
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Document: TOWARDS AN INTEGRATED SYSTEM FOR 

VEGETATION FIRE MONITORING IN THE 
AMAZON BASIN   

  
 Wilfrid Schroeder, Doctor of Philosophy, 2008 
  
Directed By: Professor Christopher O. Justice 

Department of Geography 
 
 
 
Biomass burning is a major environmental problem in Amazonia. Satellite fire 

detections represent the primary source of information for fire alert systems, decision 

makers, emissions modeling groups and the scientific community in general. Those 

various users create a growing demand for good quality fire data of higher spatial and 

temporal resolution that can only be achieved via integration of multiple satellite fire 

detection products. The main objective of this dissertation was to develop an 

integrated fire product capable of improved monitoring and characterization of fire 

activity in Brazilian Amazonia.  

Two major active fire detection algorithms based on MODIS and GOES data 

were used to meet the users demand for fire information. Large differences involving 

the performance of the MODIS and GOES fire products required the quantification of 

omission and commission errors in order to allow for appropriate treatment of 

individual detections produced by each data set. 

http://drum.lib.umd.edu/bitstream/1903/8168/1/umi-umd-5348.pdf


  

Relatively small omission errors due to cloud obscuration were estimated for 

Brazilian Amazonia. Regional climate conditions result in reduced cloud coverage in 

areas of high fire activity during the peak of the dry season, therefore minimizing the 

effects of cloud obscuration on fire detection omission errors. 

Clear sky omission and commission errors were largely dependent on the 

vegetation and background conditions. Relatively large commission errors occurring 

in high percentage tree cover areas suggested that fire detection algorithms must 

either be regionalized or incorporate additional tests to provide more consistent fire 

information across a broader range of surface conditions. 

Integration of MODIS and GOES fire products using a physical parameter 

describing fire energy (i.e., fire radiative power) was proven difficult due to 

limitations involving the interplay between sensor characteristics and the types of 

fires that occur in Amazonia. As part of this research, a new integrated product was 

generated based on binary fire detection information derived from MODIS and GOES 

data, incorporating adjustments to reduce commission and omission errors and 

optimizing the complementarities among individual detections.  

These findings made a significant contribution to fire monitoring science in 

Amazonia and could play an important role in the development of future fire 

detection algorithms for tropical regions. 
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Chapter 1: Introduction 

 

 

1.1 BACKGROUND 

Biomass burning is a major environmental phenomenon influencing the global 

climate, with important effects on the surface energy flux and atmospheric 

composition, and on the Earth’s radiation budget [IPCC, 1995]. Vegetation fires are a 

major source of greenhouse gases including CO2 and CH4, and of chemically reactive 

constituents including CO and NOx [Andreae and Merlet, 2001; van der Werf et al., 

2004; Crutzen, 1979; Delany et al., 1985]. Bond et al. [2004] estimated that total 

global emission of black carbon from biomass burning is comparable to that produced 

from the use of fossil fuel, whereas Penner et al. [1992] showed that carbonaceous 

aerosols produced during biomass burning could result in comparable radiative 

forcing to that of anthropogenic sulfates. 

Important feedbacks between forest fragmentation and the use of fire occur at 

the regional level, increasing the susceptibility of altered forests to larger and more 

destructive fires [Cochrane et al., 1999; Nepstad et al., 1999b]. Vegetation fires can 

impact biodiversity through large scale tree mortality, change forest composition and 

affect faunal populations and alter soil nutrient pools, thereby influencing secondary 

forest re-growth [Barlow and Peres, 2006; Barlow et al., 2003; Cochrane and 

Schulze, 1999; Hughes et al., 2000; Moran et al., 2000; Peres et al., 2003]. 

Vegetation fires are also found to have important social implications in tropical areas, 
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including significant economic losses as a consequence of property damage and 

impacts on industry, and increased health problems among local populations 

[Mendonça et al., 2004; Reinhardt et al., 2001] 

In the last two decades Brazilian Amazonia has been under significant 

pressure as a result of high annual rates of deforestation [Laurance et al., 2004; 

PRODES, 2008]. Large areas of exceptionally high fire activity resulted from the 

wide spread use of vegetation fires to convert evergreen tropical forests into pastures 

or croplands or to maintain previously deforested areas [Alencar et al., 1997; Nepstad 

et al., 1999a; Sorrensen, 2004]. Human activities associated with those land use 

processes are in turn largely influenced by the regional climate conditions, 

characterized by high rainfall rates occurring during a relatively long wet season 

when fire use is rarely possible. However, during the dry season months, when there 

is a noticeable reduction in precipitation fires are used extensively [Schroeder et al., 

2005]. 

