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Abstract The objective is to evaluate the fire foci dynam-
ics via environmental satellites and their relationship with
socioenvironmental factors and meteorological systems in
the state of Alagoas, Brazil. Data considered the period

between 2000 and 2017 and was obtained from CPTEC/
INPE. Annual and monthly analyzes were performed
based on descriptive, exploratory (boxplot) and multivari-
ate statistics analyzes (cluster analysis (CA), principal
component analysis (PCA)) and Poisson regression
models (based on 2000 and 2010 census data). CA based
on theWard method identified five fire foci homogeneous
groups (G1 to G5), while Coruripe did not classify within
any group (NA); therefore, the CA technique was consis-
tent (CCC= 0.772). Group G1 is found in all regions of
Alagoas, while G2, G5, and NA groups are found in Baixo
São Francisco, Litoral, and Zona da Mata regions. Most
fire foci were observed in the Litoral region. Seasonally,
the largest records were from October to December
months for all groups, influenced by the sugarcane har-
vesting period. The G4 group and Coruripe accounted for
60,767 foci (32.1%). The highest number of fire foci
occurred in 2012 and 2015 (between 8000 and 9000 foci),
caused by the action of the El Niño–Southern Oscillation.
The Poisson regression showed that the dynamics of fire
foci are directly associated with the Gini index and Human
Development Index (models 1 and 3). Based on the PCA,
the three components captured 78.8% of the total variance
explained, and they were strongly influenced by the vari-
ables: population, GDP, and demographic density. The
municipality of Maceió has the largest contribution from
the fire foci, with values higher than 40%, and in PC1 and
PC2 are related to urban densification and population
growth.
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Introduction

In recent decades, society and government entities have
been mobilized in an integrated manner to minimize the
effects of population vulnerability to the severity of
extreme events across the globe, to which part is attrib-
uted to climate change (Stephenson et al. 2008; Forino
et al. 2015; Trenberth et al. 2015). An example of these
extremes are forest fires of anthropic origin and, gener-
ally, weather conditions (air temperature, rainfall, wind
speed, relative humidity) and environmental conditions
(vegetation, relief) in combination contribute to their
behavior and spread (Chuvieco et al. 2012; Forino
et al. 2015; Lima et al. 2020).

Forest fire occurrence interferes on composition and
structure of vegetation in any location (Flanningan et al.
2000) with direct effects on the extinction of species of
fauna and flora (Clemente et al. 2017; Oliveira-Júnior
et al. 2017) and health risk to the population (Ribeiro
2008). In addition, the loss of vegetation cover via
burning or forest fires results in increased greenhouse
gas (GHG) emissions into the atmosphere, especially
considering the carbon dioxide (CO2), carbonmonoxide
(CO), nitrous oxide (N2O), methane (CH4), and ozone
(O3) emissions. These GHG reach several Metropolitan
regions (MR) in Brazil (Silva de Souza et al. 2012;
Mollmann Júnior et al. 2015; Zeri et al. 2016), influenc-
ing the biogeochemical cycles (Flanningan et al. 2000;
Justino et al. 2010), and also stimulate environmental
degradation (Brando et al. 2014; Jiang et al. 2014;
Oliveira-Júnior et al. 2020).

In Brazil, the occurrences of fires are associated with
the secular practices of fire use for tillage of large areas
for the expansion of agricultural practices, mainly in the
Central–West, Northeast, and North regions of the
country (Alencar et al. 2004; Caúla et al. 2015; Bem
et al. 2018; Lima et al. 2020; Oliveira-Júnior et al.
2020). The practice of burning is common in agricultur-
al management (Clemente et al. 2017) and was intensi-
fied during the implementation of the National Alcohol
Program (PROALCOOL), whose purpose was encour-
aging the expansion of sugarcane crop in the country,
which began in 1975. PROALCOOL contributed to the
increase in the burning of Brazilian sugarcane fields,
since the burning of sugarcane straw as a method of
eliminating unwanted vegetation in crop areas is also a
common practice, especially in the state of Alagoas
(SoA) (Mollmann Júnior et al. 2015). Due to environ-
mental problems related mainly to the emission of

pollutants released during the burning of the harvest
sugarcane, the Brazilian Federal Government sanc-
tioned, in 1998, the Law 2661 which involves the re-
duction of fire foci in sugarcane fields. In 2013, the state
of Alagoas also sanctioned State Law No. 7454, which
reiterates the same guidelines as the Federal Law, for the
gradual elimination of fire usage in agricultural
practices.

However, after the creation and modernization of
laws and agricultural machinery, both were not suffi-
cient to address the environmental impacts resulting
from the significant increase in burnings and forest fires
on biomes (Alencar et al. 2004; Brando et al. 2014;
Caúla et al. 2015; Bem et al. 2018; Eugenio et al.
2019; Lima et al. 2020; Oliveira-Júnior et al. 2020).

In order to obtain real-time information and detect
forest fires on a continental scale, the Brazilian Na-
tional Institute for Space Research (INPE) monitors,
through environmental satellites, the biomes, conser-
vation units, and environmental protection areas
(APAs) (Caúla et al. 2016; Oliveira-Júnior et al.
2017). The monitoring of fire foci is aimed at con-
trolling areas susceptible to forest fires in Brazil and
South America (SA) (CPTEC 2018). This detection
of vegetation fires occurs from orbital sensors
coupled to the following orbital platforms (satellites):
NOAA (versions 15, 18, and 19); EUMETSAT
(METOP-B), NASA (TERRA and AQUA), NPP
(versions 375 and SUOMI), and GOES (versions 13
and 16), which operate in the 4-μm thermal range and
then processed and stored in the Brazilian and SA
data bank (BDQueimadas) (CPTEC 2018).

After the identification and detection of fire foci,
several statistical methods have been used in order to
assess patterns of spatial and temporal variability, and
the intensity of these events, for example, cluster anal-
ysis (CA) (Caúla et al. 2015; Oliveira-Júnior et al.
2020), principal component analysis (PCA) (Rasilla
et al. 2010; Paschalidou and Kassomenos 2016), artifi-
cial neural network (ANN), and logistic regression in a
joint manner (Lall and Mathibela 2016; Bem et al.
2018). Caúla et al. (2015) used CA to identify the fire
foci behavior in Brazil for 1988–2011 period and de-
tected three fire foci homogeneous groups, where ho-
mogeneous group 1 (G1) represented by only one re-
gion, the Northeastern Brazil. This group is influenced
by meteorological systems and human activities, being
the last a characteristic of most coastal cities along the
Brazilian shoreline.
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When considering this topic for SoA, the studies are
scarce (Fernandes and Correia Filho 2013; Mollmann
Júnior et al. 2015), and the existing ones do not relate to
meteorological systems or land use and occupation.
According to Caúla et al. (2015), during the years
2000 and 2015, the SoA is classified in the 10th place
considering the total and density of fire foci per unit area
(foci.km−2).

Despite being one of the smallest Brazilian states,
Caúla et al. (2015) showed that SoA presents great
representativeness in the recording fire foci, which is
due to its economy being based on the primary sector
(agriculture and livestock), where sugarcane processing
(sugar and ethanol) is the main economic vector in SoA
(IBGE, 2018). Even in the face of this agricultural
potential, the Human Development Index (HDI) indi-
cates that Alagoas is one of the poorest states in Brazil
(Malik 2013; Lyra et al. 2017). State revenues are
strongly influenced by anomalies in climatic conditions.
In this sense, studies seeking to characterize trends of
drought (Lyra et al. 2017), strong rains (Lyra et al.
2014), or any other extreme climatic event in SoA, such
as the occurrence of forest burning and fires, are justi-
fied. Therefore, the objective is to evaluate fire foci
dynamics via environmental satellites and their relation-
ship with anthropic (socioeconomic and land use) and
environmental factors, as well as meteorological sys-
tems in the SoA.

