was also used to collect the validation points and accuracy 
assessment of the burned areas products used in this analysis. 

2.4. Burned area mapping 

Deep Neural Network (DNN) is a learning algorithm based on an 
artificial neural network with multiple hidden layers (Langford et al., 
2019). The DNN models use hierarchical data processing, where the 
input data in each module (called the hidden layer) results in an output 
that is an input for the next module, connected through weights and 
biases whose values were learned during the training of the network 
(Bramhe et al., 2018). 

We used Landsat 8 Operational Land Imager (OLI) satellite images 
and Deep Neural Network models to detect and map burned areas within 
the Cerrado biome. The image processing and classification followed 
four steps as follows: (1) collecting spectral training samples of burned 
and non-burned areas for the entire study area, well distributed in space, 
(2) training the deep learning models, (3) developing model prediction, 
and (4) model assessment (validation and concordance analysis). Fig. 2 
uses step-by-step bases to show all details of our methodological 
approach for detecting and mapping burned areas in the Cerrado biome 
in 2017. 

2.4.1. Training samples dataset 
The spectral training samples of burned area (BA) and non-burned 

Fig. 1. Study area location that encompasses the entire Cerrado biome in Brazil, a region covered by vegetation types similar to African savanna, and its corre
spondent land use and land cover classes according to the MapBiomas Collection 4.1 (MapBiomas, 2020). 
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area (NBA) were collected in 5 Landsat scenes within the Cerrado biome 
(Fig. 2) by considering the great spectral variability among burned and 
non-burned pixels and by observed differences of the Normalized 
Burned Ratio (NBR) (Key and Benson, 2006) from pre-fire and post-fire 
images (Fig. 3), in which just the pixels in the NBR mask (greater than 
0.25) was considered. The delta NBR fire scars were conservative in 
terms of the burned area since they captured only areas affected by fire 
in consecutive images, which increased our chances of collecting 
training samples in burned areas only. The training samples were 
collected using MODIS Burned Area as an indicator of fire occurrences, 
where areas of burn scars were hand digitized as polygons into vector 
layer using a drawing tool available on Google Earth Engine and only 
pixels masked out with the delta NBR were used as samples of burned 

areas. Hand digitizing was done along the periphery of visible fire scars 
on each Landsat scene used for collecting the spectral training samples. 
We considered the greatest variability of burned areas and samples to 
select the training samples, which represented different land use and 
land cover types and different sizes and shapes of the burned areas. 
Similarly, training samples of non-burned areas were also collected by 
sampling different land use and land cover types and the greatest 
landscape variability. 

The Normalized Burned Ratio (NBR) is defined as: 

NBR =
ρSWIRL − ρNIR

ρSWIRL − ρNIR
(1)  

Where ρSWIRL is the Short Wave Infrared Short surface reflectance, 

Fig. 2. Methodological approach used for detecting and mapping burned areas in the Cerrado biome using Landsat-8 imagery, deep learning algorithm, and Google 
Earth Engine and Google Cloud Storage platforms. 
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band 6 for Landsat 8 OLI sensor, and ρNIR is the Near-Infrared surface 
reflectance, band 5 for Landsat 8 OLI sensor. 

The samples of burned area (BA) and non-burned area (NBA), as well 
as the Landsat images were exported from Google Earth Engine platform 
to Google Cloud Storage. 

2.4.2. Model building and testing 
We used Multi-Layer Perceptron Network (MLPN) structure in our 

approach, which consists of several layers of interconnected computa
tional units, where each node (neuron) in one layer is connected to a 
node in the next layer. The layers are divided into three layers: input, 
hidden, and output layers (Eastman, 2009). 