Vegetation fires in Brazilian Amazonia are spatially concentrated in the major 

areas of deforestation [Cochrane and Laurance, 2002; Alencar et al., 2004]. Those 

areas often coincide with the agricultural frontiers, where investments in sustainable 

land use practices are scarce [Morton et al., 2006; Nepstad et al., 2001; Sorrensen, 

2004]. Conservation areas serve as an important mechanism to reduce fire occurrence 

across large areas of tropical forest in Brazilian Amazonia [Arima et al., 2007; 

Nepstad et al., 2006]. However, the increasing pressure from the surrounding areas 

and the limited control exerted by park administration and law enforcement groups 
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can greatly reduce the efficacy of those areas to prevent fire spread [Ferreira et al., 

1999; Laurance and Williamson, 2001; Pedlowski et al., 2005]. 

Brazilian Amazonia covers an area of approximately 5 Million km2 

characterized by a sparse road network and limited infrastructure. In situ monitoring 

of fire activity is very limited and usually constrained to the immediate vicinity of a 

few environmental law enforcement offices [Ferreira et al., 2007]. Satellite active fire 

detection data represent the primary source of information on fire occurrence for 

county, state and federal environmental agencies, Non-Governmental Organizations 

(NGOs), civil society and for the scientific community. 

Fire detection data can be obtained from different satellite sensors covering 

the region [CPTEC, 2008]. However, most users only have access to limited 

information describing the location and timing of detections derived from individual 

products. Differences among fire products and the lack of information describing data 

quality create major difficulties for end users [Schroeder et al., 2005]. As a result, law 

enforcement activities and the decision making process are significantly 

compromised, state and federal strategic plans to assign resources to control fire 

activity at the county level are negatively affected, and scientific studies based on fire 

detection data become subject to large uncertainties (Figure 1.1).  

This dissertation investigates the performance of satellite active fire detection 

data for Brazilian Amazonia and analyzes the potential for integration of the different 

products. The main objective is to improve fire monitoring in the region by properly 

identifying and quantifying the major sources of error affecting individual products 
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and by optimizing the use of multiple remote sensing fire products through data 

integration. 

 

 

 

 
Figure 1.1: Top 100 municipalities showing the largest numbers of fire detections in 
Brazilian Amazonia using MODIS Terra (A) and Aqua (B) Thermal Anomalies and the WF-
ABBA GOES (C) data for 2003. 
 

 

1.2 SATELLITE ACTIVE FIRE DETECTION IN BRAZILIAN AMAZONIA 

Satellite remote sensing data have been used extensively to detect vegetation fires in 

Brazilian Amazonia over the past two decades. The first program incorporating 

routine monitoring of vegetation fires in the region was implemented by the National 

Institute for Space Research (INPE) in Brazil in response to the Amazon Boundary 

Layer Experiment (ABLE-2A) which documented the occurrence of large smoke 

plumes spreading over forest areas [Setzer and Pereira, 1991]. Since then, awareness 

about the importance of biomass burning in the tropics has increased significantly 

among the scientific community [IPCC, 1995]. In response to the large demand for 

A B C



 

 5 
 

routine fire information for the region, the number of satellite fire detection products 

increased rapidly over the years [CPTEC, 2008]. 

Early satellite active fire detection methods were primarily based on the use of 

simple threshold tests applied to mid-infrared image data of the Advanced Very High 

Resolution Radiometer (AVHRR) aboard the NOAA series of polar orbiting 

environmental satellites [Matson and Holben, 1987; Setzer and Pereira, 1991]. In this 

spectral region, the fire radiative energy peaks above the regular surface background 

(e.g., green vegetation) making pixels with active fires distinguishable [Matson and 

Dozier, 1981]. However, solar contamination in the mid-infrared spectral interval 

often limits the utility of simple threshold algorithms to small geographic regions 

where problems such as false alarms can be managed with the use of conservative 

regionally adjusted tests [Li et al., 2000; Morisette et al., 2005b]. To overcome those 

limitations, alternative fire detection techniques were proposed for continental and 

global remote sensing fire products incorporating the use of contextual approaches 

applied to the mid-infrared channels, complemented by multi-channel filters to reduce 

in particular the commission errors in those products [Giglio et al., 1999; Kaufman et 

al., 1998b; Prins and Menzel, 1992]. 

