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Abstract

Vegetation fires remain as one of the most important processes governing land use and land cover change in tropical areas. The large area
extent of fire prone areas associated with human activities makes satellite remote sensing of active fires a valuable tool to help monitor biomass
burning in those regions. However, identification of active fire fronts under optically thick clouds is not possible through passive remote sensing,
often resulting in omission errors. Previous analyses of fire activity either ignored the cloud obscuration problem or applied corrections based on
the assumption that fire occurrence is not impacted by the presence of clouds. In this study we addressed the cloud obscuration problem in the
Brazilian Amazon region using a pixel based probabilistic approach, using information on previous fire occurrence, precipitation and land use. We
implemented the methodology using data from the geostationary GOES imager, covering the entire diurnal cycle of fire activity and cloud
occurrence. Our assessment of the method indicated that the cloud adjustment reproduced the number of potential fires missed within 1.5% and
5% of the true fire counts on annual and monthly bases respectively. Spatially explicit comparison with high resolution burn scar maps in Acre
state showed a reduction of omission error (from 58.3% to 43.7%) and only slight increase of commission error (from 6.4% to 8.8%) compared to
uncorrected fire counts. A basin-wide analysis of corrected GOES fire counts during 2005 showed a mean cloud adjustment factor of
approximately 11%, ranging from negligible adjustment in the central and western part of the Brazilian Amazon to as high as 50% in parts of
Roraima, Para and Mato Grosso.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Vegetation fires play a significant role in land and
atmospheric processes globally. Their occurrence is particularly
important in tropical regions where human activity is still
heavily based on the use of fires for land use management and
land cover change. In the latter case, deforestation and fires are
found to be closely related eventually leading to important
feedback processes that favor faster and more destructive
depletion of the local forests (Cochrane et al., 1999; Nepstad
et al., 1999). In contrast, at higher latitude regions a greater
percentage of fires are caused by lightning or are accidental in
nature and are highly influenced by the local weather and
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climate conditions (Kasischke et al., 2002). Fires in the tropics
are influenced by local conditions too but will also present an
equally important component due to the influence of human
activities which are reflected in the spatial and temporal
distributions observed across regional to global scales (Barbosa
et al., 1999; Scholes et al., 1996).

Correct quantification of fire events is needed primarily for
understanding the dynamics of land use and land cover change
and therefore subsidize regional environmental programs, as
well as for providing information for modeling of emission
estimates from biomass combustion (Korontzi et al., 2004; Van
der Werf et al., 2003). Consideration of the fire diurnal cycle is
also required for biomass burning transport models, making
high observation frequency a particularly important character-
istic on active fire monitoring systems (Freitas et al., 2005;
Giglio et al., 2006). Satellite sensors have been used to monitor
vegetation fire activity for many years now, providing greater
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insight on the processes associated with fire dynamics at
different scales (Bucini & Lambin, 2002; Carmona-Moreno et
al., 2005; Di Bella et al., 2006; Dwyer et al., 2000; Giglio et al.,
2006). In fact, the use of satellite data is the only way to assess
fire activity at spatial and temporal scales required for land
surface and atmospheric modeling studies. However, the remote
sensing methods used for monitoring fires have limitations that
tend to cause important biases in the final products (Boles &
Verbyla, 2000; Cardoso et al., 2005; Eva & Lambin, 1998;
Kasischke et al., 2003; Schroeder et al., 2005). A major factor
influencing fire numbers derived from remotely sensed data is
the effect caused by cloud obscuration. Because fires have their
highest spectral emission values located in the mid-infrared
band, active fire products exploit that part of the spectrum to
distinguish biomass burning events from the surrounding back-
ground (Giglio et al., 1999; Justice et al., 2002). The presence of
optically thick clouds along the atmospheric path between the
target (fire) and the satellite sensor will, however, greatly reduce
the ability to detect a fire due to severe attenuation of the
spectral signal emitted by either flaming or smoldering phases
of biomass combustion. The extent of the effect of cloud
obscuration on fire detection will depend on the average cloud
cover fraction. But it should be realized that clouds are needed
to produce rain but are not necessarily followed by precipita-
tion. Also the extent and degree of human activities will
influence the spatial and temporal fire distributions.

Current methods used to compensate satellite active fire
detection to account for fires missed due to cloud obscuration
tend to rely on the assumption that fires occur with the same
frequency under cloud covered areas as they do in the open
(Cardoso et al., 2003; Giglio et al., 2003, 2006; Roberts et al.,
2005). Despite being an attractive approach for its simplistic
Fig. 1. Fire frequency (fires 10−2 km−2 year−1) across the nine Brazilian States in A
detection data using all observation hours available.
assumption, the adoption of such procedures becomes prob-
lematic in areas where fires are unevenly distributed in space.
Under such conditions, the resulting adjustment numbers will
be potentially influenced by the cell size selected to extrapolate
the applicable clear sky fire density to the complementary cloud
covered area. The major implication of such an approach is
associated with the assumption of fires in areas with no burning
activity which would lead to an overestimation of fire numbers.
Here we present an approach that uses precipitation data and
land use information to more precisely quantify the potential
omission error associated with the cloud obscuration affecting
satellite active fire detection products. The proposed approach is
applied to a geostationary satellite fire data set, in order to
characterize the cloud effect on fire detection over the entire
diurnal cycle. The analyses are focused on the Brazilian
Amazon where intense fire activity and frequent cloud cover are
prevalent (Fig. 1). In the sections to follow we describe the data
sets used and the method developed and present the results
produced for 2005.