The algorithm includes two steps: training and prediction. In the 
training phase, the following parameters where defined, based on tests: 
the learning rate (0.001), the batch size (1,000), the number of in
teractions (7,000), and the inputs for classification were the spectral 
data acquired from the training samples of spectral bands defined based 
on the burned and non-burned areas. The following Lansat-8 spectral 
bands were used for the classification model of burned areas: red (RED - 
0.65 μm), near-infrared (NIR - 0.86 μm), and shortwave infrared (SWIR 
1 - 1.6 μm and SWIR 2 - 2.2 μm). In addition to those selected spectral 
bands, Landsat bands 2 to 7, NDVI (Normalized Difference Vegetation 
Index), NBR, and delta NBR (Difference Normalizes Burned Index) were 
tested. The Landsat spectral bands were chosen because of their sensi
tiveness to fire events. The input of the training data was split into two 
sets; 70% of the samples were used for training and 30% for testing, to 
estimate the ability of the DNN algorithm to map burned areas in the 
study area. In this step, an accuracy is generated for each algorithm 
applied, however, it is biased because it uses the same sample sets to test 
the model. So, an additional accuracy assessment using those validation 
points was conducted in our analysis. 

2.4.3. Model prediction 
The burned area classification was applied using Landsat images and 

the training samples for the entire study area and period (May to 
December 2017). A spatial filter was applied to remove noises (mis
classified isolated pixels) and to fill small empty gaps: areas smaller than 
or equal to 1.4 ha (16 pixels) were removed, and empty gaps smaller 
than or equal to 5.8 ha (64 pixels) were filled in as burned areas. The 
asymmetry between spatial filters was adopted to be more conservative 
by removing more isolated pixels than those added by filling empty gaps 
within burned and unburned areas. 

Since deep learning methods require a powerful computational 
processing, we conducted our analysis using graphics processing units 
(GPUs) and specialized hardware components for running parallel 
arithmetic operations (Goodfellow et al., 2016). The access to GPUs in a 
virtual machine environment was implemented on the Google Cloud 
Platform (https://console.cloud.google.com), a suite of cloud 

computing services provided by Google. 
Finally, the burned areas were obtained by combining the fire 

mapping of individual Landsat images in 2017. The final burned area 
map was downloaded to a local workstation to proceed with assessment 
of the concordance with the INPE and MCD64A1 products. 

2.4.4. Accuracy and concordance assessments 
The concordance assessment was conducted by comparing (cross- 

tabulation) the fire scars detected using our classification approach with 
the burn scars product provided by INPE. We also compared our dataset 
with the MODIS Burned Area product (MCD64A1) by resampling the 
500 m to 30 m spatial resolution. 

A map-to-map analysis was conducted by overlapping our dataset 
with those two products: (1) the Cerrado burned area map and (2) the 
comparison maps (MCD64A1 and INPE burn scars). The cross-tabulation 
of Burned and Non-Burned classes resulted in a congruence map and a 
concordance graph. 

We also assessed the accuracies of our dataset and those two prod
ucts: MODIS Burned Area (MCD64A1) and the INPE burn scar. We used 
2,200 validation points (2,000 for non-burned areas and 200 for burned 
areas) randomly distributed within the ten Landsat scenes (Fig. S1) in 
the Cerrado biome. We previously defined the number of validation 
points (burned and unburned) based on the proportion of burned (10%) 
and unburned areas (90%) compared to the entire Cerrado biome. The 
ten Landsat scenes used to assess the burn mapping accuracy covered the 
greatest representativeness of the study region, which included pro
tected areas, private lands with different land uses, transitional zones 
among Cerrado and other biomes in Brazil, and areas of fire hotspots and 
high morphoclimatic variability. The sampling points were individually 
checked and used as input data for the confusion matrices and to esti
mate accuracy levels of the three burned area products. 

3. Results 

3.1. Optimal period of burn scar mapping 

The fire hotspot data analysis provided by INPE (http://www.inpe. 
br/queimadas/bdqueimadas) indicates that most of the fire events in 
the Cerrado biome occurred between May and December, showing a 
peak in September 2017 (Fig. 4). Based on it, we focused our mapping 
analysis of burn scars on the period between May and December, which 
comprised 98% of fire hotspots detected in 2017 by INPE. 