The Wildfire Automated Biomass Burning Algorithm (WF-ABBA) applied to 

the Geostationary Operational Environmental Satellite (GOES) imager data has been 

generating 30 min active fire detections at 4 km resolution for Brazilian Amazonia 

since the mid 1990’s [Prins and Menzel, 1992, 1994; UW Madison CIMSS, 2008]. 

The WF-ABBA data have been applied to regional fire alert systems and biomass 
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burning emissions models, with a large and diverse user community currently 

depending on that product. 

With the launch in late 1999 of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) on board the Terra satellite, a new phase in active fire 

monitoring began. The addition of a fire detection channel enabled for the first time 

the systematic characterization of sub-pixel vegetation fires at 1 km spatial resolution 

[Giglio et al., 2003a; Justice et al., 2002]. The lower saturation of the sensor and 

higher geolocation accuracy of the Thermal Anomalies fire detection product helped 

the MODIS data gain popularity over data from previous instruments, including the 

AVHRR series. 

Previous case study analyses have assessed the detection performance of WF-

ABBA and MODIS Thermal Anomalies products over Brazilian Amazonia [Morisette 

et al., 2005b; Prins et al., 1998]. However, detailed characterization of those products 

was missing and differences in sensor characteristics and unexplained differences 

between WF-ABBA and MODIS Thermal Anomalies fire detections were common 

[Foster Brown, personal communication; Schroeder et al., 2005]. The lack of a large 

set of good quality ground truth data was one of the major obstacles limiting a 

comprehensive characterization of those products. 

 

1.3 OBJECTIVES OF THE RESEARCH 

Vegetation fires in Brazilian Amazonia are largely caused by humans. The strong 

synergy between human activities and the fuel conditions determined by regional 
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climate regimes create unique patterns of fire use across the region. As a result, the 

physical characteristics describing vegetation fires become highly influenced by the 

different land use and land cover types that occur in Brazilian Amazonia. The main 

objective of this dissertation is to quantify errors and evaluate the potential for 

integration of WF-ABBA and MODIS Thermal Anomalies fire detection products 

with attention to the regional conditions that lead to different fire regimes. The 

complementarities among those products are explored in order to generate improved 

fire detection rates with higher confidence levels. 

The main hypothesis developed for this research is: 

By integrating data from multiple sensors we can resolve differences between active 

fire detection products and increase the accuracy of vegetation fire spatial and 

temporal distribution 

Given the considerations listed above, this dissertation is focused on the 

effects of cloud obscuration on detection omission errors, on the commission and 

omission rates associated with different land cover conditions, and on the effects of 

sensor characteristics which can lead to variations in detection rates and fire 

characterization. The dissertation is composed of the following research themes: 

i) Quantify the impact of cloud coverage on fire detection and create 

mechanisms to adjust the detection numbers to reflect actual fire 

occurrence without creating spurious fires; 

ii) Quantify commission and omission errors of WF-ABBA and MODIS 

Thermal Anomalies data for fires with different vegetation-background 

conditions; 
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iii) Evaluate fire characterization as defined by Fire Radiative Power (FRP)  

as a means to integrate the WF-ABBA and MODIS Thermal Anomalies 

products; 

iv) Quantify scan angle effects on fire detection rates of MODIS; 

v) Develop a strategy to integrate fire data from different sensors to generate 

an improved fire data record for Brazilian Amazonia. 

 

1.4 RESEARCH OUTLINE 

This dissertation is composed of five chapters. Chapter 1 covers the topic of biomass 

burning in Brazilian Amazonia and introduces the main scientific question, providing 

the rationale for this dissertation. In Chapter 21, the effects of cloud obscuration on 

the detection rates of WF-ABBA over Brazilian Amazonia are quantified. A new 

cloud mask product is derived for the GOES imager data to identify pixels containing 

opaque clouds that could prevent fire detection. A pixel based approach is 

implemented using all daytime and nighttime GOES data at full temporal resolution. 

The cloud obscuration omission error estimates produced are compared to the 

approaches used by previous authors to account for the same problem [Cardoso et al., 

2003; Giglio et al., 2006; Roberts et al., 2005]. The comparative analysis is 

substantiated by 20 m resolution burnt area classification data from the China-Brazil 

Earth Resources Satellite (CBERS) used to validate the results. 