Material and methods

Study area

The SoA is located in the eastern part (E) of the Brazil-
ian Northeast Region, between latitudes 08° 48′ 05″ and
10° 30′ 09″ S and longitudes 35° 09′ 09″ and 38° 15′ 54″
W, with altitudes lower than 850 m mean above sea
level (m.a.s.l.). The state borders northwest (NW) and
west (W) with the states of Pernambuco, to the south the
states of Sergipe and Bahia and the Atlantic Ocean to the
east (E). The state is divided geopolitically in 102 mu-
nicipalities, which compose six physiographic regions:
Zona da Mata, Litoral, Sertão, Sertão do São
Francisco, Baixo São Francisco, and Agreste (Fig. 1).

The SoA presents high annual rainfall variability,
mainly in the E to W direction, with annual totals
between 400 mm year−1 (Sertão) and 2000 mm year−1

(Litoral) (Molion and Bernardo 2002; Barros et al.

2012, Lyra et al. 2014). Regarding air temperature, the
regions in the extreme N of the state register average
values below 24 °C, due to the influence of the terrain—
Plateau of Borborema. The highest temperatures are
observed in the borderline of Sertão and Baixo São
Francisco (BSF) regions, between the municipalities
of Delmiro Gouveia and Penedo. In addition, higher
temperatures, around 33 to 37 °C, occur during January
and February months, while milder temperatures,
around 27 to 32 °C, occur mainly in June and July
months during the winter season (Lyra et al. 2011).

Meteorological systems in Alagoas, eastern Northeast
Brazil

The SoA, located in the eastern Northeast of Brazil
(ENEB), presents great spatial and temporal rainfall
variability due to its orography, proximity to the coastal
environment, and interaction of several mesoscale and
synoptic meteorological systems over the region
(Oliveira Júnior et al. 2012; Lyra et al. 2014). Also
interacting upon this region are well-known climatic
variability modes such as El Niño–Southern Oscillation
(ENSO), Decadal Pacific Oscillation (DPO), and inter-
hemispheric gradient of sea surface temperature
(IGSST) of the Atlantic Ocean (Molion and Bernardo
2002; Kayano and Andreoli 2006; Kayano et al. 2013;
Kayano and Capistrano 2014; Lyra et al. 2017; Correia
Filho et al. 2019a).

Generally, rainfall in the SoA is influenced by
meteorological systems at various scales such as
trade winds, the Inter-Tropical Convergence Zone
(ITCZ), the eastern disturbances waves (EDW) and
frontal systems (FS) in the final cycle, upper tropo-
spheric cyclonic vortex (UTCV), squall lines (SL),
mesoscale convective systems (MCS), and sea–land
breeze circulations (Moura and Shukla 1981;
Harzallah et al. 1996; Molion and Bernardo 2002;
Gois et al. 2005; Kouadio et al. 2012; Silva et al.
2011; Oliveira Júnior et al. 2012; Lyra et al. 2014;
Correia Filho et al. 2016; Lyra et al. 2017;
Silva 2017). Several of these systems are affected
by modes of climatic variability such as ENSO,
PDO, and IGSST (Lyra et al. 2017; Correia Filho
et al. 2019a). In addition to the previously men-
tioned modes, the region is also affected by inter-
seasonal modes, such as Madden-Julian Oscillation
(MJO) (Souza et al. 2005), which takes place over
the state usually in the months of February and May.
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Fire foci time series

The study was performed in a structured and sequenced
manner, as shown in Fig. 2. The structure is subdivided
into three stages: (i) obtaining and storing the different
databases, (ii) applying the statistical methods, and (iii)
analyzing and interpreting the results based on the the-
matic maps.

Fire foci database came from BDQueimadas, provided
by Brazilian Center for Weather Forecasting and Climate
Studies (CPTEC) and Brazilian Space Research Institute
(INPE), were used and are made available at
<http://queimadas.dgi.inpe.br/queimadas/bdqueimadas/>.
These records were obtained from images of the following
orbital sensors: (i) AVHRR version 3 (Advanced Very-
High-Resolution Radiometer) from NOAA (versions 15,
18, and 19); version B of METOP-B (Meteorological
Operation-B) and third generation of MSG (Meteosat
Third Generation) from EUMETSAT; (ii) MODIS (Mod-
erate Resolution Imaging Spectroradiometer) from NASA
(TERRA and AQUA); (iii) VIIRS (Visible Infrared Imag-
ing Radiometer Suite) from NPP (National Polar-orbiting
Partnership) satellites of versions 375 and SUOMI; and

(iv) images from GOES (Geostationary Operational Envi-
ronmental Satellite) from NOAA (versions 13 and 16),
which are processed and stored in the BDQueimadas
database (CPTEC 2018). Based on fire foci data records,
monthly time series were created for each of the 102
municipalities in the SoA between 2000 and 2017 years.

Multivariate and exploratory analysis

After the creation of monthly time series, the fire foci
dynamics behavior was analyzed by two criteria: (i)
composition of the annual and monthly fire foci totals,
being submitted to the exploratory analysis (boxplot) in
order to identify different periods and outliers, and (ii)
evaluation of the fire foci time series behavior within the
different homogeneous groups, using similar of fire foci
patterns attained in CA.

The CA technique was applied to the fire foci time
series using the R software version 3.1.1 (R
Development Core Team 2017). Thus, the respective
numbers of groups and dendrogram were determined.
The number of groups adopted and the stratification of
the stations were based on Ward’s agglomerative

Fig. 1 The study region, highlighting Brazil (upper left corner), the Northeast region (lower left corner), and the SoA and its six
physiographic regions (upper right corner)
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hierarchical method (Ward 1963) by Euclidean distance
dissimilarity measure (Everitt and Dunn 1991). The
Euclidean distance is given by Eq. 1:

dE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑p

j¼1 xik−xkj
� �2q

ð1Þ

where dE = Euclidean distance and xij and xkj = quanti-
tative variables of p and k, respectively.

The Ward method (Ward 1963) is represented in Eq.
2 and consists on the distance between two groups being
the squared sum of the two groups made on all the
variables. In this method, dissimilarity is minimized, or
the total sum of squared variables within groups is
minimized, given by homogeneity within each group
and heterogeneity outside each group (Lyra et al. 2014;
Caúla et al. 2015).

W ¼ ∑n
i¼1x

2
i −

1

n
∑ xið Þ2 ð2Þ

where W = inter-group homogeneity and heterogeneity
through the sum of the squared deviations, n = number
of analyzed values, and xi = ith group element.

The degree of adjustment of the Ward method was
assessed by cophenetic correlation coefficient (CCC). It
measures the association between the dissimilarity matrix
(F) and the matrix resulting from the simplification

provided by clustering method (C). The CCC is based on
Pearson coefficient correlation (r), being calculated be-
tween the dissimilarity matrix and the resulting matrix of
the clustering process (Sokol and Rohlf 1962). Thus, the
greater the value of r, the smaller will be the distortion.
According to Valentin (2000), there is always a degree of
distortion, since the r coefficient will never be equal to 1.
However, Rohlf (1970) and Biagiotti et al. (2013) men-
tioned that the higher the value obtained for CCC, the
smaller the distortion caused by CA. In practice, dendro-
grams with CCC < 0.7 indicate the inadequacy of the CA
technique. The CCC is defined by Eq. 3.