2. Data

2.1. Active fire product

In the past two decades multiple satellite-based active fire
products have been designed using a variety of sensors (Elvidge
et al., 1996; Giglio et al., 2000; Kaufman et al., 1990, 1998a;
Menzel et al., 1991). The performance of individual products is
found to be strongly dependent on the sensor's spectral
characteristics and on the algorithm used, as well as on the
imaging characteristics (e.g., pixel size, observation geometry)
provided by the instruments and the orbital platforms on which
mazonia. Values based on 3-year average (2003–2005) GOES WFABBA fire
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they are mounted (Morisette et al., 2005; Schroeder et al.,
2005). Despite their usual coarser spatial resolution, geosta-
tionary satellites are extremely interesting for fire monitoring as
they provide high observation frequency. High frequency
observations are important for deriving the diurnal cycle of
fire activity at the regional to basin-wide level as well as for
modeling time dependent transport of biomass burning emis-
sions (Freitas et al., 2005).

Data from the Geostationary Operational Environmental
Satellite positioned at 75° longitude (GOES-East) are used in
this study. The GOES-East satellite is located over the study
area selected, the Brazilian Amazon, thereby offering near op-
timal observation conditions (i.e., near nadir viewing geometry)
for fire detection. The nominal 4×4 km pixel resolution at sub-
satellite position remains stable throughout most of the region
with less than 25% increase in pixel area being observed near
the far most corners of the study area.

Two major GOES-based operational active fire products are
available for the study area. The Wildfire Automated Biomass
Burning Algorithm (WFABBA) is produced by the University
of Wisconsin — Madison and uses a contextual approach for
detecting active fires (Prins & Menzel, 1992; Prins et al., 1998).
This product is available for the period of 2000–present and
covers the entire study area. The other product is generated by
the Weather Forecast and Climate Studies Center in Brazil
(CPTEC) and combines fixed threshold and contextual tests for
detecting fires (CPTEC/INPE, 2005); data are available from
July 2004 to present. Because of limited temporal coverage
found with the latter, we used WFABBA's active fire product in
this study. The data set selected for use covers the period of
January 2003–December 2005 and is composed of 17,520 half
hourly files per year. Each file contains information on fire
location and acquisition date along with the temperature and
area estimates and the assigned confidence for each detection.
The latter is divided into five categories ranging from high (0) to
low (5) confidence. Category 5 was rejected here as in some
cases it was found to be strongly associated with spurious
detections composed of large clusters of pixels with no similar
detections from other sensors. This observation confirmed the
expectations for the performance of this particular product in
relation to commission errors (Elaine Prins — personal
communication, 2005). Previous validation of WFABBA's
fire product performed during the Smoke, Clouds and
Radiation-Brazil (SCAR-B) experiment, showed that forest
conversion fires as small as 1 ha could be detected by that
algorithm (Prins et al., 1998). WFABBA's active fire detection
product was selected as the source data to which the cloud
obscuration adjustments were implemented based on the
methodology described in Section 3. The necessary WFABBA
product files were made available by the University of
Wisconsin — Madison.

2.2. Precipitation data

The second set of data used in this study was the satellite
derived precipitation estimates. The Brazilian Amazon is still
only partially covered by meteorological and hydrological
surface stations from which precipitation data can be extracted.
Rainfall is generated primarily within localized convective
systems leading to potential effects on the quality of the
precipitation estimates based on spatially interpolated surface
station data from the region (Costa & Foley, 1998). Availability
of meteorological radar data is also scarce due to limited spatial
and temporal coverage. Consequently, the use of radar data was
not considered as a viable alternative for this study. Because of
these limitations, satellite derived precipitation products were
used for assessing rainfall conditions throughout the Brazilian
Amazon. As with the remote sensing of active fires, preci-
pitation estimates are provided by different sensors using
different algorithms that can be based on single instrument or on
multi-sensor multi-data approaches (Bellerby et al., 2001;
Kummerow et al., 1998; Rudolf et al., 1996). Consideration of
the spatial and temporal resolutions and the accuracy of the
precipitation products that have achieved operational mode led
to the use of GOES-based precipitation estimates for this study.
CPTEC currently generates daily GOES-based precipitation
estimates for most of South America at the nominal spatial
resolution of 4×4 km. CPTEC's product is a revised version of
the Hydro-estimator method (Vicente et al., 1998) which uses
improved coefficients for the specific conditions observed over
Brazil (Vila & Lima, 2004; Carlos Frederico Angelis —
personal communication, 2005). CPTEC's GOES-based pre-
cipitation estimates data production was initiated in January
2004 providing daily files with total accumulated precipitation
at nominal 4 km resolution. The data set used in this study
covers January 2004–December 2005.

Prior to the application of CPTEC's Hydro-estimator precip-
itation data to the proposed methodology, an evaluation was
performed using point precipitation data obtained from 19
automated surface weather stations available across the basin
(URL: http://tempo.cptec.inpe.br:9080/PCD/). Fig. 2A–C show
the results for all stations selected using three different time
integration periods — 1, 7, and 30 days, respectively. The cor-
relation between the two data sets is seen to improve significantly
with the total number of days used in the sampling process.

Two major factors were believed to contribute to the
dispersion seen in all three graphs. First, there is the natural
difficulty in relating the surface station's point data to the 4×4 km
pixel footprint as obtained with the GOES data. The large rainfall
spatial heterogeneity mentioned above will cause significant
impact on the area averaged estimates produced from the satellite
data. The effect of the spatial variability in precipitation patterns
in the region is exemplified in Fig. 2D, where the absolute dif-
ference calculated for the satellite and surface station precipita-
tion values is plotted against the satellite precipitation variance
(σ2) based on 9 pixels centered at one surface station location.

