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Abstract

Background: Temperature and humidity strongly affect the physiology, longevity, fecundity and dispersal behavior of Aedes
aegypti, vector of dengue fever. Contrastingly, the statistical associations measured between time series of mosquito
abundance and meteorological variables are often weak and contradictory. Here, we investigated the significance of these
relationships at different time scales.

Methods and Findings: A time series of the adult mosquito abundance from a medium-sized city in Brazil, lasting 109
weeks was analyzed. Meteorological variables included temperature, precipitation, wind velocity and humidity. As analytical
tools, generalized linear models (GLM) with time lags and interaction terms were used to identify average effects while the
wavelet analysis was complementarily used to identify transient associations. The fitted GLM showed that mosquito
abundance is significantly affected by the interaction between lagged temperature and humidity, and also by the mosquito
abundance a week earlier. Extreme meteorological variables were the best predictors, and the mosquito population tended
to increase at values above 180C and 54% humidity. The wavelet analysis identified non-stationary local effects of these
meteorological variables on abundance throughout the study period, with peaks in the spring-summer period. The wavelet
detected weak but significant effects for precipitation and wind velocity.

Conclusion: Our results support the presence of transient relationships between meteorological variables and mosquito
abundance. Such transient association may be explained by the ability of Ae. aegypti to buffer part of its response to climate,
for example, by choosing sites with proper microclimate. We also observed enough coupling between the abundance and
meteorological variables to develop a model with good predictive power. Extreme values of meteorological variables with
time lags, interaction terms and previous mosquito abundance are strong predictors and should be considered when
understanding the climate effect on mosquito abundance and population growth.
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Introduction

The mosquito Aedes aegypti is the main vector of dengue fever,

an important arbovirosis present in most tropical countries. The

effect of climate on the population dynamics of Ae. aegypti has

been the subject of several studies [1–8]. The dependence of

mosquito development, survival and behavior on air tempera-

ture, air humidity, rainfall and wind speed is well established

[1]. In general, rainfall is expected to positively affect the

mosquito abundance through the creation of new breeding sites.

Heavy precipitation, on the other hand, may have an opposite

flushing effect. Temperature affects the mosquito’s development

as well as its survival and fecundity. Wind may drive passive

dispersal and/or induce the suppression of the flying activities,

affecting feeding and egg-laying activities. In turn, the air

relative humidity directly influences survival, feeding habits and

dispersal [1,9,10].

Contrasting with the strong responses of Ae. aegypti to

meteorological variables in experimental studies, the statistical

associations measured between time series of mosquito abundance

and meteorological variables can be weak and contradictory,

showing sometimes positive or negative effects. Most studies

associating Ae. aegypti abundance and climate have relied on larval

indices that are collected every one to three months, using

regression analysis as the main analytical tool [8,11]. Overall,

these studies have identified positive associations with tempera-

ture, precipitation and relative humidity at several lags as expected

from the theory. However, their results are hard to compare as the

analytical methodology used is highly variable. For example, it is

not explicit if interaction terms were evaluated or how the

selection of variables was carried out.

More recently, more detailed studies became possible due to the

introduction of traps into adult mosquito surveillance systems.

With traps, entomological indices can be collected more
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frequently, generally every week. The resulting indices are more

informative for dengue surveillance as they measure directly the

population involved in the transmission cycle: the adult female

population [12]. Another advantage of trap indices is their

resolution at a one-week time scale, which is important for

studying the effect of climate on a population whose generation

time is approximately 3–4 weeks long [1]. Using BG-Sentinel in

Cairns, Australia, a trap that attracts females seeking humans for

blood feeding, Azil et al. (2010) [2] analyzed a 134 week time series

of female mosquito captures using regression. They found positive

effects of minimum and average temperature (lag 0 weeks) and

relative humidity (lag 2 weeks). Honório et al. (2009) [4] analyzed

an 80 week long series of sticky trap collections, in Rio de Janeiro,

Brazil, finding a nonlinear association with temperature and a

weak association with precipitation. These studies highlight the

relevance of short term meteorological events, in the order of

weeks.

In the present study, we contribute to this problem by analyzing

a 109 week long time series of sticky trap data from an Ae. aegypti

surveillance system implemented in the municipality of Govern-

ador Valadares (MG, Brazil) where the climate is sub-humid

tropical. In contrast to previous studies, we propose the

combination of two time series techniques for further understand-

ing the short and long term associations between climate and

mosquito abundance. First, a linear model was fitted to the data,

producing a climate-based model with good forecasting capacity.