CCC ¼ rcof ¼
∑n−1

j¼1∑
n
j0¼ jþ1

cjj0−c
� �

f jj0− f
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n−1

j¼1∑
n
j0¼ jþ1

cjj0−c
� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n−1
j¼1∑

n
j0¼ jþ1

f jj0− f
� �2r

ð3Þ
where c and f are as arithmetic means defined by the Eqs.
4 and 5:

c ¼ ∑n
i¼1ci
n

ð4Þ

f ¼ ∑n
j¼1 f i
n

ð5Þ

Fig. 2 Organization chart of the procedures carried out to obtain
the fire foci patterns in SoA. The procedures are separated by
rectangular boxes: the red ones to the database, the blue ones refer

to the methodological procedure, the brown ones are the statistical
tests inherent to the methods, and the green ones correspond to the
exposure of the results of the respective methods
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where CCC is the cophenetic correlation coefficient, c is
the cophenetic matrix, c is the mean of the cophenetic
matrix, f is the phenetic matrix, f is the mean of the
phenetic matrix, and n is the number of elements.

Soil use and occupation

The fire foci analysis was based on annual thematic maps
of the respective land use and land cover, from 2000 to
2015. The land use and cover data is derived from the
European Space Agency - Climate Change Initiative -
Land Cover (ESACCI-LC) (Bontemps et al. 2015; ESA
2018). The thematic maps correspond to version 2.0.7 of
ESACCI-LC, with a spatial resolution of 300 × 300 m
generated from SPOT-VEGETATION satellite data
(1999 to 2012) and PROBA-V (2013–2015), available at
the following address: <http://maps.elie.ucl.ac.
be/CCI/viewer/download.php>.

Use of socioeconomic and environmental indicators

In addition to land use and coverage, data from socio-
economic indicators based on the 2000 and 2010 cen-
suses, from the Brazilian Institute of Geography and
Statistics (IBGE), were applied to the groups with the
highest percentage of fire foci occurrence, which is
formed by a smaller number of municipalities in groups
G2, G4, and NA. Socioeconomic indicators used were
total area (km2), population size, demographic density
(habitants km−2), per capita income of municipalities,
HDI, and Gini index (IBGE 2018a). Environmental data
used were annual rainfall data from Climate Hazard
Group InfRared Precipitation with Station (CHIRPS)
(Funk et al. 2015; Paredes-Trejo et al. 2017), followed
by harvested area and sugarcane production (IBGE
2018b), and land use and occupation (ESA 2018), from
2000 to 2010. All variables listed above were submitted
to Poisson regression model and PCA.

Poisson regression models

In order to evaluate the interaction between fire foci and
socioeconomic and environmental data, generalized lin-
ear models (GLM) were applied using Poisson regres-
sion. GLM is an extension of classical linear models
developed by Nelder and Wedderburn (1972) to which
three assumptions must be made: (i) the relationship
between each explanatory variable and the response
variable is approximately linear in its structure; (ii)

residuals are independent with zero average and con-
stant variance; and (iii) regression and residuals are not
correlated.

GLM via Poisson regression were adapted for
counting data in proportion or counting ratios forms,
and their variables assume any positive integer value.
The Poisson regression model has a positive mean and
the logarithm of this value is the natural parameter of the
Poisson distribution, where the logarithmic link is the
canonical link for a GLM with random Poisson compo-
nent, and Y ln μð Þð Þ the expected value for a Poisson
variables Y and X is an explanatory variable. The log-
linear model is based on Eq. 6:

ln μð Þ ¼ αþ βX ð6Þ
For this model, the mean satisfies the exponential

relation according to Eq. 7:

μ ¼ exp αþ βXð Þ ¼ eαþβX ð7Þ
Using the regression results, all the models were

evaluated based on the residual deviance and the Akaike
information criterion (AIC) methods. Residual deviance
is a measure of fit quality of the model, based on the
comparison between the deviances of the proposed
models (M1) versus the complete or saturated (M2)
model, and the parameters of M1 and M2 are p < n and
q < p degrees of freedom, respectively, (Eq. 8):

DRes ¼ D M1ð Þ−D M2ð Þ
p−qð Þ ð8Þ

The AIC test preselects a set of explanatory variables
that interact with one another (Akaike 1974). The final
composition of the model was performed in a multiple
manner, with verification of association degree between
the variables based on the significance level (p value
< 0.10), and those that do not have interaction or
multicollinearity were excluded, according to Eq. 9:

AIC ¼ −2Lþ 2k ð9Þ
where L is the maximum of log-likelihood and k is the
number of explanatory variables in the model. Lower
AIC means that the model has a better fit.

From the regression analysis, four models were built
based on the 2000 and 2010 censuses made available by
IBGE (2018b). Model 1 (GLM1) consists of socioeco-
nomic variables, being formed by Population size of the
municipality, demographic density, total area of the
municipality, HDI, Gini index, and per capita income.
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Model 2 (GLM2) is composed of environmental vari-
ables (accumulated annual rainfall), sugarcane produc-
tion (annual harvested area and production volume), and
the percentage of land use and cover for agricultural
cultivation. Model 3 (GLM3) was built on the junction
of GLM1 and GLM2. Finally, model 4 (GLM4) is
formed by the HDI only.

Principal component analysis

In the evaluation of fire foci in the SoA the factor
analysis via PCA was also applied. PCA reduces the
number of variables in a data set, thus preserving the
total variance, and also identifies patterns and processes
associated with the observed variables (Heinl et al.
2004; Moreno and Chuvieco 2013; Correia Filho and
Silva Aragão 2014). The calculation of the factor load-
ings of the PCA is given by Eq. 10:

Fp ¼ ej1U1 þ ej2U2 þ ej3U3 þ…

þ anbUp or Fp ¼ ∑p
i¼1eipUp

ð10Þ

where Fp is the original normalized matrix, ep is the
eigenvector, and U1, U2,, …, Ub are the linear combi-
nations between the eigenvector matrix and the obser-
vation matrix F.

In assessing the significance of the results of the
PCA, the Kaiser–Meyer–Olkin (KMO) test was used,
in which the significance ranges from 0 to 1. It is
noteworthy that the test acts as a quality indicator of
the database.

KMO ¼
∑
j
∑
k≠ j

r2jk

 !

∑
j
∑
k≠ j

r2jk þ ∑
j
∑
k≠ j

p2jk

 ! ð11Þ

where r is the standard correlation coefficient and p is
the standard partial correlation coefficient.

According to Corrar et al. (2007), the KMO test
values below 0.5 indicate that the matrix should be
discarded, between 0.5 and 0.7 of the results are reason-
able, between 0.7 and 0.9 are good, and above 0.9 is
considered great.

To identify the ideal number of principal components
(PC), the Kaiser method was used, which selects eigen-
values greater than 1 (λ > 1) (Hongyu et al. 2016).
Besides the factorial load, the degree of influence of

all PCs from their respective factorial load (scores) was
also checked. All calculations used in the study were
performed in the R version 3.4-1 environment software
(R Development Core Team 2017).

Results and discussion

Fire foci homogeneous regions

The CA technique via the Ward method identified five
fire foci homogeneous groups (G1 to G5) and one mu-
nicipality (Coruripe) that do not form a group (NA) in
Alagoas (Fig. 3a). Summing squares of homogeneity
and intragroup heterogeneity deviations (W) indicated
five clusters as ideal (Fig. 3b). The formation of fire foci
homogeneous groups via CA technique presented con-
sistency of 0.772. The standardized mean of Euclidean
distance was adequate for fire foci data, with CCC >
0.70 as recommended by Rohlf (1970).