3.2. Burned areas in 2017 

The individual images acquired between May and December 2017 
were automatically classified using our previously described methodo
logical approach that uses Landsat-8 imagery. The resulting maps were 

Fig. 3. Examples of: (a) a burn scar observed on a Landsat scene, (b) burn scar detected by applying a mask with Normalized Burn Ratio, and (c) hand digitized 
polygon used to train the model classification, where only pixels masked out (burned pixels) detected using the delta NBR image were sampled. 
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aggregated in a final map including all of the burned areas detected 
within the Cerrado biome (Fig. 5), a total of 202,230 km2 burn scars, 
which corresponds to 10% of the entire biome (approximately 2 million 
square kilometers) in 2017. The final map of burned areas was over
lapped with land use and land cover map provided by MapBiomas 
(2020) to identify classes of land use and land cover affected by fire in 
2017. 

We observed that burned areas may occur throughout the study re
gion with some burned clusters spatially located in the west and south of 
the Cerrado biome. Tocantins was the most affected State by fires in the 
study region, immediately followed by the states of Mato Grosso and 
Maranhão (Supplementary Materials—Table S1). We also observed that 
39% and 10% of the indigenous lands and protected areas, respectively, 
were burned in 2017 (Fig. 5). Furthermore, we estimated that 31% and 
67% of the total burned area was in farming lands and various types of 
native vegetation, respectively (Supplementary Materials— Fig. S2). 
Prescribed fires are commonly used as an alternative to farming and land 
management in the study region and they eventually propagate into the 
native Cerrado vegetation (Miranda et al., 2010). 

3.3. Concordance assessment/validation 

Comparing our mapping results with the INPE burn scars and MODIS 
Burned Area (MCD64A1) resulted in a spatial map of agreement (Fig. 6 
and Fig. 7). We estimated 34% of agreement between our mapping 
product and the MODIS (MCD64A1) product. 

Most of the agreements between our mapping approach to detect 
burned areas and MCD64A1 product were observed in the north and 
western part of the Cerrado biome. The major mapping disagreements 
between these burned areas products were observed in the southern part 
of the study area. It is likely that the coarse spatial resolution of the 
MDC64A1 product did not allow it to detect small-burned scars in the 
southern study region (Rodrigues et al., 2019), which indicates that our 
methodological approach is an important matter for mapping fires in the 
Cerrado biome. The total burned area (202,230 km2) detected in 2017 
using our methodological approach was 57% higher than the total 
burned areas detected using the MDC64A1 product (128,945 km2) in the 
Cerrado biome. 

The total burned areas detected (202,230 km2) using our proposed 
alternative methodological approach was 115% greater than the total of 
burned areas detected by the INPE product (93,868 km2). This indicates 
a low agreement (34%) between those two products, given that 58% was 

detected only by our product and 8% by the INPE product only. Overall, 
we were able to detect more burned areas (fires greater than 0,1 ha) than 
the MCD64A1 and INPE products using our mapping approach, likely 
due to the higher spatial resolution provided by the Landsat imagery 
compared to those used to generate the MODIS (fires greater than 25 ha) 
and INPE products. 

Since mapping accuracy may vary significantly in space, we assessed 
accuracies of the three mapping products using a set of 2,200 sample 
validation points. We estimated overall accuracies of 97%, 95%, and 
94% for our mapping product, MCD64A1 product, and INPE burn scar 
product, respectively (Tables 1–3). 

We observed that omission errors were high for all products (24.5%, 
22.5%, and 29.9% for our mapping approach, MCD64A1, and INPE’s 
product, respectively) to map burned areas (Tables 1–3). All products 
tested in this analysis showed low omission errors (lower than 3.8%) to 
detect unburned areas. However, our methodological approach showed 
the lowest commission errors for mapping both burned and unburned 
areas (3.2% and 1.5%, respectively) while the MCD64A1 and INPE’s 
product showed 34.5% and 38%, respectively, of commission errors to 
detect burned areas. It indicates that our approach was more conser
vative and accurate to detect burned scars in the Cerrado biome. 