Secondly, a multi-resolution wavelet method was applied to

identify transient patterns of association between the entomolog-

ical indices and meteorological variables. With this combined

analysis, we were able to characterize the global and local

(transient) effects of meteorological variables on mosquito abun-

dance and discuss possible implications for the development of

climate based forecast models.

Methods

Ethics Statement
All traps used in this study were installed by the official staff of

the city dengue control program during the routine determination

of the house infestation index. In these activities, no written

consent is required, or any formal permission for mosquito

collection. Therefore, consent is oral and informal. Furthermore,

during these routine activities of surveillance, field workers do not

record any personal information from householders. Data

presented in this manuscript cannot be used to identify specific

houses, so the anonymity of householders is guaranteed.

Study area
Using traps to capture ovipositing mosquitoes, a longitudinal

study was conducted as part of a vector surveillance program in

the urban area of the Governador Valadares municipality

(1805103000S, 4105605600W ), a medium-sized city located in the

Eastern region of Minas Gerais state, Brazil (Figure 1) [12].

Governador Valadares has an estimated population of 263,274

inhabitants and a population density of 112.1 inhabitants/km2.

The climate is sub-humid tropical with a rainy season from

October to April and a dry season from May to September. The

average annual temperature varies around 230C, with a minimum

of 170C and a maximum of 300C. The average relative humidity is

70%, with predominant winds in the northeast direction [13].

Data sources and management
A total of 425 MosquiTRAP were set throughout the study area

(Figure 1), placed 200–250 meters apart and monitored weekly

during 90 weeks (epidemiological weeks 11/2009 to 48/2010).

MosquiTRAPTM (Ecovec S.A., Belo Horizonte, Brazil) [12] is a

sticky trap that captures gravid Ae. aegypti seeking places to oviposit

[12]. For operational reasons, a few traps were not checked every

week and the data collection process was not completely

homogeneous. Considering the variability in the number of

observations per week, capture data was summarized as mean

capture rate per trap per week calculated as the ratio between the

total number of mosquitoes captured during the week and the

number of positive traps. Moreover, an additional 19-weeks time

series was used to assess the predictive ability of the fitted linear

generalized model. The trap data was kindly provided by the

biotechnology ‘‘spin-off’’ company Ecovec S.A.. The data will be

freely available if requested to authors.

Meteorological data in the form of average weekly accumulated

rainfall (mm); minimum, average and maximum temperature (uC);

minimum, average and maximum relative air humidity (%); and

wind velocity (m/s) were obtained at Ministry of Health

Environmental Information System - SISAM website (http://

sisam.cptec.inpe.br/msaude/).

Generalized Linear Models (GLM)
The average effects of the meteorological variables on weekly

mosquito abundance were estimated using generalized linear

models with Negative Binomial distribution using the logarithmic

link function [14]. Since the variance of the mosquito abundance

distribution (6393) was much greater than its mean (210),

characterizing over-dispersion, the Negative Binomial probability

distribution was chosen instead of the Poisson distribution, the

typical probability distribution for modeling counting data. The

response variable was the total number of female Ae. aegypti

mosquitoes on the week t (yt), modeled as:

yt eNegative Binomial(mt, h)

log(mt)~log(Nt)zb0z
XP

p~1

bpxt{lpz
XP

i~1

X
jwi

bijxi,t{li
xj,t{lj

where mt is the average of the response variable on the week t, h
represents the extra variability parameter of the data, and the bt’s

are the parameters that measure the effects of the P lagged

(lp,p~1,:::, P) meteorological variables and the autoregressive

term (mosquito abundance per trap on the previous week). The

parameters bij ’s represent the effects of the meteorological

variables interaction terms. The term log(Nt) corresponds to the

model offset, representing the Natural logarithm of the number of

traps observed in week t. With the introduction of the offset term,

one corrects for the nonhomogeneity of the capturing process.

The modeling strategy was as following: First, the effect of each

meteorological variable, lagged up to 4 weeks (lags lp, p~0,:::, 4),

on mosquito abundance was assessed individually at a level of 5%

significance. This range of lags was chosen based on the lifespan of

the adult mosquito that can vary from 2 to 4 weeks, depending

upon environmental and climatic conditions. Second, multivariate

analysis was carried out by the introduction of one by one

meteorological variables retained in the previous step, ranked in

descending order of significance with the response variable (two

more significative lagged variables). More than two variables had

not been included into models to avoid multicollinearity. At last,

the autoregressive term (mosquito abundance per trap in the

previous week) was included in the model. Models were tested with
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possible interaction terms between the lagged meteorological

covariates included. In all models, the intercept was removed from

the linear predictor. We presented the best fitted models for all

combinations of interactions between temperature and humidity

(nine combinations - each temperature variable with each

humidity variable), chosen by the lowest Akaike Information

Criterion - AIC e Deviance impact [15–17].

