
Forecasting Fire Season Severity in South America Using Sea Surface Temperature 
Anomalies  

Author(s): Yang Chen, James T. Randerson, Douglas C. Morton, Ruth S. DeFries, G. 
James Collatz, Prasad S. Kasibhatla, Louis Giglio, Yufang Jin and Miriam E. Marlier  

Source: Science , 11 November 2011, New Series, Vol. 334, No. 6057 (11 November 2011), 
pp. 787-791  

Published by: American Association for the Advancement of Science 

Stable URL: https://www.jstor.org/stable/41351688

 
REFERENCES 
Linked references are available on JSTOR for this article: 
https://www.jstor.org/stable/41351688?seq=1&cid=pdf-
reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

American Association for the Advancement of Science  is collaborating with JSTOR to digitize, 
preserve and extend access to Science

This content downloaded from 
�������������150.163.25.43 on Thu, 04 Aug 2022 02:02:13 UTC������������� 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/41351688
https://www.jstor.org/stable/41351688?seq=1&cid=pdf-reference#references_tab_contents
https://www.jstor.org/stable/41351688?seq=1&cid=pdf-reference#references_tab_contents
https://www.jstor.org/stable/pdf/41351688.pdf


 REPORTS I
 18. J. К. Crouch, ]. Suppe, Geol. Soc. Am. Bull. 105,

 1415 (1993).

 19. N. McQuarrie, В. P. Wernicke, Geosphere 1, 147
 (2005).

 20. D. S. Brothers et al., Nat. Geosci. 2, 581 (2009).

 21. С. T. Herzig, D. С. Jacobs, Geology 22, 991 (1994).
 22. G. S. Fuis, W. D. Mooney, ]. H. Healy, G. A. McMechan,

 W. 1. Lutter. 1. GeoDhvs. Res. 89. (B2). 1165 (1984).
 23. T. Parsons. 1. McCarthv. Tectonics 15. 456 (1996).

 24. A. Nicolas, Nature 315, 112 (1985).
 25. A. K. Schmitt, ]. A. Vazquez, Earth Planet. Sci. Lett. 252,

 260 (2006).
 26. R. L. Evans et al., Nature 437, 249 (2005).

 27. M. P. Süss, ]. H. Shaw,;. Geophys. Res. 108, 2170 (2003).
 28. S. E. Hansen, A. A. Nyblade, ]. Julia, 5. Afr. ]. Geol. 112,

 229 (2009).
 29. W. Buck, F. Martinez, M. S. Steckler, J. R. Cochran,

 Tectonics 7. 213 (1988).

 30. D. Wilson et al., Nature 433, 851 (2005).
 Acknowledgments: This work was supported by the

 National Science Foundation EarthScope Program
 (EAR-0641772) and an EAR Postdoctoral Fellowship
 to V.L. (EAR-0948303). We thank the IRIS Data

 Management Center and the Southern California

 Earthquake Data Center for the waveform data used

 in this study. We thank H. Yuan, D. Forsyth, C. Rau,

 B. Schmandt, H. Ford, and D. Brothers for assistance

 with methods and interpretation.

 Supporting Online Material
 www.sciencemag.org/cgi/content/full/science.1208898/DCl
 Materials and Methods

 SOM Text

 Figs. SI to S 10
 References (31-50)

 25 May 2011; accepted 26 September 2011
 Published online 6 October 2011;
 10.1126/science.l208898

 Forecasting Fire Season Severity in
 South America Using Sea Surface
 Temperature Anomalies
 Yang Chen,1* James T. Randerson,1 Douglas C. Morton,2 Ruth S. DeFries,3 G. James Collatz,2
 Prasad S. Kasibhatla,4 Louis Giglio,5 Yufang Jin,1 Miriam E. Marlier6

 Fires in South America cause forest degradation and contribute to carbon emissions associated
 with land use change. We investigated the relationship between year-to-year changes in fire
 activity in South America and sea surface temperatures. We found that the Oceanic Niño Index
 was correlated with interannual fire activity in the eastern Amazon, whereas the Atlantic
 Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern
 Amazon. Combining these two climate indices, we developed an empirical model to forecast
 regional fire season severity with lead times of 3 to 5 months. Our approach may contribute to
 the development of an early warning system for anticipating the vulnerability of Amazon forests
 to fires, thus enabling more effective management with benefits for climate and air quality.