Based on multivariate analysis, the SoA showed a
heterogeneous spatial distribution of fire foci (Fig. 4). In
group 1 (G1), with 78.9 ± 181.0 foci, consisting of 53
municipalities, corresponding to 10.4% (19,782 foci) of
the total during the time series. It is worth mentioning
that G1 covered all the physiographic regions of the
state, with emphasis on the Agreste region (Table 1).
Group 2 (G2) registered 137.1 ± 287.7 foci within four
municipalities of the state, corresponding to 14.4% of
foci (27,284). G2 comprised only of Zona daMata (ZM)
and Litoral regions. Group 3 (G3), with 197.7 ± 425 foci
comprises of 12 municipalities, corresponding to 17.7%
(33,382) of the total fire foci. G3 encompassed only
regions Agreste, BSF, Litoral, and ZM regions. Group
4 (G4) registered 173.4 ± 403.4 foci in three municipal-
ities, corresponding to 20.4% (38,614) of the total fire
foci, followed by group 5 (G5) with 186.2 ± 440.9 foci
in the period, comprising 29 municipalities, and 25.4%
(48,080) of the total fire foci. The municipality of
Coruripe, which did not form a statistical group, be-
longs to the Litoral region, with 102.4 ± 193.4 foci, and
comprises 11.7% of fire foci, with a total of 22,153 foci.
Both G3, G4, and G5 are the largest groups of fire foci
formed in the SoA, while G1 and G2 are smaller
(Table 2).

It is worth mentioning that the distribution and con-
centration of the homogeneous groups of minor fire foci
were registered in the BSF, Litoral, and ZM regions.
The largest groups are distributed throughout the SoA
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Fig. 3 Identification of the ideal number of homogeneous groups from the dendrogram (a) and the total of the quadratic sum within the
groups, based on the fire foci time series in Alagoas (b). The CCC value credits the number of selected homogeneous groups

654 Page 8 of 26 Environ Monit Assess (2020) 192: 654



with emphasis on municipalities belonging to the
Litoral region (Fig. 4). The Litoral region is the most
populated region holding 42.4% (IBGE 2018a, b) of the
state’s population. It is also where the state’s main
economic activities—combination of sugarcane cultiva-
tion and sugar–alcohol industrial plants—take place
(Fernandes and Correia Filho 2013; IBGE 2018a). The
increase in fire foci is highest in municipalities that have
sugarcane planting areas and sugar–alcohol mills
(Clemente 2011; Belo and Santos 2013).

It is worrying that part of these records of fire foci
occur in environmental preservation areas (APA) and
conservation units (UC), and thus the fire foci corre-
spond to the burning and fires and extend from the
boundaries of the leased area to the planting of
sugarcane and invade the protected areas, as reported
by Melo (2011) when assessing the Zona da Mata
Pernambucana. According to Melo (2011), only 0.72%
of the remaining 7.0% of the Atlantic Forest is located in
UC, and most of them are private properties, with
sugar–alcohol activities. In some municipalities located
in the Sertão Alagoano, such as Mata Grande, the oc-
currence of fire foci is due to the deforestation of the
Caatinga for cleaning of the area for subsistence

agriculture, as reported by Neves et al. (2018) and
Santos Silva et al. (2019).

Fire foci occurred in all physiographic regions of
Alagoas. However, this phenomenon is not continuous;
there are areas with smaller (G2 and G4) and larger (G1,
G3 and G5) foci concentrations and, therefore, the great-
er territorial extension does not always represent a larger
quantity of fire foci, similar to the result obtained by
Pereira and Silva (2016) for the state of Paraíba, NEB
(Table 3).

Although the highest foci occurrences were recorded
in October, November, and December months, the fire
foci monthly distribution was non-uniform, similar to
the result obtained by Caúla et al. (2015). The lowest
records were registered in the months corresponding to
the transition and rainy seasons in the SoA (Oliveira
Júnior et al. 2012; Lyra et al. 2014).

In the monthly series, quite a few outliers were reg-
istered, except for September and October months
(Fig. 5a). Regarding outliers, some years of the time
series registered higher occurrence, where heat foci is
highly variable, especially in 2008, 2012, 2015, and
2016 (Fig. 5b). The fire foci annual distribution presents
a high variability, especially the years highlighted

Fig. 4 Fire foci spatial distribution of the homogeneous groups (G1 to G5) and the municipality that did not form group (NA), in the state of
Alagoas, for the period from 2000 to 2017
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Table 1 Location of all 102 municipalities of Alagoas, Brazil, with its respective geographic coordinates and average altitude (m)

ID Municipalities Latitude (°) Longitude (°) Altitude (m)

1 Água Branca 09° 15′ 39″ S 37° 56′ 10″ W 570

2 Anadia 09° 41′ 04″ S 36° 18′ 15″ W 153

3 Arapiraca 09° 45′ 07″ S 36° 39′ 39″ W 264

4 Atalaia 09° 30′ 07″ S 36° 01′ 22″ W 54

5 Barra de Santo Antônio 09°24′18″ S 35° 30′ 25″ W 10

6 Barra de São Miguel 09° 50′ 24″ S 35° 54′ 28″ W 2

7 Batalha 09° 40′ 40″ S 37° 07′ 29″ W 120

8 Belém 09° 34′ 16″ S 36° 29′ 32″ W 311

9 Belo Monte 09° 49′ 42″ S 37° 16′ 48″ W 30

10 Boca da Mata 09° 38′ 29″ S 36° 13′ 13″ W 132

11 Branquinha 09° 14′ 44″ S 36° 00′ 55″ W 100

12 Cacimbinhas 09° 24′ 01″ S 36° 59′ 25″ W 270

13 Cajueiro 09° 23′ 48″ S 36° 09′ 13″ W 102

14 Campestre 08° 50′ 45″ S 35° 34′ 05″ W 0

15 Campo Alegre 09° 46′ 55″ S 36° 21′ 03″ W 176

16 Campo Grande 09° 57′ 28″ S 36° 47′ 30″ W 142

17 Canapi 09° 07′ 01″ S 37° 36′ 08″ W 342

18 Capela 09° 24′ 27″ S 36° 04′ 25″ W 84

19 Carneiros 09° 28′ 57″ S 37° 22′ 38″ W 347

20 Chã Preta 09° 15′ 19″ S 36° 17′ 46″ W 463

21 Coité do Nóia 09° 37′ 56″ S 36° 34′ 43″ W 280

22 Colônia Leopoldina 08° 54′ 32″ S 35° 43′ 30″ W 140

23 Coqueiro Seco 09° 38′ 18″ S 35° 48′ 11″ W 31

24 Coruripe 10° 07′ 32″ S 36° 10′ 32″ W 16

25 Craíbas 09° 37′ 05″ S 36° 46′ 05″ W 252

26 Delmiro Gouveia 09° 23′ 19″ S 37° 59′ 57″ W 256

27 Dois Riachos 09° 23′ 33″ S 37° 06′ 02″ W 245

28 Estrela de Alagoas 09° 23′ 25″ S 36° 45′ 36″ W 0

29 Feira Grande 09° 54′ 01″ S 36° 40′ 39″ W 220

30 Feliz Deserto 10° 17′ 31″ S 36° 18′ 22″ W 6

31 Flexeiras 09° 11′ 51″ S 35° 46′ 51″ W 78

32 Girau do Ponciano 09° 53′ 03″ S 36° 49′ 44″ W 244

33 Ibateguara 08° 58′ 21″ S 35° 56′ 22″ W 505

34 Igaci 09° 32′ 13″ S 36° 38′ 01″ W 240

35 Igreja Nova 10° 07′ 31″ S 36° 39′ 43″ W 14

36 Inhapi 09° 13′ 17″ S 37° 44′ 55″ W 410

37 Jacaré dos Homens 09° 38′ 08″ S 37° 12′ 17″ W 135

38 Jacuípe 08° 50′ 30″ S 35° 27′ 36″ W 74

39 Japaratinga 09° 05′ 18″ S 35° 15′ 30″ W 5

40 Jaramataia 09° 39′ 34″ S 37° 00′ 07″ W 164

41 Jequiá da Praia 10° 0′ 22″ S 36° 01′ 24″ W 5

42 Joaquim Gomes 09° 08′ 00″ S 35° 44′ 54″ W 104

43 Jundiá 08° 56′ 05″ S 35° 34′ 25″ W 94

44 Junqueiro 09° 55′ 31″ S 36° 28′ 33″ W 175

45 Lagoa da Canoa 09° 49′ 47″ S 36° 44′ 16″ W 283

46 Limoeiro de Anadia 09° 44′ 26″ S 36° 30′ 10″ W 140
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Table 1 (continued)