 Chapter 32 addresses the detection performance of WF-ABBA and MODIS 

Thermal Anomalies products over Brazilian Amazonia. The two products are 
                                                 
1 Chapter 2 is a replica of Schroeder et al. [2008a] with only small changes applied to conform with the 
format of this dissertation 
2 Chapter 3 is a replica of Schroeder et al. [2008b] with only small changes applied to conform with 
the format of this dissertation 
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validated using “ground truth” information derived from 30 m resolution Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat 

Enhanced Thematic Mapper Plus (ETM+) data. In addition to those data sets, in situ 

and airborne data are used to provide information on the different types and dynamics 

of the fires sampled. Commission and omission errors are derived for four major 

regions characterized by distinct intervals of percentage tree cover. The primary 

factors influencing the commission error rates are identified, and an alternative 

method is proposed to reduce the high number of false detections produced by the 

WF-ABBA and MODIS Thermal Anomalies products near forested areas. 

 In Chapter 4 the potential for integrating WF-ABBA and MODIS Thermal 

Anomalies is investigated. Two different approaches are tested. First, FRP estimates 

generated from GOES and MODIS data are used. Major sources of error in FRP 

values are identified and quantified using simulated data. Secondly, the relationship 

between WF-ABBA and MODIS Thermal Anomalies fire detections is established for 

Brazilian Amazonia. Finally, the variation in detection performance of the MODIS 

fire product as a function of scan angle is quantified using area averaged daily sum 

statistics of fire detections for a subset region in southern Brazilian Amazonia. 

 A new integrated fire product based on the WF-ABBA and MODIS Thermal 

Anomalies products is presented in Chapter 5, incorporating adjustments to correct for 

detection errors in both products.  

 The synthesis of results is presented in Chapter 6, followed by a discussion of 

the implications for satellite fire monitoring in Brazilian Amazonia. The flow diagram 

summarizing the main components of this dissertation is shown in Figure 1.2. 
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Figure 1.2: Flow diagram of dissertation. 
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Chapter 2: Quantifying the Impact of Cloud Obscuration on 
Remote Sensing of Active Fires in Brazilian Amazon1 
 

 

2.1 INTRODUCTION 

Vegetation fires play a significant role in land and atmospheric processes globally. 

Their occurrence is particularly important in tropical regions where human activity is 

still heavily based on the use of fires for land use management and land cover change. 

In the latter case, deforestation and fires are found to be closely related eventually 

leading to important feedback processes that favor faster and more destructive 

depletion of the local forests [Cochrane et al., 1999; Nepstad et al., 1999b]. In 

contrast, at higher latitude regions a greater percentage of fires are caused by 

lightning or are accidental in nature and are highly influenced by the local weather 

and climate conditions [Kasischke et al., 2002]. Fires in the tropics are influenced by 

local conditions too but will also present an equally important component due to the 

influence of human activities which are reflected in the spatial and temporal 

distributions observed across regional to global scales [Barbosa et al., 1999; Scholes 

et al., 1996]. 

Correct quantification of fire events is needed primarily for understanding the 

dynamics of land use and land cover change and therefore subsidize regional 

environmental programs, as well as for providing information for modeling of 

                                                 
1 The material presented in this Chapter is part of Schroeder et al. [2008a] 
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emission estimates from biomass combustion [Korontzi et al., 2004; Van der Werf et 

al., 2003]. Consideration of the fire diurnal cycle is also required for biomass burning 

transport models, making high observation frequency a particularly important 

characteristic on active fire monitoring systems [Freitas et al., 2005; Giglio et al., 

2006].  

Satellite sensors have been used to monitor vegetation fire activity for many 

years now, providing greater insight on the processes associated with fire dynamics at 

different scales [Bucini and Lambin, 2002; Carmona-Moreno et al., 2005; Di Bella et 

al., 2006; Dwyer et al., 2000; Giglio et al., 2006]. In fact, the use of satellite data is 

the only way to assess fire activity at spatial and temporal scales required for land 

surface and atmospheric modeling studies. However, the remote sensing methods 

used for monitoring fires have limitations that tend to cause important biases in the 

final products [Boles and Verbyla, 2000; Cardoso et al., 2005; Eva and Lambin, 

1998; Kasischke et al., 2003; Schroeder et al., 2005].  