 Deforestation genic South carbon America and emissions contribute forest and degradation to regional anthropo- and in Deforestation South America contribute to anthropo- genic carbon emissions and regional and
 global climate change (1-4). Fire is the dominant
 method for converting forest to cropland or pas-
 ture (5, 6), and fires account for approximately
 half of the carbon emissions from deforestation

 and forest degradation in South America (2). Al-

 though deforestation rates in the Brazilian Am-
 azon have declined over the past 5 years (7),
 trends in fires and burned area have not declined

 by the same amount, possibly because continued
 use of fire after deforestation maintains the risk of

 agricultural fires escaping into adjacent forests
 (5, 8). Notably, extensive burning in the Brazilian
 states of Mato Grosso and Pará during 2007 led

 to the highest fire emissions of any year during
 the period 1997-2009 (9), highlighting the need
 to target forest degradation in addition to de-
 forestation for sustained reductions in land use

 emissions from the region.
 Projected decreases in Amazon rainfall dur-

 ing the 2 1 st century (1 0 , 11) may increase the risk

 of forest fires (72), with the potential for larger
 carbon losses (13) and a positive feedback to cli-
 mate change (14). Hence, the success of future
 climate mitigation and adaptation strategies will
 depend in part on more effective ways to manage
 fires. Advance information about the likelihood

 of fires in the dry season allows time to explore
 and implement management options such as al-
 location of firefighting resources or targeted burn-

 ing restrictions.
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 Table 1. Empirical fire model and validation statistics in different high-fire states in Brazil and Bolivia.

 Climate index-annual FSS

 relationship* Empirical

 State Peak fire month Lead time

 (months) r Lead Model Parameter ' r
 ONI AMO ONI AMO abc MOD MYD VIRS ATSR GFED3

 Amazonas September 10 4 0.28 0.72 4 0.72 53.2 13.8 0.72 0.68 0.61 0.08 0.52
 Pará August 3 4 0.57 0.80 3 46.4 281.2 144.1 0.88 0.68 0.72 0.55 0.54
 Rondonia September 7 4 0.62 0.88 4 86.8 1502 332.9 0.93 0.45 0.91 0.58 0.78
 Mato Grosso September 5 6 0.81 0.74 5 287.6 1101 483.9 0.92 0.76 0.74 0.69 0.74
 El Beni September 3 5 0.42 0.75 3 135.9 960.8 331.7 0.82 0.89 0.42 0.49 0.41
 Acre September 7 4 0.43 0.74 4 6.36 186.7 43.7 0.75 0.85 0.72 0.53 0.74
 *Linear regressions between FSS (the annual sum of active fire counts during the fire season) recorded by Terra MODIS (MOD) and climate indices (either ONI or AMO) with different lead times
 (number of months prior to the peak fire month) were performed for 2001-2009. Maximum positive correlations (r) and associated lead times (with a cutoff of at least 3 months) are shown.
 Lead times are computed as the difference between the month of climate index and the peak fire month. Because the climate index is a 3-month mean SST anomaly, we report the lead time
 relative to the end of the 3-month climate index interval (not the center month) to give a more accurate description of the amount of time potentially available to develop a fire season severity
 forecast. fONI and AMO values (2001-2009) that have maximum correlations with FSS were used to derive the empirical model using two-variable linear regressions; a, b, and с are
 coefficients of the formula (Eq. 1). The lead time describes the number of months before peak fire season for which the empirical model can be used for FSS prediction (and is the shorter of the
 two climate index lead times), r is the correlation between predicted and MODIS observed FSS for 2001-2009. $We validated the empirical model by comparing the predicted FSS with
 observed FSS from a different MODIS onboard the Aqua satellite (MYD, 2003-2010), the Visible and Infrared Scanner onboard the Tropical Rainfall Measuring Mission (TRMM) satellite (VIRS,
 1998-2009), the European Space Agency (ESA) Advanced Along Track Scanning Radiometer World Fire Atlas (ATSR, 1997-2010, algorithm 1), and fire emissions from Global Fire Emission
 Dafcbase version 3 (GFED3, 1997-2009).
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 Fig. 1. (A) Maximum positive correlation between Oceanic Niño Index
 (ONI) and fire season severity (FSS) derived from 2001-2009 MODIS active
 fire data. (B) Maximum positive correlation between Atlantic Multidecadal
 Oscillation index (AMO) and FSS for the same period. (C) Mean FSS (in
 terms of detectable fires per million hectares per year) observed by MODIS
 during 2001-2009. (D) Correlation between predicted FSS from the em-
 pirical model (Eq. 1) and observed FSS derived from MODIS. ONI is a 3-month
 mean SST anomaly in the Niño 3.4 region (5°N to 5°S, 120° to 170°W) of
 tye Pacific (27). AMO represents a similar 3-month mean for the North