Residual analysis was carried out, including an assessment of the

presence of temporal structure in the residuals using autocorre-

lation (ACF) and partial autocorrelation functions (PACF) [14,15].

The model predictability for forecasts of ‘‘out-of-fit’’ data was

evaluated by the projection of the predicted values (and the 95%

confidence interval) for 19 weeks ahead of the fitted series. We

calculated the Spearman’s Rank Correlation coefficient (SRC) for

assessing linear association between the forecasted and real time

series [18].

Wavelet Analysis
The wavelet transform is a linear operation used in the analysis

of signals, for the purpose of extracting relevant information from

frequency variations, in addition to detecting important local

temporal structures, as abrupt peaks and gaps. This technique also

enables analysis of relations between two non-stationary series and

location of intermittent oscillations, identifying gradual changes in

the strength of exogenous variables [19]. The correlation may be

analyzed through cross wavelet transform and wavelet coherence

[20,21]. The former exposes the regions of high variability in

common for the two series, while the latter identifies regions where

the two series oscillate on the same frequency. The most used

transformation function is the Morlet wavelet, whose results can be

interpreted as periods (wavelength) of the oscillatory components.

Reviews of the method can be seen in Cazelles et al. [20] and

Torrence and Compo [22].

The time series variance distribution may be represented by a

bi-dimensional image, known as the wavelet power spectrum,

which shows the amplitude of oscillatory components versus

frequency scale, and how this amplitude varies over the time [20].

Monte Carlo methods and chi-squared tests are used to assess

statistical significance of the observed variability, highlighting

contour levels of 95% confidence in relation to standard power

spectrum, the red noise or first order autoregressive process (Null

Hypothesis) [20,22]. The cone of influence (COI), represented by

a parabola superimposed on the power spectrum, delimits the

region free from edge effects (hatched areas in darker tone in the

center of the spectrum) [20,22]. Relative phase between variables

are indicated by the angle of small arrows. Arrows pointing right

indicate in-phase processes and arrows pointing left indicate out-

phase processes [21,22].

In this study, the wavelet analysis was used only as a

complementary analysis to the GLM models. The visual analysis

of the wavelet spectra allows checking in which time intervals, the

associations are significant. The wavelet spectra of the meteoro-

logical variables and the interaction terms are presented. The

interaction term was composed as the time series resulting from

the multiplication between the time series of meteorological

variables interacting.

Prior to the wavelet analysis, the natural logarithmic transfor-

mation was applied to the mosquito abundance time series as well

as to the meteorological variables in order to obtain approximately

normal distributions (improving chi-squared test’s accuracy). The

series were standardized (zero mean and standard deviation one)

for better comparability. Note that scale changes of the variables

do not change the appearance of the wavelet spectrum. All

analyses were conducted using the R environment [23] and

Matlab, with the routines available at the sites http://paos.

colorado.edu/research/wavelets/ by Torrence and Compo [22]

and http://www.pol.ac.uk/home/research/waveletcoherence/ by

Grinsted et al. [21].

Results

A total of 18,959 Ae. aegypti female mosquitoes were captured

during the study period, with an average of 210.7 per week,

ranging from 61 to 581 mosquitoes per week. This corresponded

to an average mosquito abundance per trap of 0.58 (mini-

mum = 0.27, maximum = 1.53 mosquitoes per week per trap). The

time series of mosquito abundance per trap displays non-stationary

features (Figure 2a) with an increasing trend of infestation up to

week 44, in the summer, followed by a slight downward trend. An

outlier of 1.53 mosquitoes per trap was observed on the week 45.

The autocorrelation (ACF), and partial autocorrelation functions

(PACF) (Figures 2b and 2c) show the presence of temporal

structure. The ACF shows that some lags exceed the limits built on

the hypothesis that the data are independent, and the PACF

presents a slight seasonal pattern.