A major factor influencing fire numbers derived from remotely sensed data is 

the effect caused by cloud obscuration. Because fires have their highest spectral 

emission located in the mid-infrared band, active fire products exploit that part of the 

spectrum to distinguish biomass burning events from the surrounding background 

[Giglio et al., 1999; Justice et al., 2002]. The presence of optically thick clouds along 

the atmospheric path between the target (fire) and the satellite sensor will, however, 

greatly reduce the ability to detect a fire due to severe attenuation of the spectral 

signal emitted by either flaming or smoldering phases of biomass combustion.  
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Current methods used to compensate satellite active fire detection to account 

for fires missed due to cloud obscuration tend to rely on the assumption that fires 

occur with the same frequency under cloud covered areas as they do in the open 

[Cardoso et al., 2003; Giglio et al., 2003b, 2006; Roberts et al., 2005]. Despite being 

an attractive approach for its simplistic assumption, the adoption of such procedures 

becomes problematic in areas where fires are unevenly distributed in space. Under 

such conditions, the resulting adjustment numbers will be potentially influenced by 

the cell size selected to extrapolate the applicable clear sky fire density to the 

complementary cloud covered area. The major implication of such an approach is 

associated with the assumption of fires in areas with no burning activity which would 

lead to an overestimation of fire numbers.  

Here we present an approach that uses precipitation data and land use 

information to more precisely quantify the potential omission error associated with 

the cloud obscuration affecting satellite active fire detection products. The proposed 

approach is applied to a geostationary satellite fire data set, in order to characterize 

the cloud effect on fire detection over the entire diurnal cycle. The analyses are 

focused on Brazilian Amazonia where intense fire activity and frequent cloud cover 

are prevalent (Figure 2.1). In the sections to follow we describe the data sets used and 

the method developed and present the results produced for 2005. 
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Figure 2.1. Fire frequency (fires 10−2 km−2 year−1) across the nine Brazilian States in 
Amazonia. Values based on 3-year average (2003–2005) GOES WF-ABBA fire detection 
data using all observation hours available. 
 

 

2.2 DATA 

2.2.1 Active Fire Product 

In the past two decades multiple satellite-based active fire products have been 

designed using a variety of sensors [Elvidge et al., 1996; Giglio et al., 2000; Kaufman 

et al., 1990, 1998a; Menzel et al., 1991]. The performance of individual products is 

found to be strongly dependent on the sensor's spectral characteristics and on the 

algorithm used, as well as on the imaging characteristics (e.g., pixel size, observation 

geometry) provided by the instruments and the orbital platforms on which they are 
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mounted [Morisette et al., 2005b; Schroeder et al., 2005]. Despite their usual coarser 

spatial resolution, geostationary satellites are extremely interesting for fire monitoring 

as they provide high observation frequency. High frequency observations are 

important for deriving the diurnal cycle of fire activity at the regional to basin-wide 

level as well as for modeling time dependent transport of biomass burning emissions 

[Freitas et al., 2005]. 

Data from the Geostationary Operational Environmental Satellite positioned at 

75° longitude (GOES-East) are used in this study. The GOES-East satellite is located 

over the study area selected, thereby offering near optimal observation conditions 

(i.e., near nadir viewing geometry) for fire detection. The nominal 4×4 km pixel 

resolution at sub-satellite position remains stable throughout most of the region with 

less than 25% increase in pixel area being observed near the far most corners of the 

study area. 

Two major GOES-based operational active fire products are available for the 

study area. The Wildfire Automated Biomass Burning Algorithm (WF-ABBA) is 

produced by the University of Wisconsin — Madison and uses a contextual approach 

for detecting active fires [Prins and Menzel, 1992; Prins et al., 1998]. This product is 

available for the period of 2000–present and covers the entire study area. The other 

product is generated by the Weather Forecast and Climate Studies Center in Brazil 

(CPTEC) and combines fixed threshold and contextual tests for detecting fires 

[CPTEC, 2008]; data are available from July 2004 to present. Because of limited 

temporal coverage found with the latter, we used WF-ABBA's active fire product in 

this study. The data set selected for use covers the period of January 2003–December 
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2005 and is composed of 17,520 half hourly files per year. Each file contains 

information on fire location and acquisition date along with the temperature and area 

estimates and the assigned confidence for each detection. The latter is divided into 

five categories ranging from high (0) to low (5) confidence. Category 5 was rejected 

here as in some cases it was found to be strongly associated with spurious detections 

composed of large clusters of pixels with no similar detections from other sensors. 

Previous validation of WF-ABBA's fire product performed during the Smoke, Clouds 

and Radiation-Brazil (SCAR-B) experiment, showed that forest conversion fires as 

small as 1 ha could be detected by that algorithm [Prins et al., 1998]. WF-ABBA's 

active fire detection product was selected as the source data to which the cloud 

obscuration adjustments were implemented based on the methodology described in 

Section 2.3. The necessary WF-ABBA product files were made available by the 

University of Wisconsin — Madison. 