Another important factor contributing to the dispersion seen
in Fig. 2A–C is related to the inherent deficiencies in the
precipitation product that are associated with the use of passive
remote sensing data from GOES and empirical relationships
that tend to impact the accuracy of the precipitation estimates
produced (Boi et al., 2004; Ebert et al., 2007; Rozumalski,
2000; Vicente et al., 2002). Despite these limitations, the high
observation frequency of the GOES precipitation estimates
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Fig. 2. Scatter plots of the satellite precipitation estimates and the surface precipitation observations using 1(A), 7(B) and 30 (C) day average values and of the
difference between the satellite precipitation estimates and the surface precipitation data and the satellite variance (D) calculated for the 9 pixels centered at the Sao
Gabriel weather station in Amazonas state.
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allows for improved integration of the 24 h precipitation totals
thereby providing valuable information for use in this study.
Also, as will be described in Section 3.1, our approach will be
based on relative differences between precipitation estimates
making absolute accuracy of the product of less significance.

2.3. Cloud mask

The WF-ABBA fire product consists of a list of fire
detections, but no cloud mask is included. However, a cloud
mask is needed for identifying cloud obscured pixels that require
processing for potential fire omission. Therefore we developed a
new cloud product at the 4 km spatial and 30 min temporal
resolution of the original active fire data, which is the basis of the
cloud obscuration processing scheme. The cloud mask was
designed based on the use of the Global-Merged Infra-Red
Brightness Temperature (from here on designated simply as BT)
product generated by the Climate Prediction Center (CPC,
2005). The BT data are a single band global product derived
from multiple geostationary satellite imagery and gridded to
nominal 4×4 km resolution. In the case of the Brazilian Amazon
the BT product is primarily derived from GOES-East imagery.
Specific criteria based on the regional conditions were applied to
derive the cloud mask product used in this study. The unique
conditions of the Amazon region in terms of daily BT trends
were explored to derive a method that uses fixed and dynamic
thresholds to distinguish between clouds and land surfaces in the
BT images. Daily variation of BT is small for clear sky pixels as
surface temperature remains much constant within a 30 day
period (Alvalá et al., 2002). The stability of surface conditions is
demonstrated in Fig. 3B in which a typical pattern of BT values
extracted from a 30 day profile obtained from the same pixel and
observation hour is presented. The set of empirically defined
tests used in the production of the cloud masks is summarized
bellow:

BTiV237 KY Super Cold Cloud ðiÞ

BTiN237 K and BTiV278 KY Cold Cloud ðiiÞ

BTiN278 K and BTib
P
BTn¼30 � 1:5

� rn¼30Y Warm=Subpixel Cloud ðiiiÞ

BTiN278 K and BTiz
P
BTn¼30 � 1:5

� rn¼30Y Clear Sky: ðivÞ
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Where BT is evaluated for each individual pixel imaged
during the ith observation hour. Conditions (iii–iv) use
information from the previous 30 days for calculating the
mean (

P
BT) and the standard deviation (σ) for observation

hour i. Only pixels having BT values greater than 278 K are
considered in the calculation of

P
BT and σ. The cloud mask

processing also requires that a minimum of 10% of the BT
data available during the 30 day sampling period be greater
than 278 K. The threshold of 278 K was found to work well
for this specific data set as it provided the dividing line
between unambiguous cloudy pixels and other surfaces.
Having a minimum of 10% of all values observed within a
30 day period above 278 K was then required to estimate the
approximate clear sky BT value and therefore allows for
proper classification of the pixels. For those cases where this
criterion is not met, the pixels are classified as undetermined
and thereby not used in the cloud obscuration processing.
Approximately 1.5% of the pixels analyzed were classified
as undetermined.

The performance of the cloud mask product was tested
against another source (CPTEC's GOES-based operational
multi-band daytime-only cloud classification method; http://
satelite.cptec.inpe.br) to check for consistency. Two 20 day
periods were analyzed: one in the wet season (February
2005) and one in the dry season (September 2005). The
results showed the two products to be in good agreement
and proved the cloud mask to be effective in identifying
cloudy pixels (N95% correspondence with CPTEC's classi-
fication during both wet and dry seasons). Pixels classified
as cloud-free by the cloud mask product showed a less
significant agreement with CPTEC's product (23% during
the wet season and 56% during the dry season). To help
explain the differences between the two products we
randomly selected approximately 20 cases from the wet
and dry seasons for which GOES 1 km and MODIS 1 km
and 500 m bands were visually inspected. The visual
analysis suggested that sub-pixel cumulus clouds that are
routinely observed in the Amazon basin as well as other
sorts of contaminants (e.g., thin cirrus clouds, smoke
plumes) are more frequently classified as clouds by the
more conservative method used by CPTEC resulting in the
differences found.

Half hourly global BT files were obtained from the
NASA's Goddard Space Flight Center Distributed Active
Archive Center (DAAC) covering years 2004 and 2005
(17,520 files per year) and the cloud mask algorithm was
applied for the Brazilian Amazon spatial subset. Analysis of
the BT data showed that pixels having confirmed measurable
precipitation (based on precipitation observations derived
from the same surface station network used to evaluate the
hydro-estimator product above) had a mean value of 237 K
(σ=22 K). This result corroborates the findings of Arkin
(1979) who obtained a 0.75 correlation coefficient between
surface precipitation data and three month-average satellite
rainfall estimates for brightness temperature values lower
than 235 K. Based on this finding, the cloud obscuration
analysis was only carried for pixels showing BT values
greater than 237 K during the 24 h period between the last
satellite precipitation estimate available and the following
one.