The results of the automatic/visual comparison indicate a good 
overall accuracy of the algorithm, which includes omission and com
mission errors smaller than 20% by considering those 40 comparison 
areas as a whole. The highest omission errors have been observed when 
the burned areas have low contrast with the unburned background, 
sometimes related to the burned signal disappearance considering the 
low temporal effective resolution as a consequence of the platform and 
clouds, and some errors identified as omissions that are related to dating 
issues (areas detected, but later than the validation period considered). 
As for commission errors, the most critical classification error was 
observed in croplands. This land cover type includes a variety of crop
ping types and planting times, where farmers may adopt prescribed fires 
as an alternative of land management, which makes difficult to 
discriminate burned and unburned areas using automatic classification. 

4. Discussion 

The study intended to develop an alternative approach to detect 
burned areas in the Brazilian Savanna (Cerrado biome). Our proposed 
approach was based on a semi-automated technique, medium spatial 
resolution remotely sensed data, and deep learning algorithm 

Fig. 4. Seasonal pattern of fire events occurred within the Cerrado biome in 2017 available on the fire hotspot dataset provided by the INPE platform. In each box, 
the central mark is the median, the edges of the boxplot are the 25th and 75th percentiles and the whiskers delimitate the extreme values (maximum and minimum). 
Black circles represent outliers (values outside the limits defined by the whiskers). The gray area represents the study period (May to December). 
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implemented on the Google Cloud Platform. Also, the Google Earth 
Engine (GEE) platform was used to implement our study by providing 
Landsat-8 imagery and access to acquire training samples and geospatial 
analyses. 

It took 7 hours of computing processing to achieve our final burn scar 
map for the Cerrado biome in 2017 with 97% of overall accuracy. The 
total of burned areas mapped (202,230 km2) in the study area in 2017 
corroborates the fact that the fire phenomenon is strongly present in 
Brazilian Cerrado. 

We observed that by using Landsat imagery as input data in our 
mapping approach can contribute to improve those long-term temporal 
series of burned areas in tropical regions, based on free access remotely 
sensed datasets available on the GEE platform. However, the number of 
valid observations is a limiting factor for detecting areas impacted by 
fire, since Landsat temporal resolution is relatively low (16 days), and 
vegetation recovery after fire events may create temporal data gaps and 
decrease accuracy of mapping fire scars. We also observed that omission 
errors for mapping fire scars in savannas may occur due to the rapid 
vegetation recovery following fire events. It might be a possible reason 

of those burned areas detected by the MCD64A1 product using MODIS 
daily images that were not detected using our classification approach 
based on Lansdat imagery of 16-days temporal resolution. Some differ
ences observed along the edges of burn scars detected by the MCD64A1 
product are due to its spatial resolutions (Pereira et al., 2017). 

The INPE and MCD64A1 products are based on different sensor 
methodologies than applied in our mapping approach, which may 
explain the lower agreement among those products. The MCD64A1 
product uses active fire as auxiliary data to make cumulative maps that 
are used in the collection of burned and unburned samples applied in a 
hybrid algorithm with dynamic thresholds generated from the NBR2 
(Normalized Burn Ratio) spectral index and a measure of temporal and 
spatial texture (Giglio et al., 2016). A previous study concluded that 
uncertainties in Burned Area using MCD64A1 in the Cerrado are most 
significant over the southern portion, possibly due to land-use dynamics 
associated with pasture and croplands that use fire for land clearing and 
crop residue burning (Rodrigues et al., 2019). 