 

2.2.2 Precipitation Data 

The second set of data used in this study was the satellite derived precipitation 

estimates. Brazilian Amazonia is still only partially covered by meteorological and 

hydrological surface stations from which precipitation data can be extracted. Rainfall 

is generated primarily within localized convective systems leading to potential effects 

on the quality of the precipitation estimates based on spatially interpolated surface 

station data from the region [Costa and Foley, 1998]. Availability of meteorological 

radar data is also scarce due to limited spatial and temporal coverage. Consequently, 

the use of radar data was not considered as a viable alternative for this study. Because 
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of these limitations, satellite derived precipitation products were used for assessing 

rainfall conditions throughout Brazilian Amazonia. As with the remote sensing of 

active fires, precipitation estimates are provided by different sensors using different 

algorithms that can be based on single instrument or on multi-sensor multi-data 

approaches [Bellerby et al., 2001; Kummerow et al., 1998; Rudolf et al., 1996]. 

Consideration of the spatial and temporal resolutions and the accuracy of the 

precipitation products that have achieved operational mode led to the use of GOES-

based precipitation estimates for this study. CPTEC currently generates daily GOES-

based precipitation estimates for most of South America at the nominal spatial 

resolution of 4×4 km. CPTEC's product is a revised version of the Hydro-estimator 

method [Vicente et al., 1998], which uses improved coefficients for the specific 

conditions observed over Brazil [Vila and Lima, 2004; Carlos Frederico Angelis — 

personal communication, 2005]. CPTEC's GOES-based precipitation estimates data 

production was initiated in January 2004 providing daily files with total accumulated 

precipitation at nominal 4 km resolution. The data set used in this study covers 

January 2004–December 2005. 

Prior to the application of CPTEC's Hydro-estimator precipitation data to the 

proposed methodology, an evaluation was performed using point precipitation data 

obtained from 19 automated surface weather stations available across the basin [URL: 

http://tempo.cptec.inpe.br/PCD/]. Figures 2.2A–C show the results for all stations 

selected using three different time integration periods — 1, 7, and 30 days, 

respectively. The correlation between the two data sets is seen to improve 

significantly with the total number of days used in the sampling process. 

http://tempo.cptec.inpe.br/PCD
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Figure 2.2. Scatter plots of the satellite precipitation estimates and the surface precipitation 
observations using 1 (A), 7 (B) and 30 (C) day average values and of the difference between 
the satellite precipitation estimates and the surface precipitation data and the satellite variance 
(D) calculated for the 9 pixels centered at the Sao Gabriel weather station in Amazonas state. 
 

 

Two major factors were believed to contribute to the dispersion seen in all 

three graphs. First, there is the natural difficulty in relating the surface station's point 

data to the 4×4 km pixel footprint as obtained with the GOES data. The large rainfall 

spatial heterogeneity mentioned above will cause significant impact on the area 

averaged estimates produced from the satellite data. The effect of the spatial 

variability in precipitation patterns in the region is exemplified in Figure 2.2D, where 

the absolute difference calculated for the satellite and surface station precipitation 

A B 

C D 
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values is plotted against the satellite precipitation variance (σ2) based on 9 pixels 

centered at one surface station location. 

Another important factor contributing to the dispersion seen in Figures 2.2A–

C is related to the inherent deficiencies in the precipitation product that are associated 

with the use of passive remote sensing data from GOES and empirical relationships 

that tend to impact the accuracy of the precipitation estimates produced [Boi et al., 

2004; Ebert et al., 2007; Rozumalski, 2000; Vicente et al., 2002]. Despite these 

limitations, the high observation frequency of the GOES precipitation estimates 

allows for improved integration of the 24 h precipitation totals thereby providing 

valuable information for use in this study. Also, as will be described in Section 2.3.1, 

our approach will be based on relative differences between precipitation estimates 

making absolute accuracy of the product of less significance. 

 

2.2.3 Cloud Mask 

The WF-ABBA fire product consists of a list of fire detections, but no cloud mask is 

included. However, a cloud mask is needed for identifying cloud obscured pixels that 

require processing for potential fire omission. Therefore we developed a new cloud 

mask product at the 4 km spatial and 30 min temporal resolution of the original active 

fire data, which is the basis of the cloud obscuration processing scheme. The cloud 

mask was designed based on the use of the Global-Merged Infra-Red Brightness 

Temperature (from here on designated simply as BT) product generated by the 

Climate Prediction Center [CPC, 2008]. The BT data are a single band global product 

derived from multiple geostationary satellite imagery and gridded to nominal 4×4 km 
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resolution. In the case of Brazilian Amazonia the BT product is primarily derived 

from GOES-East imagery.  