ID Municipalities Latitude (°) Longitude (°) Altitude (m)

47 Maceió 09° 39′ 57″ S 35° 44′ 07″ W 16

48 Major Isidoro 09° 31′ 56″ S 36° 59′ 06″ W 182

49 Maragogi 09° 00′ 44″ S 35° 13′ 21″ W 5

50 Maravilha 09° 14′ 08″ S 37° 21′ 00″ W 362

51 Marechal Deodoro 09° 42′ 37″ S 35° 53′ 42″ W 31

52 Maribondo 09° 34′ 38″ S 36° 18′ 19″ W 157

53 Mar Vermelho 09° 26′ 51″ S 36° 23′ 17″ W 542

54 Mata Grande 09° 07′ 03″ S 37° 43′ 56″ W 633

55 Matriz de Camaragibe 09° 09′ 06″ S 35° 32′ 00″ W 16

56 Messias 09° 23′ 00″ S 35° 50′ 30″ W 148

57 Minador do Negrão 09° 18′ 19″ S 36° 51′ 53″ W 270

58 Monteiropólis 09° 36′ 10″ S 37° 14′ 54″ W 228

59 Murici 09° 18′ 24″ S 35° 56′ 36″ W 82

60 Novo Lino 08° 54′ 54″ S 35° 38′ 48″ W 146

61 Olho D’Água das Flores 09° 32′ 10″ S 37° 17′ 38″ W 286

62 Olho D’Água do Casado 09° 30′ 07″ S 37° 50′ 02″ W 230

63 Olho D’Água Grande 10° 03′ 30″ S 36° 49′ 00″ W 118

64 Olivença 09° 31′ 07″ S 37° 11′ 26″ W 231

65 Ouro Branco 09° 10′ 00″ S 37° 21′ 24″ W 380

66 Palestina 09° 40′ 19″ S 37° 19′ 45″ W 160

67 Palmeira dos Índios 09° 24′ 26″ S 36° 37′ 39″ W 342

68 Pão de Açúcar 09° 44′ 54″ S 37° 26′ 12″ W 19

69 Pariconha 09° 15′ 10″ S 38° 00′ 17″ W 0

70 Paripueira 09° 27′ 54″ S 35° 33′ 06″ W 0

71 Passo de Camaragibe 09° 14′ 18″ S 35° 29′ 36″ W 4

72 Paulo Jacinto 09° 21′ 58″ S 36° 22′ 11″ W 292

73 Penedo 10° 17′ 25″ S 36° 35′ 11″ W 27

74 Piaçabuçu 10° 24′ 20″ S 36° 26′ 04″ W 3

75 Pilar 09° 35′ 50″ S 35° 57′ 24″ W 13

76 Pindoba 09° 28′ 31″ S 36° 17′ 24″ W 310

77 Piranhas 09° 37′ 25″ S 37° 45′ 24″ W 88

78 Poço das Trincheiras 09° 18′ 45″ S 37° 17′ 08″ W 292

79 Porto Calvo 09° 02′ 42″ S 35° 23′ 54″ W 54

80 Porto de Pedras 09° 09′ 30″ S 35° 17′ 42″ W 22

81 Porto Real do Colégio 10° 11′ 09″ S 36° 50′ 24″ W 10

82 Quebrangulo 09° 19′ 08″ S 36° 28′ 16″ W 366

83 Rio Largo 09° 28′ 42″ S 35° 51′ 12″ W 39

84 Roteiro 09° 49′ 58″ S 35° 58′ 40″ W 32

85 Santa Luzia do Norte 09° 36′ 12″ S 35° 49′ 21″ W 32

86 Santana do Ipanema 09° 22′ 42″ S 37° 14′ 43″ W 250

87 Santana do Mundaú 09° 10′ 05″ S 36° 13′ 20″ W 221

88 São Brás 10° 07′ 40″ S 36° 54′ 02″ W 25

89 São José da Laje 09° 00′ 35″ S 36° 03′ 30″ W 256

90 São José da Tapera 09° 33′ 30″ S 37° 22′ 52″ W 255

91 São Luís do Quitunde 09° 19′ 06″ S 35° 33′ 40″ W 4

92 São Miguel dos Campos 09° 46′ 52″ S 36° 05′ 37″ W 12
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above, due to the increase in the number of environmen-
tal satellites and improvement of the orbital sensors,
notified by Caúla et al. (2016), Clemente et al. (2017)
and Eugenio et al. (2019) (Fig. 5c).

In 2013, the reduction of fire foci occurrence is
associated to decreasing on environmental satellites
number and sugarcane production (harvested area).
There has been a significant increase in fire foci in the
years 2008, 2011/2012 (La Niña), and 2015/2016 (El
Niño), all associated with the ENSO phases, respective-
ly (Marengo et al. 2017a, b; Correia Filho et al. 2018;
Correia Filho et al. 2019a). La Niña episodes had dif-
ferent characteristics, the year 2008 (2012) was charac-
terized as a rainy (dry) year. Correia Filho et al. (2019a,
b), when evaluating the rainfall on the Atlantic Forest
Biome, found for 2008 (2012) an average monthly of
118.0 mm month−1, an increase of 3.82% compared
with climatology (decrease of 84.2 mm month−1, a
reduction of 25.91% compared with climatology). Both
patterns between rainfall and drought configure the in-
crease of the planting/crop area and the occurrence of
drought periods resulting from vegetative stress and

hence in increased fire foci (Barros Santiago et al.
2019; Correia Filho et al. 2019b).

Exploratory analysis of fire foci time series

Based on boxplot, the fire foci analysis in seasonal and
annual scales registered by each homogeneous group
were evaluated (Figs. 6 and 7). In general, all homoge-
neous groups recorded the higher fire foci occurrences
between September and December months, followed by
smallest records between April and August months,
except G4 that presented different period for the lower
fire foci occurrence, from January to March months
(Fig. 6d). This seasonal pattern found by G4 presented
similar characteristics, being verified by White and
White (2017) in the state of Sergipe. However, with a
lower record of 38,614 (G4) foci against 2600 (total foci
in the state of Sergipe, between the years 2000 and
2015). The period from September to December is
associated with two factors: (i) the transition from rainy
season to dry season (Lyra et al. 2014) and (ii) the

Table 1 (continued)

ID Municipalities Latitude (°) Longitude (°) Altitude (m)