3. Methods

In order to predict whether there are fires present under
clouds, we need to determine the conditions under which
fires are likely to occur. In the case of the Brazilian Amazon
region, both physical and social factors play important roles
in defining where and when fires occur. The methodology
presented here uses precipitation estimates to determine the
physical conditions of the environment, along with previous
active fire data to derive the spatial and temporal distribu-
tions of fires that are known to be influenced by specific land
use patterns observed throughout the region. Given that the
extent of the Brazilian Amazon is over 5 million km2, the
conditions leading to vegetation fires can vary significantly
across the region. The existence of vegetation cover types
ranging from grasslands to closed canopy evergreen forests
requires that the area be divided into smaller parts in order to
represent local characteristics of fire occurrence. Conse-
quently a 40×40 km grid covering the study area (3358 cells
total) was used to stratify the entire basin into smaller sub-
parts. The grid size selected was meant to preserve the small
scale phenomena represented in the analyses while balancing
the need for reasonable sample sizes required to produce the
summary statistics described below. In addition, the selected
grid size allowed for easier association with the nominal
4×4 km GOES pixel distribution. Analyses of the physical
conditions and spatial and temporal dynamics was under-
taken for each one of the 48 daily GOES observation hours
(30 min interval). In the following sections we describe the
relationships used to determine potential fire omissions due
to cloud.

3.1. Fire dynamics and precipitation

Precipitation will have a great impact on the conditions of
the local environment, influencing the mechanisms that
control vegetation moisture content and temperature and the
latent and sensible heat fluxes that affect land surface and
atmospheric humidity and temperature conditions (Betts et al.,
2002; Bruno et al., 2006; Nepstad et al., 2002). WFABBA
active fire data from 2004–2005 were used in conjunction
with the GOES precipitation estimates for the same period to
derive the physical conditions that facilitate fire development.
Precipitation amounts during the 30 day period preceding each
fire detection were extracted for every observation hour and
the information gridded to the 40×40 km grid:

RTi;n;z ¼
Xday¼�1

day¼�1

rn;
Xday¼�2

day¼�1

rn; N ;
Xday¼�30

day¼�1

rn

" #
: ð1Þ

Where RT is a 30 element array containing the accumu-
lated precipitation r during a 30 day period preceding fire n
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http://satelite.cptec.inpe.br


Fig. 3. Brightness temperature (BT) image for 15 August 2004 1815 h UTC (A) and the 30 day (July 16→August 15 2004) temporal profile (B) for the pixel
marked as “⊕” on the image. Solid line represents the observed BT values, the dotted line represents the 30 day mean value, and the dashed lines the 30 day
standard deviation.
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[n=1,…, N] detected during observation hour i [i=1,…, 48]
and located in grid cell z [z=1,…, 3358]. A third degree
polynomial was adjusted to the mean values representing the
group of data found in each one of the 40×40 km grid cells
for each observation hour.

R̄i; z ¼
Pn¼N

n¼1
RTi;n;z½1�
N

;

Pn¼N

n¼1
RTi;n;z½2�
N

;…;

Pn¼N

n¼1
RTi;n;z½30�

N

0
BB@

1
CCA ð2Þ

Mi;z ¼ ð1; R̄i; z½1�Þ; ð2; R̄i; z½2�Þ; N ; ð30; R̄i; z½30�Þ
n o

: ð3Þ

fi;zðxÞ ¼ a0 þ a1xþ a2x
2 þ a3x

3: ð4Þ
Where R̄ is the 30 element array with the mean accumulated
precipitation for N fires detected during observation hour i at
cell z, and M is the resulting array of data for which the
coefficients in Eq. (4) are calculated for. Eq. (4) is the function
defining the relationship between the number of days (x)
preceding a fire and the respective mean accumulated
precipitation for that period. Interestingly, M assumes a strong
linear distribution when N grows larger (typically for NN50)
(Fig. 4). The application of a third degree polynomial proved a
good fit with most conditions observed. The resulting curve
coefficients were stored in individual look up tables (LUT, one
for each observation hour) and were to be used in the final code
as a reference value describing the mean precipitation
conditions preceding fires at each 40×40 km grid cell.

The information provided by the polynomial curves was
used to set the probability ranges that describe the potential
occurrence of fires based on the physical condition of the



Table 1
Fire return rate based on GOES WFABBA active fire product using a 4×4 km
grid covering the Brazilian Amazon

Years with detection 1745UTC All hours included

2003 and 2004 33% 68%
2004 and 2005 40% 65%
2003 and 2005 33% 66%
2003 and 2004 and 2005 19% 52%

Values represent the percentage of all cells with fire activity in one year that also
showed detections in subsequent years based on (i) the observation hour of
1745UTC and (ii) all observation hours.

Fig. 4. Mean precipitation values calculated for a single 40×40 km cell (approx.
location: 60.10 °W 12.50 °S) based on N=151 active fire detections observed
during 2004–2005. R2=0.9974.
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environment as defined by the precipitation data. The criteria
used to determine the probability of fire occurrence as a
function of precipitation were the following:

Xday¼30

day¼1

RAi;zV
Z 30

1
fi;zðxÞdxYPR ¼ 1 ð5Þ

Xday¼30

day¼1

RAi;z >

Z 30

1
fi;zðxÞdx

andXday¼30

day¼1

RAi;zV2
Z 30

1
fi;zðxÞdxiYPR ¼

Z 30

1
ðxÞdx�

Pday¼30

day¼1
RAi;zR 30

1 fi;zðxÞdx
:

8>>>>>>>><
>>>>>>>>:

ð6Þ

Where RA is the actual precipitation data that is accumulated
over the 30 day period for a particular pixel at observation hour
i and grid cell z, ∫dx is time integral (30 days) calculated for the
polynomial curve f(x), and PR is the assigned probability of fire
occurrence related to precipitation. According to Eqs. (5) and
(6), RA must be less than two times the area defined by the LUT
curve covering the 30 day period for a particular location and
observation hour for the pixel to be considered for the cloud
obscuration analysis. Additionally, a third test was implemented
to avoid particular conditions when the actual precipitation is
concentrated in the most recent period (day-1→day-7). This
test is based on anecdotal evidence, which suggests that land
owners in the region normally wait for approximately one week
to burn following a rainfall episode. In this case, a more
conservative approach is applied using the criteria:

Xday¼7

day¼1

RAi;zz
Z 30

1
fi;zðxÞdxYPR ¼ 0: ð7Þ

From the above test, for the pixel to be considered for the
cloud obscuration processing, the actual precipitation recorded
during the 7 day period preceding an observation cannot be
greater than the 30 day mean precipitation associated with fires
for that same location and observation hour.

3.2. Fire spatial and temporal dynamics

Fire activity in tropical areas tends to follow very specific
patterns as a function of land use and land cover change. In
those areas, the systematic use of fires for land clearing and
maintenance creates reasonably consistent spatial and temporal
patterns in satellite active fire detection from year to year
(Giglio et al., 2006). To establish the mean annual fire activity in
time and space over the Brazilian Amazon, we used active fire
records derived from GOES during 2003–2004. The 40×40 km
grid used to extract the fire and precipitation relationship was
also applied in this analysis.

In order to derive the temporal distribution of fires, the
year was divided into 26 14-day periods. We used 14 day
period intervals to properly represent the seasonal curves of
fire activity. Fire seasons were usually constrained to
approximately 2–3 months, thereby 14 day periods allowed
for a good representation of the progress in fire activity
throughout the season while keeping our samples for each
cell to a reasonable size. The probability distribution of fires
detected during each one of the 14-day periods in relation to
the 2003–2004 totals was calculated for all 40×40 km grid
cells according to:

PTzðtÞ ¼

X
t

firesz

P2004
2003

firesz

: ð8Þ

Where PT is the active fire probability distribution for grid
cell z, the numerator represents the number of fires detected
during a 14 day period t, and the denominator represents the
total number of fires observed in grid cell z during the entire
period analyzed (2003–2004). An LUT containing the results
for each grid cell was produced for every observation hour to be
used in the final code. To reduce the effects of the inter-annual
variability in fire activity on the adjustment factors produced,
we used information from the year for which the processing was
implemented (in this case 2005) to account for departs from the
mean values described by the LUTs containing the PT data
described above. For this we used a metrics P14 describing the



Fig. 5. Cloud obscuration processing diagram.
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sum of fires detected during the preceding 14 day period for
each 40 km grid cell that was systematically updated during
processing. Therefore, any increase or decrease in fire activity
for a particular grid cell would be considered in the calculation
of the cloud obscuration adjustment produced by either
increasing or decreasing the contribution from the term PT in
Eq. (8) relatively to P14.

In addition to the annual distribution of fires observed with
the active fire data record from 2003–2004, evaluation of fire's
return frequency was also conducted. Vegetation fires are
usually associated with a high return frequency in tropical
regions (Cochrane & Schulze, 1999). The analysis of GOES
active fire data during the period of 2003–2005 including all
observation hours showed that approximately 66% of the areas
under the influence of fires in one year also exhibited some
activity in the following year (Table 1). However, the likelihood
of observing a fire in a particular area during the same
observation hour over sequential years becomes much less
evident. Multiple factors were believed to contribute to the latter,
including but not limited to changes in the hour of the day a fire is
ignited, changes in the fuel load affecting fire intensity and
duration therefore impacting detectability, changes in land use,
etc. Modeling these factors and the interactions among them is
difficult and was not attempted here. In order to account for this
greater variability when analyzing observation hours individu-
ally a random function (ξ) was used with the cloud obscuration
analysis to represent fire return probability at every hour. This
random function was adjusted to uniformly represent the
average ranges of return probabilities at the individual
observation hour column from Table 1.

Complementing the analysis of the land use influence in
the establishment of fire patterns across the study area, the
spatial distribution of fires was determined with the
implementation of a 4×4 km grid nested in the previous
40×40 km grid. This finer grid was created to represent the
GOES pixel map at nominal resolution. It was intended to
distinguish between areas under the influence of fires where
the cloud obscuration evaluation would be performed from
areas with no fire activity recorded in the most recent years
where no intervention was to be conducted. All 4×4 km cells
showing fire activity during years 2003 and 2004 were
identified and the information stored as binary values (0 —
no fire history; 1 — fire prone) in individual LUTs for every
observation hour. These LUTs were updated during the
actual processing to account for areas of fire expansion by
adding new fire prone pixels to the existing list.

3.3. Implementation and accuracy assessment

The methodology implemented during this study was
designed to use the information derived from the previous
steps for compensating year 2005 GOES-East fire data for the
cloud obscuration of fires. GOES data were processed
sequentially for every acquisition hour during year 2005
totaling 17,520 observations. For a particular observation date
and time the code would initially search for all 40×40 km grid
cells that, according to the temporal LUTs, are likely to show
fire activity for that particular bi-week (Fig. 5). Following this
first selection, all 4×4 km areas contained by the grid cells (i.e.,
the nominal GOES pixels) with a history of fire activity are
identified. The cloud mask product that was produced for the
same year (2005) is then used to search for cloudy pixels among
the previously selected ones. Two major scenarios were
considered during processing, each representing distinct cloud
coverage conditions.