The meteorological conditions during the study were typical for

the region. The temperature averaged 19.36uC (minimum

temperature), 22:600C (average temperature), and 27:030C

Figure 1. Study Area. Map of the municipality of Governador Valadares and the locations of set traps.
doi:10.1371/journal.pone.0064773.g001
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(maximum temperature), varying from 13:910C to 32:460C. Thus,

it did not show great variability over the period analyzed

(Figure 2d). The relative air humidity was higher during the

warmer months and averaged 55.93% (minimum humidity),

76.22% (average humidity), and 91.29% (maximum humidity)

(Figure 2e), with the minimum humidity presenting the greatest

variability. The records of temperature and humidity were

consistent with previous years, with no anomalous events. The

rainfall averaged 61 mm, with a peak of 15760.2 mm in the end of

the spring of 2010 (November). There was no rain in 35 of the 90

weeks, with the dry period corresponding to the winter months

(May–August) (Figure 2f). The average wind speed was low,

2.9 m/s, with lower values during fall in early May (Figure 2f).

Generalized Linear Models (GLM)
The temperature and humidity lags most associated with

mosquito abundance can be seen in Table 1, listed in descending

order of statistical association with the response variable. The first

order autoregressive term - AR(1) was also significant. The

precipitation and wind were not significant, at any lag (Pw0:05).

The best model was chosen from nine combinations of models

with temperature and humidity interactions at different lags, using

the Akaike Information Criterion - AIC (Table S1). The air

humidity at 2 weeks lag was the most significant term in all models,

followed by the 0-lag maximum temperature, and the 4 weeks lag

average and minimum temperatures.

The best model was the one containing the AR(1) term, the 4-

lag minimum temperature, the 2-lag minimum humidity and the

interaction between the last two. The Figure S1 and the Table S3

show a gradual improvement in the fit from the model with only

the autoregressive term (Figure S1a - AIC = 1053.46,

SCR = 20.0107), the model with only meteorological variables

(Figure S1b - AIC = 947.68, SCR = 0.5202) and the best model

(Figure S1c - AIC = 922.27, SCR = 0.6610). Figure S2 shows the

goodness-of-fit and residuals analysis plots. From these plots, one

can observe a strong correlation between the observed and fitted

time series, and that the fitted model complies with the GLM

assumptions of normality, linearity and homoscedasticity, as well

as the lack of autocorrelation structure in the residuals. Table 2

shows the estimated effects, variability and statistical significance of

each term in the final model. The significant interaction term

between minimum temperature (lag 4) and minimum humidity

(lag 2) implies that the effect of one meteorological variable on the

abundance changes, according to the values that the other variable

takes. Figure S3 shows how the interaction between minimum air

humidity and minimum temperature affects mosquito abundance,

indicating that effects change direction at values below or above

43.6% for minimum humidity and 15:70C for minimum

Figure 2. Descriptive plots. Times series (a), autocorrelation function - ACF (b) e partial autocorrelation function - PACF (c) of Ae. aegypti
abundance per trap; minimum, average and maximum temperature (d), minimum, average and maximum relative air humidity (e), precipitation (mm)
and wind velocity (m/s) (f).
doi:10.1371/journal.pone.0064773.g002

Table 1. Univariate models.

Variable (lag) Estimate Standard Error p-value

AR(1) 0.8727 0.1427 ,0.0001

Maximum Temperature (0) 0.0799 0.0149 ,0.0001

Average Temperature (0) 0.0888 0.0192 ,0.0001

Minimum Temperature (4) 0.0697 0.0181 0.0001

Minimum Humidity (0) 20.0070 0.0026 0.0061

Maximum Humidity (2) 0.0287 0.0110 0.0094

Average Humidity (2) 0.0107 0.0046 0.0187

Estimates of individual effects of lagged variables (lag) on mosquito
abundance/week/trap according to the generalized linear model.
doi:10.1371/journal.pone.0064773.t001
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temperature. Table S2 further shows this threshold as estimated by

the other nine models.

The best model was used to predict the expected environmental

conditions associated with positive mosquito population growth.

We compared three scenarios (Figure 3), by varying the mosquito

density in the previous week (the AR(1) term). In the first scenario

(LOW), when mosquito density in the previous week was low

(0.111 mosquitoes/week/trap), the model predicted positive

population growth independently of the meteorological conditions.