93 São Miguel dos Milagres 09° 15′ 56″ S 35° 22′ 23″ W 1

94 São Sebastião 09° 56′ 01″ S 36° 33′ 15″ W 201

95 Satuba 09° 33′ 48″ S 35° 49′ 28″ W 6

96 Senador Rui Palmeira 09° 27′ 59″ S 37° 27′ 25″ W 352

97 Tanque D’Arca 09° 31′ 55″ S 36° 25′ 58″ W 212

98 Taquarana 09° 38′ 42″ S 36° 29′ 50″ W 159

99 Teotônio Vilela 09° 54′ 19″ S 36° 21′ 10″ W 156

100 Traipu 09° 58′ 14″ S 37° 00′ 12″ W 10

101 União dos Palmares 09° 09′ 46″ S 36° 01′ 55″ W 155

102 Viçosa 09° 22′ 17″ S 36° 14′ 27″ W 210

Table 2 Distribution of municipalities corresponding to the six homogeneous groups of fire foci in the SoA, with their totals, percentage
(%), averages, and standard deviations in the period from 2000 to 2017

Fire foci homogeneous groups Municipalities Percentage (%) and total (foci) Average and standard deviation

G1 53 10.4% and 19,782 78.9 ± 181.0

G2 4 14.4% and 27,284 137.1 ± 287.7

G3 12 17.7% and 33,382 197.7 ± 425.8

G4 3 20.4% and 38,614 173.4 ± 403.4

G5 29 25.4% and 48,080 186.2 ± 440.9

NA 1 11.7% and 22,153 102.4 ± 193.4
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beginning of sugar–alcohol plants activities (Fernandes
and Correia Filho 2013; IBGE 2018a).

Rainfall over the SoA is generally characterized by
strong pluviometric gradients from coast to mainland
and from N to S, due to physiography of the region and
influence of meteorological systems of different tempo-
ral scales. In some regions of Alagoas, in addition to the
transition from rainy season to dry season, there is still 1
or 2 months of transition between dry and rainy seasons
(Oliveira Júnior et al. 2012; Lyra et al. 2014; Silva
2017). During the driest period in Alagoas (December
to February months), the average monthly rainfall is
equal to or less than 50 mm, except on the northern part
of the state (Lyra et al. 2014). The variability of transi-
tion seasons affects the largest fire foci total identified
by exploratory analysis in the homogeneous groups.

Rainfall in the state is influenced by multiscale
weather systems and by physiography (topography
and water bodies), for example, local convection, oro-
graphic rains, trade winds (Molion and Bernardo 2002),
ITCZ (Gois et al. 2005), UTCV, SL, MCS (Alves et al.
2017), EDW, FS (Moura and Shukla 1981; Lyra et al.
2014, 2017), and maritime–terrestrial breeze circula-
tions (Molion and Bernardo 2002).

Comparatively, the period of greatest fire foci occur-
rence between the five groups, between September and
December months, showed high variability in Alagoas.
G1 (Fig. 5a) has low fire foci occurrence, with values
lower than 10 foci month−1, and its maximum between
30 and 62 foci month−1, even though it is one of the
largest homogeneous groups. In G2 (Fig. 5b), the higher
fire foci occurrence was recorded with its maximum
between 100 and 300 foci month−1.

Such fire foci variability in G2 is associated with the
sugarcane–alcohol industry activities, as well as the

urban growth of some municipalities, such as Atalaia,
Marechal Deodoro, and Teotônio Vilela (IBGE 2018a,
b). G3 with fire foci occurrence of 100 and
500 foci month−1 presents similar behavior to G4 and
G5. It is important to mention the presence of outliers in
all homogeneous groups and NA (Coruripe) in the
monthly scale.

In the annual scale, the fire foci homogeneous
groups showed different patterns along the time
series (Fig. 7), along with several outliers, mainly
in G1 and G2. For G1 (Fig. 7a) and G2 (Fig. 7b),
there were no maximum greater than 100 and 200 fo-
ci, respectively, and the minimum (maximum) were
predominant in both, with a highlight for year 2014
(2016) in both groups. In G3, the highest fire foci
occurrences were registered in 2002, 2004, 2007,
and 2010 (Fig. 7c). Contrariwise, G4 presented the
highest fire foci occurrences during the time series,
exceptions were years 2000 and 2004 (Fig. 7d).

G5 (Fig. 7e) presents strong variability in the records
of fire foci throughout the series; however, the lowest
annual registers were recorded in years 2000, 2001, and
2014. The municipality of Coruripe (NA) presents nu-
merous outliers compared with other homogeneous
groups and also high fire foci variability in the annual
scale (Fig. 7f). The G2, G4, and NA (Coruripe) groups
are associated with the sugarcane harvesting process for
the extraction of sugar and ethanol (Fernandes and
Correia Filho 2013). While in G3, besides the sugar
and alcohol industry, in some municipalities such as
Pilar, Maceió, Rio Largo, and São Luís do Quitunde,
there was an expressive change in the land use and soil
coverage from 2000, caused by urban expansion
(Santiago and Gomes 2016).

In addition, all homogeneous groups presented
large number of outliers on both scales. Outliers
are related to inclusion of new environmental satel-
lites with new orbital sensors for fire foci monitor-
ing. In 1998, there were only two satellites, while
currently there are 17 environmental satellites in
orbit (Fig. 5c). In addition to the number of envi-
ronmental satellites, there is also a repetition of fire
foci records. All homogeneous groups converge for
the year 2014 as the year of the least fire foci
occurrence. This pattern is associated with two fac-
tors: (i) the decrease in the number of orbital satel-
lites, from 22 satellites in 2013 to 16 satellites in
2014 (CPTEC 2018), and (ii) reduction in harvested
area and sugar cane production (Table 4). According

Table 3 Descriptive statistics (minimum, first quartile, median,
mean, third quartile, and maximum) of the five homogeneous
groups (G1 to G5) and the municipality that did not form a group
(NA) obtained by the CA technique

Parameters G1 G2 G3 G4 G5 NA

Minimum 0 0 0 0 0 0

1st quartile 0 0 0 0 0 0

Median 12 13 30 18 36 12

Average 79 112 198 173 186 102

3rd quartile 62 112 161 145 148 138

Maximum 1375 1704 3348 3278 3487 1356
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Fig. 5 Boxplot of fire foci on a
monthly scale (a) for the state of
Alagoas. Annual evolution of the
number of fire foci (b) and
satellites in orbit (c) for
environmental monitoring during
the period 2000–2017. The red
dotted line corresponds to the
average annual fire foci

654 Page 14 of 26 Environ Monit Assess (2020) 192: 654



to IBGE’s Annual Municipal Agricultural Produc-
tion data (2018b), G2 and G4 presented reduction of
harvested area and sugarcane production, which was
also registered in Coruripe with an intense loss of

7200 ha (13.8%) and 687,000 tons (18.8%) of sug-
arcane production in 2014.

Two fire foci homogeneous groups (G2, G4) and NA,
resulting in eight municipalities (Atalaia, Coruripe,

Fig. 6 Boxplot of fire foci corresponding to the five homogeneous groups obtained by the CA: (a) G1, (b) G2, (c) G3, (d) G4, (e) G5, and (f) NA
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Jequiá da Praia, Penedo, Marechal Deodoro, São
Miguel dos Campos, and Teotônio Vilela) that present
high variability along the time series, differently from
the G1 (79 foci month−1) which presented lower varia-
tion in both temporal and spatial scales (Figs. 6 and 7).

Comparatively, the other groups showed a significant
increase, for example, G2 (137 foci month−1), G3

(198 foci month−1), G4 (173 foci month−1), G5

(186 foci month−1), and NA (102 foci month−1)
(Table 3).

Fig. 7 Annual boxplot of fire foci corresponding to the five homogeneous groups obtained by the CA: (a) G1, (b) G2, (c) G3, (d) G4, (e) G5,
and (f) NA
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Fire foci time series analysis

The fire foci time series of each homogeneous group
individually (Fig. 8) present fluctuations, with their
maximum starting in 2008. The maximum of G1

exceeds the average of 2000 foci (Fig. 8a),
highlighting the year 2012 (> 6000 foci); unlike the
G2 which registered maxima greater than 1500 fire
foci (Fig. 8b), again highlighting the year of 2012
(> 3000 foci yearly). In G3, with values above the
average of 2200 foci, the highlights were the years
of 2012, 2015, and 2016 (> 4000 foci per year).