In scenario one, a cloud covered pixel is selected for
observation hour T and both adjacent detections (T−30 min and
T+30 min) are also obscured by clouds. In this case, the actual
precipitation data is assessed and compared against the values
obtained from the LUT defining the mean precipitation curve
associated with fire occurrence for that area (i.e., the 40×40 km
cell). Having cleared the tests established in Eqs. (5), (6) and
(7), the probability of fire omission (PF) will be derived for that
pixel using Eqs. (5), (6) and (8)and the random function (ξ),



Fig. 6. Stratification of the diurnal cycle of fire activity into three major areas,
A1, A2, and A3.

Fig. 7. Relationship between fires produced by the cloud obscuration processing
based on simulated data and observed fires for the same locations using 2005
data.
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assuming the form:

PF ¼ PR � PT � n: ð9Þ

In scenario two, a cloudy pixel detected in time T has either
the preceding (T−30 min) or the succeeding (T+30 min)
observation hour cloud free. Under these conditions the code
will use information from the current WFABBA fire product
(searching for adjacent detections), the pixel's local time and
from a general fire diurnal cycle curve. For this particular
application, the curve chosen to represent the fire diurnal cycle
in the region had its peak located at 1500 h local time in order to
coincide with the normal hour of maximum air temperature – or
inversely, minimum air humidity – (da Rocha et al., 2004) as
temperature and humidity will be strongly related to fire spread
conditions. The diurnal cycle curve was divided into three parts,
each describing a particular trend in fire progress over time
(Fig. 6). In area A1 of Fig. 6, a cloudy pixel observed at local
time Tlocal will be likely to omit a fire if an actual detection
exists for Tlocal−30 min, since fire continuation will be favored
by the usual increase in temperature followed by a decrease in
relative humidity. The likelihood of a fire being omitted at local
time Tlocal, when detection is observed during hour Tlocal +
30 min will depend on the potential fire occurrence during hour
Tlocal for that time of the year. Based on these considerations,
cloudy pixels observed during local hour Tlocal and falling
within area A1 will be evaluated according to the following
criteria:

Actual fire detection at Tlocal�30 minYPF ¼ 1 ðiÞ

Actual fire detection at Tlocalþ30 minYPF ¼ PT : ðiiÞ
In this case, if both Tlocal− 30 min and Tlocal + 30 min observa-

tions are cloud free, condition (i) will prevail. For area A2 in
Fig. 6, a cloudy pixel observed during local hour Tlocal will have
the trend in fire progress being inversely described according to
the following criteria:

Actual fire detection at Tlocal�30 minYPF ¼ PT ðiÞ

Actual fire detection at Tlocalþ30 minYPF ¼ 1: ðiiÞ

In this case, condition (ii) will prevail when both Tlocal−30 min

and Tlocal + 30 min observations are cloud free. Lastly, for area A3 in
Fig. 6 a cloudy pixel detected during local hour Tlocal will receive
a nominal probability PT if either Tlocal−30 min or Tlocal + 30 min

observations are cloud free and a fire detection exists for any of
those two observations.

To verify the consistency of the outputs produced we tested
the cloud obscuration processing described above using
simulated cloud coverage data in combination with the actual
fire detection data from WFABBA. We used year 2005 cloud
mask product to simulate the presence of clouds over randomly
selected clear sky pixels found across the study area. The cloud
obscuration analysis was then performed for those pixels
selected in order to obtain the predicted number of fires missed
due to clouds. For each pixel analyzed the actual fires detected
by WFABBA were identified. The results were aggregated
using the 40×40 km grid and the relationship between predicted
fires versus observed fires assessed. The simulations demon-
strated the predicted fires to be highly correlated with the
observed fires (R2 =0.82) (Fig. 7). The sum of all fires produced
by the cloud obscuration processing was able to represent the
actual fires missed due to clouds to within 1.5% on an annual
basis and to within 5% on a monthly basis.

4. Results and discussion

The main code was used to process year 2005 data and the
results are presented below. The numbers produced represent
those cases where a cloud obscured pixel was identified and
at least one of the criteria established above was met for any
of the 17,520 annual GOES observations over an area of 5.4
million km2 (335,800 pixels at 4×4 km spatial resolution)
covering the Brazilian Amazon. The probability of fire
omission derived for each pixel was accumulated over
multiple hours and days of observation resulting in a total
number of fires potentially missed due to the presence of
clouds equivalent to 59,650, or approximately 11% of the
actual GOES fires detected during 2005 (545,286 total —
representing WFABBA's fire types 0–4 only; category 5
associated with low probability fires not considered) (Fig. 8).
The 2005 data set was also processed using the simple
approach for compensating for clouds, which is based on the
assumption that fires occur at the same frequency under



Fig. 8. Fires omitted due to clouds (A) for year 2005 and the percentage contribution (B) of cloud adjusted fires in relation to the total number of GOESWFABBA fires
detected in that same year for each 40×40 km grid cell covering the Brazilian Amazon.
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clouds as they do in cloudless areas (Cardoso et al., 2003;
Giglio et al., 2003, 2006; Roberts et al., 2005). In order to
evaluate the impact of spatial sampling, the simple approach
was implemented using two different grids of 40×40 km and
120×120 km resolution each. The average fire frequency
was calculated for the cloud free fraction of each grid cell
based on:

FF;i ¼ Dz;i

Sz;i
: ð10Þ

Where Dz is the number of actual fires detected within grid
cell z during observation hour i, and Sz is the number of
4×4 km cloud free pixels in the same area. The number of cloud
obscured pixels in each cell (i.e., 100—Sz,i and 900—Sz,i for the
40×40 km and 120×120 km grids, respectively) was then
multiplied by Eq. (10) in order to derive the number of fires
potentially missed. For both 40 km and 120 km grid resolutions
used, the simple approach produced a larger number of
potentially missed fires due to cloud obscuration (178,968
and 241,804 – 33% and 44% increment – respectively) as
compared to the proposed methodology described above
(Fig. 9). The difference was particularly important in areas
where fires were unequally distributed in space, causing fire free
pixels (e.g., pixels located in forested areas and distant from
human activities) to be erroneously classified as fire omission
areas by the simple rule approach. The use of LUTs describing
the fire activity in space helped reduce this effect with the



Fig. 9. GOES WFABBA fire diurnal cycle distribution for the Brazilian Amazon and the corresponding adjustment produced using the cloud obscuration processing
methodology and the simple rule approach using 40 km and 120 km sampling areas.
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methodology proposed by only selecting fire prone pixels
during the cloud obscuration processing.

The majority of the fire omissions identified by the proposed
methodology were associated with the conditions described by
scenario 1, where all three observation hours T−30 min, T, and
T+30 min are obscured by clouds. Average cloud coverage in
the region varied between a minimum of 22% and a maximum
of 78% depending on the observation hour, with the lowest
values found in the areas surrounding the evergreen tropical
forests in the southern and eastern parts of the basin (Fig. 10).
These areas are generally composed of Cerrado (savanna)
vegetation and transition forests. The highest values occurred in
the western part of the basin where the hydrological cycle is
enhanced by the prevalence of closed canopy forests resulting in
high evapotranspiration rates and by westerly winds that bring
supplemental moisture from the eastern parts of the basin. From
the remote sensing perspective, this spatial distribution of fires
and cloud coverage is beneficial as it minimizes the cloud
obscuration problem in areas where fire activity is most
pronounced (e.g., the states of Mato Grosso, Tocantins,
Maranhão, and eastern Pará). Minimum cloud coverage was
found to coincide with the early afternoon observation hours
(Fig. 10), which has major implications for fire detection as it
approaches the hour of maximum fire activity in the region
(Giglio, 2007; Kaufman et al., 1998b; Prins et al., 1998). This
latter finding corroborates the discussion presented in Schroeder
et al. (2005) where inter-comparison analyses using multi-
sensor fire data and visual confirmation of smoke plumes
demonstrated the strong diurnal signature of fire activity in the
region.

In order to evaluate the implications of the method
implemented above we used high resolution (20 m) China–
Brazil Earth Resources Satellite (CBERS-2) burn scar maps to
delineate areas of fire activity relating those areas to the fire
omission pixels produced. The burn scar maps were generated
for the state of Acre in the western Brazilian Amazon covering
the 2005 fire season in the region (July–September). Using
supervised classification we produced a burnt area mosaic based
on 9 CBERS images corresponding to two individual scene
locations (i.e., path 180 rows 111 and 112) covering from early
to late (i.e., July to October respectively) fire season in 2005.
Detailed mapping of burn scars resulting from maintenance
(e.g., pasture and agricultural) and conversion (e.g., slash and
burn) fires was produced for an area of roughly 22,000 km2.
The quality of the burnt area mosaic was assessed using GPS
points and digital photos collected from 40 h of over-flights
from which all burnt area sites inspected could be visually
confirmed (Foster Brown — personal communication 2005).
Cloud obscuration in the region is known to significantly
influence active fire products, usually limiting detection
capacity irrespective of the sensor used (Brown et al., 2006).
The GOES WFABBA fire counts (excluding fire category 5)
were spatially aggregated into nominal 4×4 km cells along with
the burn scar areas and the fire increments produced
independently by the method proposed above and the simple
rule approach (using 40 km and 120 km grid resolutions) and
error matrices were derived (Table 2a–d). The original
WFABBA active fires detected during the same period covered
by the burn scar map showed an omission error of 58.3% and a
commission error of 6.4%; multiple detections were frequently
observed for individual 4×4 km cells across the area. Despite
the reasonably high omission error, 4110 of a total of 4133 fire
detections observed during the period analyzed had a spatially
coincident burn scar (i.e., within±2 km of WFABBA's fire
pixel coordinate); whereas 15 of 23 fire coordinates associated
with false detection had large burn scars located in the
immediate vicinity of the pixel. Nevertheless, the fire pixels
detected accounted for 76% of the total area burned measured
for the selected plot; with the remaining 24% associated with
omission showing significantly different characteristics of mean
burnt area size (4 times smaller than the confirmed detections)
therefore potentially falling outside the detection envelope of
the GOES imager. The application of the cloud obscuration
processing method showed a reduction in the omission error to
43.7% along with a minor increment of the commission error
(8.8%). The pixels selected in this latter case accounted for 88%
of the total area burned measured. The mean burned area size
resembled the mean area size associated with the original
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WFABBA fire product to within 15%. The application of the
simple rule approach showed a major reduction of the omission
errors for both 40 km and 120 km grids used (10% and 0%,
respectively) at the cost of substantial commission errors being
produced (63% and 100%, respectively). The mean burned area
size described by the simple rule approach was considerably
smaller (45%) as compared to the value observed with the
original WFABBA data, with the burned area frequency
histogram having shifted towards smaller burn scars. Despite
the improvements observed primarily in terms of the reduction
of omission errors, the additional fires created during processing
of the cloud obscuration did not have a significant impact on the
relationship between the accumulated fire counts obtained for
an individual pixel area and the associated size of the burn scar
measured for that same plot. That relationship remained
Fig. 10. Average maximum and minimum percentage cloud coverage (A and B respec
(C and d respectively).
unresolved for all four data sets analyzed (i.e., the original
GOES WFABBA active fire data, the cloud adjusted numbers
derived with the above methodology, and with the simple
approach at 40 and 120 km), with weak correlation being
observed in all cases.