In the second scenario (MIDDLE), with median mosquito density

(0.56 mosquitoes/week/trap), population growth is expected only

if minimum temperature is above 180C and minimum air

humidity is above 55%. If mosquito abundance is high (scenario

HIGH, with 0.99 mosquitoes/week/trap), on the other hand,

conditions for positive population growth are restricted to

minimum temperature above 20:10C and minimum air humidity

above 72%. Figure S4 shows the model capacity to predict the

mosquito abundance in the (non-fitted) following 19 weeks. We

can observe the good performance of the fitted model for forecasts

of ‘‘out-of-fit’’ data (Spearman’s Rank Correlation coefficient

(SRC) = 0.72).

Wavelet Analysis
The power spectrum of the mosquito time series (Figure 4)

presents sparse areas with significant oscillations. The most

dominant peak occurs with a period of 1–4 weeks at the end of

spring and onset of the 2009 summer (weeks 37 to 47) coinciding

with the largest abundance peak in the time series (see Figure 2a).

The spectrum shows a weaker but still significant 2-week peak in

the fall (10–15 weeks).

Figures 5 and 6 show the cross wavelet spectra between

mosquito abundance and the meteorological variables. Overall,

the associations were intermittent during the study period

(Figure 5). The effects of minimum and average temperature are

more stable, although the effect of the former is very weak.

Minimum temperature presented greater association with mos-

quito abundance during the winter-spring of 2010, when both

time series were at their lowest (Figure S6a). Mosquito abundance

presented more association with minimum humidity during the

spring-summer seasons of 2010 (Figure S6b), the same period

when the joint association of minimum temperature and minimum

humidity with the mosquito abundance was more significant

(Figure S6c). The strongest crude effect was observed between

mosquito abundance and maximum temperature. Contrasting

with the regression model, the wavelet detected significant

transient associations between precipitation and wind velocity.

The wavelet coherence spectra (Figure S5) show that there are

common regions of variability between mosquito abundance and

the meteorological variables some with high power (0.6 to 1.0),

while others with low energy (which are not present in the cross

wavelet spectrum).

Discussion

In this study, we demonstrate that a generalized linear model at

the week time scale with minimum temperature and minimum

humidity as covariates is a good predictive model for the

abundance of Ae. aegypti in a sub-humid tropical city characterized

by well defined dry and wet seasons. The model did not only

presented a good fit to the historical data but was also able to

forecast 19 weeks of data with good precision. This result is

valuable for vector surveillance in dengue endemic areas with

similar climate. We also observed that the quality of the model was

highly depended on the inclusion of an AR(1) term and the

interaction between the two meteorological variables. The best

fitted model, with AR(1), minimum air temperature (lag 4 weeks),

minimum humidity (lag 2 weeks) and the interaction between

these two meteorological variables, corroborates with Azil et al.

[2], who observed significant main effects of the average

temperature and average humidity at two week lag, in Cairns,

Australia. However, their model did not contain the interaction

term.

Despite the natural perception that there is interaction between

temperature and humidity, climate models generally do not

explicit test such terms. None of the models we surveyed in the

literature presented interaction terms. Costa et al. [6] evaluated

the impact of small variations in temperature and humidity on the

reproductive activity and survival of Ae. aegypti. It was shown that,

independent from humidity, an increase in temperature led to a

decrease in the number of eggs and a decrease in the egg-laying

time. Low temperature and high humidity resulted in greater

survival of mosquitoes and greater egg productivity, compared to a

scenario of high temperature and low humidity. When humidity

was low, there was a reduction in egg fertility as temperature

increased. For temperatures greater than 350C, it was clearly

shown that the decrease in mosquito population was influenced

jointly by temperature and humidity.

The interaction between temperature and humidity produced a

more informative model for mosquito surveillance. The model

predicted population growth at temperature and humidity values

above 180C and 54% in a scenario where in the previous week,

mosquito abundance was average, and above 200C and 72% in a

scenario where mosquito abundance was already high. These

thresholds can provide empirical information regarding the

environmental conditions that are favorable for Ae. aegypti

proliferation in this setting. Experimental observations where

mosquitoes develop under controlled conditions show that below

Table 2. Best fitted model.