In G4, the maximum fire foci number exceeded
2200 per year with emphasis on years 2012 and 2015
(> 5000 Foci per year). Finally, in G5 with maxima
higher than the average similar to G4, highlights were
registered also in 2012 (≅ 7000 foci annual) and 2016
(> 5000 foci annual). It is worth observing that up
until 2013, new environmental satellites have be-
come available; however, since 2014, the orbital sen-
sors have been modernized for fire foci detection and
incorporated into the BDQueimadas (Pereira and
Silva 2016; Clemente et al. 2017; CPTEC 2018).
Drought severity in SoA (Lyra et al. 2017; Marengo
et al. 2017a; Marengo et al. 2017b; Correia Filho
et al. 2018) motivated by the ENSO action observed
during the years 2008, 2010–2011, 2012, and 2015–
2016, which in turn promotes vegetative stress and
associated with environmental conditions, triggers
the records of fire foci higher than average in all
homogeneous groups.

Soil use and coverage

The influence of land use and occupation on the SoA
was evaluated for the years 2000 and 2015 based on
spatiotemporal results (Table 5). In this approach, the
groups with the highest fire foci number and with a
smaller number of municipalities were selected. G2,
G3, G4, and NA (Coruripe), composed of 20 municipal-
ities, represent 64.2% of fire foci occurrence on the SoA.
Land use and occupation data presented minimal differ-
ences between the 2000 and 2015 (Table 5). It is verified
that agricultural crop is the main category of land use
and cover with percentages from 45 to 60%, for years
2000 and 2015, respectively. The second most represen-
tative category refers to urban areas with values regis-
tering an increase from 20 to 39% in the same period.
Results shows that the fire foci variability in the SoA is
not motivated exclusively by land use and cover chang-
es, since its occurrence percentage has increased more
than land use and soil coverage modification.

Poisson regression analysis

Based on the previous results, Poisson regression model
was applied to fire foci time series. All the models
adopted in the study indicate that covariates have high
statistical significance (p value < 0.02). This shows that
all the selected variables presented an excellent associ-
ation with fire foci. In GLM1, the HDI variable stands
out due to the direct relation to the fire foci number. In
GLM2, composed of variables rainfall and quantity of

Table 4 Harvested area (thousand hectares) and annual production (thousand tons) of sugarcane for each of the homogeneous groups with
the highest percentage of fire foci occurrence (G2, G4, and NA), from the period 2010 to 2016 for the SoA (IBGE, 2018)

Groups 2010 2011 2012 2013 2014 2015 2016

Harvested area (thousand hectares) of sugarcane

G2 63.1 63.1 63.1 65.4 62.0 51.2 50.9

G3 121.3 121.4 120.9 122.9 113.2 94.4 92.5

G4 66.5 66.5 66.5 65.7 66.5 40.1 47.1

NA 52.2 52.2 52.2 52.2 45.0 33.5 32.6

Production (thousand tons) of sugarcane

G2 3.695 4.393 4.165 4.480 4.089 3.296 2.954

G3 6.724 8.076 7.645 7.692 7.251 6.706 5.932

G4 3.734 4.483 4.250 4.258 4.265 2.791 2.830

NA 3.030 3.637 3.448 3.653 2.966 2.184 1.957
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sugarcane produced, a significant increase on fire foci
occurrence in the state was registered, with direct envi-
ronmental impacts to the SoA (Table 6).

In GLM3, the combination of socioeconomic and
environmental variables showed a greater influence on
fire foci occurrence, especially the HDI variable. When
analyzing the HDI variable alone (model GLM4), it was
verified that the result shows similar behavior to GLM1
and GLM3. The residual analysis (residual deviance and
AIC) and the percentage of the extracted variance (R2)
showed that GLM4 has 57.3% of the variance ex-
plained. This shows the importance of HDI, previously
verified for GLM1 and GLM3. Although the variance
value of GLM4 is strongly affected by noise, according

to the AIC value (2572.0) and residual deviance
(2453.5), this is due to the low number of data (16
elements) used in the regression model.

The contrast between GLM1 and GLM2 showed that
socioeconomic variables (residual deviance = 39.1,
AIC = 110.8, and R2 = 85.4%) had greater influence,
followed by precision in their prediction than the envi-
ronmental variables (residual deviance = 1697.8, AIC =
1824.3, and R2 = 66.8%), respectively. GLM3 presented
the lowest values (residual deviance = 845.3 and AIC =
975.7) and R2 = 80.3%. The GLM results show that the
regional development and economic growth (HDI) are
main responsible variables for the increase of fire foci
occurrence in the SoA. This process of regional

Fig. 8 Boxplot of fire foci corresponding to the five homogeneous groups obtained by the CA: a G1, b G2, c G3, d G4, and e G5. The red
dotted line corresponds to the average annual fire foci
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Fig. 8 (continued)
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development and redistribution of the population
contingent led to problems in land use and occupation
as verified by Correia Filho et al. (2019b) and Hammer
et al. (2009), in addition to degradation in environmental
protection areas as reported by Silva Lopes et al. (2018)
in the municipality of Maceió, the capital of SoA.

Principal component analysis

Based on the results of the PCA, the KMO test assured
good quality (0.72) to the data matrix and therefore
suitable for the study. In addition, the chi-square and p
value tests presented significant statistical values, being
1318.93 and < 0.001, respectively. Through the Kaiser
method (λ > 1), three principal components were ex-
tracted which in total 78.70% of the explained variance
(Table 7). Regarding the variability of the variables via
biplot (Fig. 9), it showed positive correlations between
variables GDP, population, and demographic density,
for PC1 and PC2, with contributions greater than
13.74% for each. With positive correlations to PC1
and negative correlations to PC2, there are also other
variables, such as fire foci, crop production, and crop-
land area with contributions ranging from 8.10 to
14.90%. This configuration showed that the increase
of fire foci is strongly related to the growth of the

cultivated area and sugarcane production in the SoA
and is corroborated by the results obtained by Fernandes
and Correia Filho (2013).

In a joint analysis between the municipalities and the
variables, it appears that the municipalities behave alike
regarding the occurrence of fire foci—cropland area,
crop production, and income—which in turn are directly
associated with the clusters of higher records of fire foci
in the SoA (Fig. 10). For example, the capital of the
state, the municipality of Maceió (corresponding to
point 47, located in the upper right) presented high
association of fire foci with GDP, population, and de-
mographic density.

Regarding the percentage load of each PC (Table 7),
it is observed that PC1 explains 42.30%, and the largest
contributions are associated with the demographic var-
iables, in this case, population, GDP, and demographic
density with values of 13.74%, 13.74%, and 13.19%,
respectively. In both PCs, the number of fire foci does
not emerge as a major variable. In the case of PC3, Gini
index, rainfall, and fire foci appear as the main variables,
with values of 51.84%, 27.32%, and 10.36%,
respectively.

The results obtained with the PCA technique showed
marked differences and also similar results via GLM,
highlighting the synthesis of data via PCA compared
with GLM. In the case of PCA, each variable was
individually assessed, but revealed a good association
between fire foci, sugarcane production, and harvested
area, followed by a similar relationship between PC3
and cluster 3. The authors also point out that such
changes affect ecosystems, as well as changes in land
use and natural resources. In this respect, Brazil, includ-
ing SoA, a large part of the population is concentrated
on the coast, where it used to be the Atlantic Forest
biome, deforested to meet the process of expansion and
development (Oliveira Souza et al. 2018).