The unique conditions of the Amazon region in terms of daily BT trends were 

explored to derive a method that uses fixed and dynamic thresholds to distinguish 

between clouds and land surfaces in the BT images. Daily variation of BT is small for 

clear sky pixels as surface temperature remains much constant within a 30 day period 

[Alvalá et al., 2002]. The stability of surface conditions is demonstrated in Figure 

2.3B in which a typical pattern of BT values extracted from a 30 day profile obtained 

from the same pixel and observation hour is presented. The set of empirically defined 

tests used in the production of the cloud masks is summarized bellow: 
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Where BT is evaluated for each individual pixel imaged during the ith observation 

hour. Conditions (iii–iv) use information from the previous 30 days to calculate the 

mean ( BT ) and the standard deviation (σ) for observation hour i. Only pixels having 

BT values greater than 278 K are considered in the calculation of BT and σ. The 

cloud mask processing also requires that a minimum of 10% of the BT data available 

during the 30 day sampling period be greater than 278 K. The threshold of 278 K was 

(i) 

(ii) 

(iii) 

(iv) 
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found to work well for this specific data set as it provided the dividing line between 

unambiguous cloudy pixels and other surfaces. Having a minimum of 10% of all 

values observed within a 30 day period above 278 K was then required to estimate the 

approximate clear sky BT value and therefore allows for proper classification of the 

pixels. For those cases where this criterion is not met, the pixels are classified as 

undetermined and thereby not used in the cloud obscuration processing. 

Approximately 1.5% of the pixels analyzed were classified as undetermined. 

 

 

 

Figure 2.3. Brightness temperature (BT) image for 15 August 2004 1815 h UTC (A) and the 
30 day (July 16→August 15 2004) temporal profile (B) for the pixel marked as “⊕” on the 
image. Solid line represents the observed BT values, the dotted line represents the 30 day 
mean value, and the dashed lines the 30 day standard deviation. 

A 
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Figure 2.3. continued 

 
 

The performance of the cloud mask product was tested against another source 

(CPTEC's GOES-based operational multi-band daytime-only cloud classification 

method; http://satelite.cptec.inpe.br) to check for consistency. Two 20 day periods 

were analyzed: one in the wet season (February 2005) and one in the dry season 

(September 2005). The results showed the two products to be in good agreement and 

proved the cloud mask to be effective in identifying cloudy pixels (>95% 

correspondence with CPTEC's classification during both wet and dry seasons). Pixels 

classified as cloud-free by the cloud mask product showed a less significant 

agreement with CPTEC's product (23% during the wet season and 56% during the dry 

season). To help explain the differences between the two products we randomly 

selected approximately 20 cases from the wet and dry seasons for which GOES 1 km 

B 

http://satelite.cptec.inpe.br
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and MODIS 1 km and 500 m bands were visually inspected. The visual analysis 

suggested that sub-pixel cumulus clouds that are routinely observed in the Amazon 

basin as well as other sorts of contaminants (e.g., thin cirrus clouds, smoke plumes) 

are more frequently classified as clouds by the more conservative method used by 

CPTEC resulting in the differences found. 

Half hourly global BT files were obtained from the NASA's Goddard Space 

Flight Center Distributed Active Archive Center (DAAC) covering years 2004 and 

2005 (17,520 files per year) and the cloud mask algorithm was applied for Brazilian 

Amazonia spatial subset. Analysis of the BT data showed that pixels having 

confirmed measurable precipitation (based on precipitation observations derived from 

the same surface station network used to evaluate the hydro-estimator product above) 

had a mean value of 237 K (σ = 22 K). This result corroborates the findings of Arkin 

[1979] who obtained a 0.75 correlation coefficient between surface precipitation data 

and three month-average satellite rainfall estimates for brightness temperature values 

lower than 235 K. Based on this finding, the cloud obscuration analysis was only 

carried for pixels showing BT values greater than 237 K during the 24 h period 

between the last satellite precipitation estimate available and the following one. 