Model : AR(1)+Minimum Temperature+Minimum Humidity+Interaction Term (Minimum Temperature*Minimum Humidity)

Variable Estimate Standard Error p-value

Mosquito abundance (lag = 1) 0.8344 0.1481 1.78e-08

Minimum Temperature (lag = 4) 20.0714 0.0103 4.05e-12

Minimum Humidity (lag = 2) 20.0257 0.0066 0.0001

Interaction Term 0.0016 0.0003 8.06e-09

Overdispersion Parameter 19.1100 3.1600

Estimates of fitted model with climatic variables and interaction term effects on mosquito abundance/week/trap.
doi:10.1371/journal.pone.0064773.t002

Analysis of the Climate on Dynamic Ae.aegypti
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Figure 3. Interaction Heat Maps. Heat maps graphs of the Ae. aegypti abundance/week/trap growth with change in values of Minimum
Temperature and Minimum Humidity, for LOW (a), MIDDLE (b) and HIGH (c) mosquito abundance in the preceding week. The quadrants formed by
the red lines limited by the thresholds (15.7uC and 43.6%) separate the shift effects on mosquito abundance, that can increase (Inc) or decrease (Dec)
as the temperature and humidity values increase. Plus sign indicates population growth and minus sign indicates no population growth. The
ascending color scale represents the effect on the abundance as the temperature and humidity increase. Blue lines delimit regions where population
growth in MIDDLE and HIGH scenarios.
doi:10.1371/journal.pone.0064773.g003

Figure 4. Mosquito Abundance Power Wavelet Spectrum. Power wavelet spectrum of Ae. aegypti abundance/week/trap. Times series was log-
transformed and normalized. Colors code for increasing spectrum intensity, from blue to red. Black bolder contours show statistically significant area
(threshold of 95% confidence interval). The black curve delimits the cone of influence (region not influenced by edge effects). Period scale is in weeks.
The y-axis is on a base 2 logarithmic scale.
doi:10.1371/journal.pone.0064773.g004
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such temperatures, development is delayed and survival is greatly

reduced [24]. Low humidity also has an important deleterious

effect on survival [6] fecundity and fertility [25].

Despite the good fit of the linear model, further investigation

using wavelet techniques showed that the association between

climate and mosquito abundance is not constant, as assumed by

the linear model. For example, a biological explanation for

intermittent associations is the observation that mosquitoes are

capable of finding refuge from harsh environmental conditions by

hiding inside houses or avoiding activity during rainfall. Such

behaviors can buffer part most of the climate dependent dynamics

and produce only intermittent associations with meteorological

variables when they assume values that are too extreme or

persistent to be avoided [26].

Intermittence in the association between variables has conse-

quences for the application of regression models. A time series is

said to be non-stationary when its statistical properties, such as

mean and variance, vary over time. When a temporal series

contains dominant periodic components that vary in amplitude

and frequency, and this heterogeneity results in high variability on

different frequency scales, rendering the series non-stationary,

classical statistical analysis techniques may be inadequate. This

characteristic is especially evident in epidemiological time series

with strong autocorrelation and variation [20,22]. Conventional

statistical methods may fail to test the relation between variables

when discontinuous or non-stationary associations are present

[27,28].

Wavelet technique enables the identification of transient

behaviors in time series, separating oscillations with periods of

shorter duration from those with longer duration. It has been used

in several fields such as meteorology, geophysics, statistics and

signal processing. In the context of dengue fever, several studies

have been done, all of them agreeing on its complex association

with climate. For instance, Cumming et al. [29] identified

travelling waves of dengue epidemics in Bangkok from 1983 to

1997 using Empirical Mode Decomposition, a method analogous

Figure 5. Meteorological variables and mosquito abundance Cross Wavelet Spectrums. Cross wavelet spectrum of Ae. aegypti
abundance/week/trap versus: Minimum Temperature (a); Maximum Temperature (c); Average Humidity (e); Precipitation (g). Average Temperature
(b); Minimum Humidity (d); Maximum Humidity (f); Wind Velocity (h). Times series were log-transformed and normalized. Colors code for increasing
spectrum intensity, from blue to red. Black bolder contours show statistically significant area (threshold of 95% confidence interval). The black curve
delimits the cone of influence (region not influenced by edge effects). Period scale is in weeks. The y-axis is on a base 2 logarithmic scale. The black
arrows represent the relative phase relationship (anti-clockwise direction starting at the west-east direction). In all graphs, the first series is the
mosquito abundance and the second series is a meteorological variable: 0u: both series are in-phase; 45u: the second series is 1/8 of period ahead of
the former, 90u: 1/4 of the period ahead; 135u: 3/8 of the period ahead; 180u: the series are out-phase; 225u: the second series is 3/8 of the period
behind; 270u: 1/4 of the period behind, 315u: 1/8 of the period behind.
doi:10.1371/journal.pone.0064773.g005