Conclusions

The CA applied to fire foci time series based on the
Ward method identified five homogeneous groups in
the SoA (G1 to G5) and a municipality (Coruripe) that
did not adhere to any group. The result obtained by CA
presented consistency according to the cophenetic cor-
relation coefficient (> 0.70). G1 and G5 registered the
largest number of municipalities with fire foci in the
state, with 53 and 29, respectively. G2, G3, and G4

Table 5 Average percentage of soil cover for the homogeneous
groups with the highest percentage of fire foci occurrence (G2, G3,
G4, and NA) between years 2000 and 2015

Soil cover type (%)

G2 G3 G4 NA

Rainfed cropland 54 45 60 49

Herbaceous Cover 1 0 1 1

Cropland (> 50%)/natural vegetation (< 50%) 12 6 4 4

Natural vegetation (> 50%)/cropland (< 50%) 5 4 5 7

Tree cover, broadleaved, evergreen, open
(> 15%)

1 2 4 4

Tree and shrub (> 50%)/herbaceous cover
(< 50%)

0 1 0 0

Herbaceous cover (> 50%)/tree and shrub
(< 50%)

0 0 1 1

Shrubland 1 0 0 0

Grassland 1 2 2 1

Urban areas 25 39 20 31

Water resources 0 1 0 0
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together account only for 20 municipalities, although
they detected about 52.5% of total foci occurrences

(99,200). G3 (with only three municipalities) and
Coruripe have 60,767 fire foci (32.1%), with a total of
38,614 foci (20.4%) and 22,153 foci (11.7%), respec-
tively. The spatial distribution and concentration of
homogeneous groups of minor fire foci are associated
with the Litoral, BSF, and ZM regions. The largest
groups are distributed throughout the state of Alagoas,
especially in the Litoral region. In this region, the
highest records of fire foci are located in municipalities
with sugarcane planting areas and sugar–alcohol mills
installed.

On the monthly scale, all groups recorded the
highest totals of fire foci in the last quarter of the
year—September to December months—except G4

which registered highest fire foci totals from January
to March. This seasonal pattern presented by the G4
is similar to that of the neighboring state, Sergipe,
with significant variations. The 4-month period
identified in the study corresponds to the transition
from rainy season to the dry season. During this
period, the average monthly rainfall is equal or less

Table 6 Poisson regression models created from the homoge-
neous groups with the highest percentage of fire foci occurrence
(G2, G4, and NA), where model 1 consists of socioeconomic

variables, model 2 consists of environmental variables, model 3
is the junction of models 1 and 2, and model 4 only by the HDI

Model 1 Model 2 Model 3 Model 4
Variables Coeff ± SE Coeff ± SE Coeff ± SE Coeff ± SE

Intercept 1.0 ± 0.2*** 7.3 ± 0.0*** 3.3 ± 0.1*** 1.1 ± 0.1***

Population size 0.0 ± 0.0*** – − 0.0 ± 0.0*** –

Total area − 0.0 ± 0.0*** − 0.0 ± 0.0***
Demographic density − 0.0 ± 0.0*** – − 0.0 ± 0.0*** –

HDI 13.6 ± 0.3*** – 10.4 ± 0.3*** –

Gini index – – – 9.1 ± 0.2***

Per capita − 0.0 ± 0.0*** – 0.0 ± 0.0* –

Rainfall – − 0.0 ± 0.0*** 0.0 ± 0.0*** –

Cropland area – 0.0 ± 0.0*** – –

Crop production – − 0.0 ± 0.0*** − 0.0 ± 0.0*** –

Variance and residual analysis

Residual deviance 1697.8 4215.6 845.3 2453.5

AIC 1824.3 4338.1 975.7 2572.0

R2 (%) 66.4 25.2 80.3 57.3

Coeff regression coefficient, SE standard error, AIC Akaike information criterion, R2 determination coefficient

Model GLM1: population size + demographic density + total area + HDI + per capita. Model GLM2: rainfall + produced quantity
(sugarcane). Model GLM3: population size + demographic density + total area + HDI + rainfall + per capita + produced quantity
(sugarcane). Model GLM4: Gini index

The asterisks represent the statistical significance levels: (***) from 0 and 0.001, (**) from 0.001 and 0.01, (*) from 0.01 and 0.05, and (.)
from 0.05 to 0.1

Table 7 Evaluation of the percentage in the contribution of the
analyzed variables in each of the four main components and their
respective explained variance and total variance (both in %)

Variables PC1 PC2 PC3

Fire foci 8.12 13.37 10.36

Rainfall 7.52 1.65 27.32

Gini 0.01 7.32 51.84

Population 13.74 14.97 0.08

GDP 13.74 14.55 0.00

Income 8.68 2.29 2.27

HDI 11.10 0.56 0.21

Demographic density 13.19 15.63 0.51

Cropland area 12.07 14.92 3.67

Crop production 11.83 14.74 3.75

Variance explained (%) 42.30 25.30 11.20

Total variance explained (%) 42.30 67.60 78.80
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than 50 mm and associated with the beginning of the
sugar–alcohol industry activities in the state, inter-
fering greatly in the fire foci dynamics.

In annual scale, all groups registered high number of
outliers, due to inclusion of new environmental satellites
with new orbital sensors for fire foci monitoring. The

inclusion of new environmental satellites from the be-
ginning of the series up to 2013 must be noticed. Out-
liers also varied according to production levels of the
sugar–alcohol industry in the SoA. The intense drought
that started between years 2010 and 2011 favored fire
foci occurrence in subsequent years (2011, 2012, 2015,

Fig. 9 Correlation coefficient
chart for the first two PCs. The
color of the arrows corresponds to
the degree of contribution of the
variable given in (%): the color
blue for the lowest and red for the
highest

Fig. 10 Biplot of scores for the
first two PCs for the ten variables
and 102 municipalities used in
this study
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and 2016) in all homogeneous groups. This drought is
due to the phases of ENSO, La Niña (2011/2012), and
El Niño (2015/2016) and prolonged between 2012 and
2015 in NEB, including Alagoas, which are determinant
in the significant increase of fire foci.

The Fire Foci variability in the largest homogeneous
groups is restricted to only two categories of land use and
cover, agricultural crops (mainly sugarcane), followed by
urban areas category. Such variability is not motivated by
changes in soil use and cover. The result of the generalized
linear model via Poisson regression shows that the vari-
ability of fire foci is strongly associatedwith socioeconom-
ic variables such as HDI and Gini index.

The PCA technique reinforces the use of multivariate
statistics in relational pattern analysis between fire foci
and socioeconomic and environmental variables in SoA,
especially individually. The PCA captured three PCs,
with 78.80% of the variance explained. PC1 holds
42.30%, and is influenced by population, GDP, and
demographic density. On the municipal scale, Maceió
holds 46.60% and 40.85% for PC1 and PC2. Urban
densification and population growth contribute to pro-
found changes not only in the record of fire foci but also
in land use and occupation and natural resources, espe-
cially in what remains of the Atlantic Forest biome.

Fire foci orbital monitoring via environmental satel-
lites is an important tool in identifying critical areas
during the transition from the rainy season to the dry
season and at the beginning of sugar–alcohol industry
activities in the state. Its use in a routine manner by
public managers could contribute to fire prevention and
control policies, especially in municipalities with higher
concentration rates of fire foci in the state of Alagoas.

As a future proposal, it is interesting to evaluate the
effects of burning by burning sugarcane straw on atmo-
spheric pollution and worsening air quality in the state
of Alagoas based on remote sensing and numerical
modeling products.
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