 Atlantic (0° to 70°N) (28). The months at which ONI or AMO had largest
 positive correlation with FSS are provided for each 5° x 5° grid cell in (A)
 and (B). Also shown in the parentheses are the associated lead times (in
 months) relative to the peak fire month. The months (and the associated
 lead times) at which the empirical model can be used for FSS prediction are
 shown in (D). The spatial distribution of active fires across the Amazon
 shown in (0 is closely related to patterns of land use, including rates of
 forest clearing, the distribution of protected areas, and transportation cor-
 ridors (2, 6, 8, 13).
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 REPORTS I
 We developed a predictive relationship be-

 tween sea surface temperature (SST) anomalies
 and annual fire season severity (FSS) in South
 America that enables forecasts with lead times of

 3 to 5 months. A recent study (15) has shown that

 anomalous local fire activity in the western Am-
 azon can be forecast using SSTs from the tropical
 North Atlantic. Our approach builds on this work
 by combining information from both the Pacific
 and Atlantic and by allowing for spatially vary-
 ing contributions from these two different drivers
 across the continent. With our model, we were
 able to successfully predict interannual variability

 in FSS for several regions. Examination of the
 temporal and spatial variability of the model
 parameters and lead times provided additional
 information about the underlying mechanisms
 enabling these predictions.

 High-fire years in South America are often
 associated with an extended dry season and anom-
 alously low levels of precipitation (16-18). Pre-
 vious studies [e.g., (19-21)] have shown that

 precipitation variability in the Amazon is regu-
 lated by SSTs in both the Pacific and Atlantic.
 During the warm phase of El Niño-Southern
 Oscillation (ENSO), precipitation is suppressed
 over the central and eastern Amazon (22, 23). At-
 lantic SSTs also contribute to precipitation var-
 iability within the Amazon. Anomalously warm
 SSTs over the tropical North Atlantic are be-
 lieved to cause a northward displacement of the
 Intertropical Convergence Zone (ITCZ), which
 in turn decreases convection and precipitation dur-

 ing the dry season in the western and southwest-
 ern Amazon (24). Thus, the most severe droughts
 observed in the Amazon over the past three dec-
 ades have occurred when the tropical eastern Pa-
 cific and North Atlantic were anomalously warm
 (16-18, 24, 25).

 Fire season severity, here defined as the sum
 of satellite-based active fire counts in a 9-month

 period centered at the peak fire month, depends
 on multiple parameters that influence fuel mois-
 ture levels and fire activity in addition to pre-

 cipitation, including vapor pressure deficits, wind
 speeds, ignition sources, land use decisions, and
 the duration of the dry season. As a result, the
 relationship between FSS and SSTs may be more
 complex than the relationships between precipi-
 tation and SSTs described above.

 To develop our empirical model of FSS,
 we used 2001-2009 fire counts detected by the
 Moderate Resolution Imaging Spectroradiometer
 (MODIS) onboard NASA's Terra satellite (26)
 along with Oceanic Niño Index (ONI) (27) and
 Atlantic Multidecadal Oscillation index (AMO)
 (28) SST anomaly time series (29). MODIS pro-
 vides consistent information on active fires,
 with omission and commission errors quanti-
 fied in past work using ground observations and
 higher-resolution satellite imagery [e.g., (29-57)].
 To identify the optimal lead times for using ONI
 and AMO to predict fires, we separately calcu-
 lated the correlation between MODIS-derived es-

 timates of FSS and each of the two climate indices

 for different months prior to the peak fire month

 Fig. 2. Interannual variability of FSS from different satellites and carbon
 emissions from GFED3 compared to predictions from the empirical model (Eq. 1).
 The different satellite products are denoted as in Table 1. These FSS data sets
 are derived from satellite spectroradiometer observations of active fire counts
 with widely varying detector sensitivities and spatial resolutions, and therefore

 they are scaled to allow for more direct comparisons of interannual variability.
 The GFED3 fire carbon emissions estimates from Ì997-2009 were scaled in

 each region except for Amazonas. Some of the variability in the observations
 not captured by our predictive model probably can be attributed to directional
 changes in land use within each region (29) (fig. S8).
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 Fig. 3. FSS anomalies for selected years and their relationship to annual ONI
 and AMO. ONI and AMO were averaged during February to April, months with
 optimal leads for these two indices in high-fire states in Southern Hemisphere South

 America. Annual FSS anomalies observed by MODIS are shown relative to the
 2001-2009 mean. Positive and negative anomalies in ONI and AMO also are shown
 relative to 2001-2009 mean values (-0.08 and 0.13 for ONI and AMO, respectively).