Figure 6. Interaction terms and mosquito abundance Cross Wavelet Spectrums. Cross wavelet spectrum of Ae. aegypti Abundance/week/
trap versus: First column: Minimum Temperature; Maximum Temperature; Average Humidity; Precipitation. Second column: Average Temperature;
Minimum Humidity; Maximum Humidity; Wind Velocity. Times series were log-transformed and normalized. Colors code for increasing spectrum
intensity, from blue to red. Black bolder contours show statistically significant area (threshold of 95% confidence interval). The black curve delimits
the cone of influence (region not influenced by edge effects). Period scale is in weeks. The y-axis is on a base 2 logarithmic scale. The black arrows
represent the relative phase relationship (anti-clockwise direction starting at the west-east direction). In all graphs, the first series is the mosquito
abundance and the second series is a meteorological variable: 0u: both series are in-phase; 45u: the second series is 1/8 of period ahead of the former,
90u: 1/4 of the period ahead; 135u: 3/8 of the period ahead; 180u: the series are out-phase; 225u: the second series is 3/8 of the period behind; 270u: 1/
4 of the period behind, 315u: 1/8 of the period behind.
doi:10.1371/journal.pone.0064773.g006
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to wavelet analysis. Cazelles et al. [27] found high-yet-discontin-

uous and transient association between El Niño, precipitation and

dengue epidemics whereas Nagao and Koelle [30] used wavelet to

identify a shift in the frequency and the dominant periodic

components of the largest dengue epidemic in Thailand.

Interesting, Johansson et al. [31] analyzed the relation between

El Niño, local weather, and dengue incidence in Puerto Rico,

Mexico and Thailand showing that ENSO was transiently

associated with temperature and dengue incidence on multi-year

scales. Thai et al. [32] detected seasonal and inter-annual cycles in

the incidence of dengue, varying over the time and space and

relations with ENSO. Vazquez-Prokopec et al. [19] applied spatial

wavelets and other techniques to describe spread of DENV-2 in

the city of Cairns (Australia). Chaves and Kitron [21] used multi-

scale analysis to show that relative air humidity is more significant

at intermediary time scales, facilitating the movement of fertilized

females and access to egg-laying sites. In another example, Chaves

et al. [7] present results from simple mathematical models and

cross wavelet to demonstrate that the density-dependent regulation

was strong in Ae. aegypti population in Puerto Rico and Thailand,

and that the population is more sensitive to climate variables with

low kurtosis.

We believe that our qualitative results (non-stationary, transient

dynamics) are robust to the limitations posed by the limited

sample size. However, proper characterization of the seasonal

and other periodic patterns likely to be present in the

entomological time series will require a longer time series. This

may result in less robust classifications of inter-weekly changes

of variability analyzed using the wavelet technique. Another

potential source of imprecision derives from the nature of the

data collection process itself. As part of a nonscientific

surveillance program, the collection process was vulnerable to

irregular sampling effort. This irregularity was in part taken into

account in the statistical analysis by the introduction of the offset

term in the model. Future analysis should address longer time

series. For these studies, we stress the importance of considering

not only standard linear models, but also exploratory methods

for transient patterns such as the wavelet. Another important

constraint of this study is the exclusion of other determinants of

mosquito dynamics, besides climate. It is well known that due to

its highly domestic nature, Ae. aegypti dynamics is affected by

urbanization, socioeconomic factors, sanitation conditions and

vector control measures which should also be incorporated into

predictive temporal models [1,10,31,33].

One goal of entomological surveillance is to provide early

warning for dengue outbreaks. In Brazil, as in many countries,

surveillance is based on household larval surveys carried out three

to four times a year. This approach is very time and labor intensive

as well as prone to inaccuracy due to its dependence on human

homogeneous sampling effort. These problems have led, to the

emergence of alternative monitoring systems, based on georefer-

enced traps to sample egg and adult mosquitoes [5,12,23,34].

Statistical methods that monitor possible abnormalities in the

increase of these rates of infestation are important, distinguishing

between scenarios within expectations, and a situation that calls

for immediate control activities.

The findings of this study highlight the importance of jointly

analyzing average effects and non-stationary associations of

meteorological variables on mosquito abundance over the time,

using terms of interaction at their extreme values. The results can

be integrated into existing trap based surveillance systems for Ae.

aegypti and be useful to the future development of warning systems

based on climatic elements for prevention and control of dengue

epidemics.

Supporting Information

Figure S1 Goodness-of-fit for gradual fits of the best model.