The second comparison data (the INPE product) is based on differ
ences in NBR of consecutive scenes, which may explain some omission 

Fig. 5. Spatial distribution of burned areas in 2017 within the Cerrado biome overlapped with land use and land cover classes mapped by the MapBiomas project, 
collection 4.1. 
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errors in detecting burned areas because of Landsat data gaps due to 
cloud contamination. Also, cropping lands may be a source of classifi
cation error in the INPE product because of shades and several cropping 
types and time observed in the study region (Melchiori et al., 2014). 

Fire events are geographically small and uncommon on Landsat 
imagery, which makes finding a dataset for mapping validation even 
more challenging (Goodwin and Collett, 2014). Nevertheless, we ach
ieved a high overall accuracy (97%) in mapping burn scars in the entire 
Cerrado biome in 2017 using our semi-automated approach. We believe 
that our methodological approach can be broadly applied to map burned 
areas in tropical regions since we achieved high accuracy in a very 
diverse landscape and extensive region as the Cerrado biome in Brazil. 
However, we would recommend proceeding some adjustments in our 
algorithm before applying it for multitemporal analysis and other 
regions. 

5. Conclusions 

Our alternative approach, based on a semi-automated technique, 
remotely sensed data, and deep learning algorithm available on Google 
Cloud Storage and Computing, allowed us to map burn scars in the 
Cerrado biome in Brazil with high overall accuracy (97%). We achieved 
these results because of the geometrically corrected and preprocessed 
Landsat data available on Google Earth Engine Platform and the ca
pacity of Deep Learning techniques to differentiate spectral signatures of 
burned and unburned areas in the study area. 

The high accuracy achieved by our mapping approach demonstrates 
that deep learning algorithms can be successfully applied to the remote 
sensing field using large remote sensing datasets and extensions, 
requiring low time and labor demand. Our proposed mapping approach 
created new perspectives on fire scar detection by producing a technique 
that is accurate, promising, and replicable to other regions. 

We detected a total of 202,230 km2 in the study area in 2017 
throughout the study area with some burned clusters in the west and 
south of the Cerrado biome. We estimated that 31% and 67% of the total 
burned area occurred in farming lands and various types of native 
vegetation, respectively. In our analysis, most burn scars were detected 
between August and November 2017. 

Our mapping approach shows high potential for constructing long 
time data series of areas affected by fires in tropical regions. A long time 
series of burned areas can be useful to estimate carbon emissions, 
environmental impacts, analyze interactions between climate and 
ecological drivers of fire, and develop predictive models of fire risk 
dynamics, thus providing spatial information that can aid public policies 
and fire management/prevention actions for Cerrado conservation. 
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Table 1 
Confusion matrix between reference (sample points) and estimated burned area 
(30m burn scar mapped in this study).  

Estimated (30m 
burned scar mapped 
in this study) 

Reference User’s 
accuracy 

Total 
accuracy 

Burned Nonburned Total 

Burned 197 3 200 98.5%  
Nonburned 64 1936 2000 96.8%  
Total 261 1939 2200   
Producer’s accuracy 75.5% 99.8%    
Total accuracy     97.0%  

Table 2 
Confusion matrix between reference (sample points) and estimated burned area 
(MODIS Burned Area MCD64A1).  

Estimated (MODIS 
MDC64A1) 

Reference  User’s 
accuracy 

Total 
accuracy 

Burned Nonburned Total 

Burned 131 69 200 65.5%  
Nonburned 38 1962 2000 98.1%  
Total 169 2031 2200   
Producer’s 

accuracy 
77.5% 96.6%    

Total accuracy     95.1%  

Table 3 
Confusion matrix between reference (sample points) and estimated burned area 
(INPE burn scar).  

Estimated 
(INPE) 

Reference User’s 
accuracy 

Total 
accuracy 

Burned Nonburned Total 

Burned 124 76 200 62.0%  
Nonburned 53 1947 2000 97.4%  
Total 177 2023 2200   
Producer’s 

accuracy 
70.1% 96.2%    

Total accuracy     94.1%  
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