 (i.e., for lead times of 1 to 10 months; defined
 relative to the end of the 3-month SST anomaly
 averaging interval of each climate index) in states
 of Brazil and Bolivia where biomass burning is
 high (Table 1 and fig. SI). We also estimated the
 optimal lead times for 5° x 5° regions across the
 continent (Fig. 1).

 We defined our empirical predictive model
 as a linear combination of the two climate in-

 dices sampled during these months of maximum
 correlation:

 FSSpredictedfoO = Ф) x ONl[t,m(x) - toniM]

 4- b(x) x AMO[¿,m(x) - ТдмоМ] + c(x) (1)

 where FSSpredicted is the predicted FSS in
 region jc and year t, a and b are spatially varying
 coefficients that represent the sensitivities of
 FSS in each region to ONI and AMO, respec-
 tively; and с is a constant. We obtained a, b , and
 с by fitting the observed time series of annual
 FSS from MODIS during 2001-2009 (Fig. 1С)
 with ONI and AMO during the same period.
 ONI and AMO were sampled each year during
 months with lead times t0ni and тАМО relative to

 the peak fire month (m) in each region. The lead

 times varied spatially in each state or 5° x 5°
 region according to the maximum correlation
 (either positive or negative) observed between
 FSS and the individual climate indices.

 Fires in the eastern Amazon were more sen-

 sitive to ONI, whereas AMO had the largest
 impacts on FSS in the southern and south-
 western Amazon (Fig. 1). The AMO influence
 on fires had a distinctive north-south pattern,
 with correlations switching from strongly pos-
 itive to strongly negative north of the equator
 (Fig. 1 and fig. S2). AMO had a stronger pos-
 itive correlation with FSS in Rondonia, Pará,
 El Beni, Amazonas, and Acre, whereas ONI
 was more closely linked with FSS in Mato
 Grosso (Table 1 and fig. S3). These spatial pat-
 terns were generally consistent with observed
 relationships between Pacific and Atlantic SST
 anomalies and precipitation variability within
 the Amazon (20).

 Optimal lead times for the two climate indices
 relative to the peak fire month were 4 to 6 months
 for AMO and 3 to 7 months for ONI for states

 other than Amazonas (Table 1). By combining
 information from AMO and ONI in our empirical
 regression model (Eq. 1), we were able to explain
 some of the interannual variability in FSS across

 South America during 2001-2009 from MODIS
 (Fig. ID). Notably, high-fire years in 2004, 2005,
 and 2007 had the highest values of AMO (and
 positive values of ONI) during the preceding
 January-to-March period (when lead times were
 optimal), whereas in the lowest-fire year (2009)
 AMO and ONI were both negative (fig. S4).

 To verify the model, we compared the model
 predictions with MODIS FSS data from 2010
 (this year was not used to develop the model),
 FSS data derived from three other satellites, and
 carbon emissions from the Global Fire Emissions

 Database version 3 (GFED3) (9) that integrates
 500-m burned area and active fires from multiple
 sources during 1997-2009 (Fig. 2). The model
 predicted a considerable increase in fires in all
 regions in 2010 (relative to the 2008 and 2009
 fire seasons) that was consistent with all of the
 available satellite observations (Fig. 2). Exami-
 nation of the 2010 predictions in more detail for
 MODIS shows that the model generated rea-
 sonably accurate predictions for Acre and Pará;
 overestimated fires in Rondonia, Amazonas, and
 Mato Grosso; and underestimated fires in El Beni

 (fig. S5). Predictions from the model in the pre-
 MODIS era, relative to FSS data from other sat-
 ellites and carbon emissions from GFED3, were
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 REPORTS Щ
 most robust for Rondonia and Mato Grosso (Fig.
 2 and figs. S5 to S7). For these two states, resid-
 uals between observed and predicted FSS during
 2001-2010 suggested that decreasing levels of
 deforestation during the second half of the decade
 reduced FSS and led to model overestimation of

 FSS in later years, indicating the influence of
 land use decisions affecting deforestation fires
 independent of climate (fig. S8).

 The spatial patterns of high- and low-severity
 fire seasons across South America varied con-

 siderably and were partially captured by the mod-

 el. In 2010, for example, the model predicted
 anomalously high levels of fire activity in both
 the southeastern and southwestern part of the
 Amazon basin, consistent with the observed pat-
 tern from MODIS (Fig. 3). In 2007, in contrast,
 both model estimates and MODIS observations

 indicated that anomalously high fires were dis-
 tributed primarily in the southeastern part of
 the basin. These 2 years had high FSS despite
 the lowest deforestation rates during the study
 period.