5. Final remarks

Fire detection omission due to cloud obscuration is a major
problem affecting remote sensing of active fires. Here we
described an approach designed to address the cloud obscura-
tion problem using high frequency geostationary observations.
The methodology takes advantage of three different input data,
namely precipitation estimates, a cloud mask and active fire data
that are derived from the same instrument. This consideration
tively) and hours of maximum and minimum occurrence arranged in 3 hour bins



Fig. 10 (continued ).

Table 2
Error matrices for evaluating the performance of the original GOES WFABBA
active fire data (a), the cloud processed data (b), and the simple rule approach
using 40 km and 120 km area sampling (c, d respectively) based on 20 m
resolution CBERS data (our “ground truth”) covering part of Acre state in
western Brazilian Amazon region

CBERS — fire CBERS — non fire

(a)
GOES — fire 519 8
GOES — non fire 727 117
Errors (omission/commission) 58.3% 6.4%

(b)
Cloud processed — fire 702 11
Cloud processed — non fire 544 114
Errors (omission/commission) 43.7% 8.8%

(c)
Simple rule (40 km) — fire 1116 79
Simple rule (40 km) — non fire 130 46
Errors (omission/commission) 10.4% 63.2%

(d)
Simple rule (120 km) — fire 1246 125
Simple rule (120 km) — non fire 0 0
Errors (omission/commission) 0% 100%
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was especially important for facilitating data registration and
also to reduce image navigation problems that can occasionally
affect the GOES data. The use of recent historical active fire
data along with precipitation data provided means to establish
the general patterns of fire use in both space and time across the
entire study area, at the same time preserving specific regional
and local characteristics with the implementation of pixel based
processing.

The strong correlation between the predicted fires missed
and the actual fires observed demonstrated the effectiveness of
the approach. In terms of the overall trends caused by cloud
obscuration across the Brazilian Amazon, we observed that the
net effect of fire omission was partially minimized in areas of
intense fire activity as these generally coincided with the areas
of minimum cloud coverage. Nonetheless, in relation to the
percentage contribution of fires missed due to clouds, we found
areas where fire omission was significant (Fig. 8) despite those
being depicted as relatively low fire activity areas by the
original WFABBA product (Fig. 1). This could signal the need
to more detailed analysis of fire dynamics in areas considered to
be of low priority under current regional fire management
programs (e.g., northeastern Roraima).

Another important aspect presented was the partial overlap
between the hours of minimum cloud coverage and of maximum
fire activity as a result of a strong basin-wide fire diurnal cycle
signature. The cloud adjusted numbers maintained the same fire
diurnal cycle signal confirming our field observations that
indicated systematic use of fires in the mid-afternoon hours as
part of regional land management techniques. As compared to a
more simplistic approach, the methodology was proven success-
ful in reducing the omission errors while maintaining the com-
mission errors nearly unchanged, and preserving the general
quality of the fires described by the original fire product from
WFABBA.

By means of routine updating of the LUTs used during
processing, this cloud obscuration modeling technique should
be capable of consistently mapping fire omission in tropical
areas such as the Brazilian Amazon. While the number of fire
pixels missed due to clouds could be successfully defined,
additional work is required to better describe the relationship
between active fires and the total area burnt which modeling of
biomass emissions so much depend on.

We consider this methodology to be applicable to other
geostationary systems covering different regions of the globe
provided that similar data layers are available for use. The
proposed cloud correction scheme can be included in the current
effort by the Global Observation of Forest and Land Cover
Dynamics (GOFC-GOLD) Fire Mapping and Monitoring
Theme (URL:http://gofc-fire.umd.edu) to establish a global
fire monitoring network from geostationary satellites. This
activity, also being coordinated using principles of the
Committee on Earth Observation Satellites (CEOS; URL:
http://www.ceos.org) constellation concept and incorporated
into the Coordination Group for Meteorological Satellites
(CGMS; URL: http://www.wmo.ch/web/sat/CGMShome.html)
is also a contributor to Group on Earth Observations (GEO;
URL: http://www.earthobservations.org/index.html) efforts.
However, we must warn for the fact that sensor dependencies
(e.g., detection omission and commission rates) need to be
resolved before any global analysis of the effects of clouds on
remote sensing fire products is attempted.

In principle, an improved scheme to correct for cloud
obscuration effects is also needed for active fire detections from
polar orbiting satellites. Consistent correction is needed to

http://gofc-fire.umd.edu
http://www.ceos.org
http://www.wmo.ch/web/sat/CGMShome.html
http://www.earthobservations.org/index.html
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integrate all geostationary and polar orbiting data into a long-term
active fire data record as part of the Fire Disturbance Essential
Climate Variable (ECV) as defined in the Global Climate
Observing System (GCOS; URL: http://www.wmo.ch/web/
gcos/gcoshome.html) Implementation plan. However, due to
their limited observation frequency, polar orbiting satelliteswould
require a different approach from the one presented here for the
estimation of fire omission due to clouds. For instance, scenario 2
described in Section 3.3 which uses the information from adjacent
observations of GOES (30 min before and after observation time
t) would not be applicable to a polar orbiting system. Other issues
such as variable imaging geometry would also impact the cloud
analysis using sensors such as MODIS and AVHRR. We believe
any analyses using these sensors should be treated separately.
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