Graphs of overlapping of values observed (series in red) of

mosquito abundance in the 90 weeks and fitted values (series in

blue) of the model with only the AR(1) term (a), the model with

only meteorological variables (b) and the best fitted model (The

dashed lines correspond to confidence intervals of 95% of fitted

values).

(TIF)

Figure S2 Goodness-of-fit and Residuals Analysis plots. First

column: Graph of overlapping of values observed (series in red) of

mosquito abundance in the 90 weeks and fitted values (series in

blue) from the best fitted model (The dashed lines correspond to

confidence intervals of 95% of fitted values); Residuals versus

Fitted values plot; Residuals versus Leverage values plot. Second

column: Mosquito abundance/trap observed versus fitted abun-

dance/trap plot; Residuals Q-Q plot; Residuals ACF.

(TIF)

Figure S3 Interaction Plots. Graphs assessing effect of interac-

tion between minimum temperature and minimum humidity on

Ae. aegypti abundance/week/trap Fixed values of minimum

temperature and minimum humidity corresponds to the quantile

values of the distributions. The curves intersect at the humidity

value of 43.6% (left) and 15.7uC (right).

(TIF)

Figure S4 Predictability model. Graph of overlapping of values

observed (series in black) of number of mosquitoes in the 109

weeks and forecast values (series in blue) to ‘‘out-of-fit’’ data. The

dashed lines correspond to confidence intervals of 95% of forecast

values.

(TIFF)

Figure S5 Wavelet Coherence Spectrums. Wavelet Coherence

spectrum of Ae. aegypti Abundance/week/trap versus: First line:

Temperature (Minimum, Average and Maximum). Second line:

Humidity (Minimum, Average and Maximum). Third line:

Precipitation; Wind Velocity; Term Interaction (Model 1). Blue,

low coherence; red, high coherence. The black bold contours

show a = 5% significance level. The cone of influence (black

curve) indicates the region not influenced by edge effects. Period

scale is in weeks. The y-axis is on a base 2 logarithmic scale. The

black arrows represent the relative phase relationship (anti-

clockwise direction starting at the west-east direction). In all

graphs, the first series is the mosquito abundance and the

second series is a meteorological variable: 0u: both series are in-

phase; 45u: the second series is 1/8 of period ahead of the

former, 90u: 1/4 of the period ahead; 135u: 3/8 of the period

ahead; 180u: the series are out-phase; 225u: the second series is

3/8 of the period behind; 270u: 1/4 of the period behind, 315u:
1/8 of the period behind.

(TIF)

Figure S6 Meteorological and Mosquito Abundance series plot.

Times series plots of the minimum temperature (left), minimum

humidity (center) and de interaction term (right) time series

matched with the mosquito abundance/week/trap. Blue vertical

lines delimit the time period in which the association was

significant in the wavelet analysis.

(TIF)

Table S1 Model selection. Comparison of models with effects

of the meteorological variables, autoregressive term and possible

interactions of temperature and humidity (minimum, average
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and maximum) lagged weeks (lag) on mosquito abundance/

week/trap.

(DOCX)

Table S2 Thresholds shift effects on mosquito abundance.

Temperature and humidity thresholds shift effects on mosquito

abundance/week/trap to the nine fitted models.

(DOCX)

Table S3 Process of fitting the best model. Estimates of the

gradual fit of the best model.

(DOCX)

Acknowledgments

For the biotechnology ‘‘spin-off’’ company Ecovec S.A. (Belo Horizonte,

Brazil) [12] for providing the data on vector infestation collected in

MosquiTRAPs georeferenced.

Author Contributions

Conceived and designed the experiments: AEE. Performed the

experiments: AEE. Analyzed the data: TCS AAN CTC. Contributed

reagents/materials/analysis tools: AEE. Wrote the paper: TCS AAN

CTC AEE.

References

1. Christophers SR (1960) Aedes aegypti (L): The Yellow Fever Mosquito. Cambridge

University Press.

2. Azil AH, Long SA, Ritchie SA, Williams CR (2010) The development of
predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti

abundance and meteorological variables in North Queensland, Australia.
Tropical Medicine and International Health, 15(10): 1190–1197.

3. Chen SC, Liao CM, Chio CP, Chou HH, You SH, et al. (2010) Lagged

temperature effect with mosquito transmission potential explains dengue
variability in southern Taiwan: Insights from a statistical analysis. Science of

the Total Environment, 408: 4069–4075.
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