 Many different types of fire occur in tropical

 forest and savanna biomes, including deforesta-
 tion fires, agricultural waste burning, and acci-
 dental forest and savanna fires from burning in
 adjacent agricultural areas. To examine the po-
 tential to develop separate forecasting models
 for these different fire types, we conducted three

 sensitivity analyses in which we separately con-
 sidered forest and nonforest fires, persistent and
 nonpersistent forest fires ( 6 ), and understory
 fires (29, 32). Relative to our more general mod-
 el, these models derived for different fire types
 within each state had mostly similar levels of
 performance and lead times (table SI and figs.
 SI and S9); thus, our approach may be broad-
 ly applicable for many fire types, including
 fires that contribute to forest degradation. We
 broadly define forest degradation here as de-
 creases in tree density and the woody biomass
 of forests that are not directly associated with
 land clearing.

 What are the mechanisms that enable fire
 season forecasts from SSTs with lead times of

 about 3 to 5 months for important biomass-
 burning regions in Southern Hemisphere South
 America? These time scales are considerably
 longer than expected for direct atmospheric cir-
 culation adjustments to SST anomalies. Further,
 although SST anomalies vary relatively slowly
 (and often have relatively long autocorrelation
 time scales), the relationship between SST anom-
 alies and FSS becomes weaker with shorter lead

 times (fig. SI).
 We hypothesize that precipitation levels dur-

 ing the preceding wet season and during the onset

 of the dry season in forests of Southern Hemi-
 sphere South America act as a key regulator of
 drought intensity during the subsequent dry sea-
 son. Evidence supporting this hypothesis comes
 from analysis of the seasonal distribution of ac-
 tive fires during high- and low-fire years (fig. S 10).

 Fol- satellite observations available over the past

 decade, the midpoint of the fire season occurred
 earlier during high-fire years (fig. Sil), likely as a

 consequence of reduced precipitation during the
 preceding months. This finding also is consistent
 with the observation that precipitation anomalies
 1 to 4 months before the peak fire month (corre-
 sponding to the dry season and the wet-to-dry
 transition season) were more negatively corre-
 lated with the annual sum of fire counts than were

 precipitation anomalies during the peak fire month

 (fig. S 12). The correlation between AMO and
 precipitation during the wet-to-dry transition pe-

 riod and early dry season was particularly strong
 for southwestern Amazonia (fig. S 13). Patterns
 of interannual variability in precipitation also in-
 dicated that climate at the onset of the dry season

 was an important factor; standard deviations and
 coefficients of variation were higher during the
 wet-to-dry transition period than for the subse-
 quent dry-to-wet transition (fig. S 14).

 One possible contributing factor for the time
 delays between SST anomalies and dry-season
 intensity may involve recharge of soil moisture in

 forests during the wet season. High SST anom-
 alies in the North Atlantic from November to

 May limit the southward movement of the ITCZ
 and thus prevent a full recharge of soil moisture
 levels in forest ecosystems across the central and
 southern Amazon during these months (fig. S 13).
 As a consequence, transpiration rates by trees
 may be reduced below average during the fol-
 lowing dry season, with impacts for both sur-
 face humidity and precipitation (3). The time
 scales for these forest-mediated interactions are

 consistent with earlier work documenting deep
 rooting systems (33) and hydraulic redistribution
 (34) required to maintain high levels of évapo-
 transpiration during the dry season (35). This
 mechanism also is consistent with climate model

 simulations indicating that shallower rooting
 depth parameterizations increase the vulnerabil-
 ity of tropical forests to future fire within the
 model (14).

 Our results and earlier work by Fernandes et al.

 (15) provide evidence that Atlantic and Pacific
 SSTs may be used to predict FSS variability with
 lead times of 3 to 5 months in many regions of
 high biomass burning in South America. Inter-
 seasonal fire forecasts may allow for the design
 of more effective mitigation and adaptation strat-

 egies (29) and improve our understanding of how
 fires are likely to respond to changes in Pacific
 and Atlantic Ocean SSTs expected over the next
 several decades (22, 29). Managing fires to con-
 serve biodiversity and carbon stocks in forest
 and savanna ecosystems requires advance plan-
 ning on multiple time scales, including the de-
 sign of policy mechanisms that modify long-
 term development trajectories (36) as well as
 improved use of short-term meteorological fore-
 casts of fire behavior during years with high FSS
 [e.g., (37)]. Our analysis suggests that inter-
 seasonal fire forecasts may complement fire
 management efforts on these shorter and longer
 time scales.
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