 

2.3 METHODS 

In order to predict whether there are fires present under clouds, we need to determine 

the conditions under which fires are likely to occur. In the case of Brazilian 

Amazonia, both physical and social factors play important roles in defining where 

and when fires occur. The methodology presented here uses precipitation estimates to 
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determine the physical conditions of the environment, along with previous active fire 

data to derive the spatial and temporal distributions of fires that are known to be 

influenced by specific land use patterns observed throughout the region. Given that 

the extent of Brazilian Amazonia is over 5 million km2, the conditions leading to 

vegetation fires can vary significantly across the region. The existence of vegetation 

cover types ranging from grasslands to closed canopy evergreen forests requires that 

the area be divided into smaller parts in order to represent local characteristics of fire 

occurrence. Consequently a 40×40 km grid covering the study area (3358 cells total) 

was used to stratify the entire basin into smaller subparts. The grid size selected was 

meant to preserve the small scale phenomena represented in the analyses while 

balancing the need for reasonable sample sizes required to produce the summary 

statistics described below. In addition, the selected grid size allowed for easier 

association with the nominal 4×4 km GOES pixel distribution. Analysis of the 

physical conditions and spatial and temporal dynamics was undertaken for each one 

of the 48 daily GOES observation hours (30 min interval). In the following sections 

we describe the approach used to determine potential fire omissions due to cloud. 

 

2.3.1 Fire Dynamics and Precipitation 

Precipitation will have a great impact on the conditions of the local environment, 

influencing the mechanisms that control vegetation moisture content and temperature 

and the latent and sensible heat fluxes that affect land surface and atmospheric 

humidity and temperature conditions [Betts et al., 2002; Bruno et al., 2006; Nepstad 

et al., 2002]. WF-ABBA active fire data from 2004–2005 were used in conjunction 
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with the GOES precipitation estimates for the same period to derive the physical 

conditions that facilitate fire development. Precipitation amounts during the 30 day 

period preceding each fire detection were extracted for every observation hour and 

the information aggregated into the 40×40 km grid following: 
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Where RT is a 30 element array containing the accumulated precipitation r during a 

30 day period preceding fire n [n = 1,…, N] detected during observation hour i [i = 

1,…, 48] and located in grid cell z [z = 1,…, 3358]. A third degree polynomial was 

adjusted to the mean values representing the group of data found in each one of the 

40×40 km grid cells for each observation hour using: 
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Where R  is the 30 element array with the mean accumulated precipitation for N fires 

detected during observation hour i at cell z, and M is the resulting array of data for 

which the coefficients in Eq. (4) are calculated for. Eq. (4) is the function defining the 

(1) 

(2) 

(3) 

(4) 
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relationship between the number of days (x) preceding a fire and the respective mean 

accumulated precipitation for that period. Interestingly, M assumes a strong linear 

distribution when N grows larger (typically for N > 50) (Figure 2.4). The application 

of a third degree polynomial proved a good fit with most conditions observed. The 

resulting curve coefficients were stored in individual look up tables (LUT, one for 

each observation hour) and were to be used in the final code as a reference value 

describing the mean precipitation conditions preceding fires at each 40×40 km grid 

cell. 

 

 

Figure 2.4. Mean precipitation values calculated for a single 40×40 km cell (approx. 
location: 60.10° W 12.50° S) based on N=151 active fire detections observed during 2004–
2005. R2=0.9974. 
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 The information provided by the polynomial curves was used to set the 

probability ranges that describe the potential occurrence of fires based on the physical 

condition of the environment as defined by the precipitation data. The criteria used to 

determine the probability of fire occurrence as a function of precipitation were the 

following: 

 

( )

( )

( )

( )
( )

∫
∫

∑

∑ ∫

∫∑

∫∑

=

=

=

=

=

=

=

=

−=→

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤

>

=→≤

30

1
30

1
,

30

1
,

30

1

30

1
,,

30

1
,

30

1
,

30

1
,

30

1
,

.

2

1

dxxf

RA
dxxP

dxxfRA

and

dxxfRA

PdxxfRA

zi

day

day
zi

R

day

day
zizi

zi

day

day
zi

Rzi

day

day
zi

 

 

Where RA is the actual precipitation data that is accumulated over the 30 day period 

for a particular pixel at observation hour i and grid cell z, ∫dx is time integral (30 

days) calculated for the polynomial curve f(x), and PR is the assigned probability of 

fire occurrence related to precipitation. According to Eqs. (5) and (6), RA must be less 

than two times the area defined by the LUT curve covering the 30 day period for a 

particular location and observation hour for the pixel to be considered for the cloud 

obscuration analysis. Additionally, a third test was implemented to avoid particular 

conditions when the actual precipitation is concentrated in the most recent period 

(day-1→day-7). This test is based on anecdotal evidence, which suggests that land 

owners in the region normally wait for approximately one week to burn following a 

(5) 

(6) 
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rainfall episode. In this case, a more conservative approach is applied using the 

criterion: 
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From the above test, for the pixel to be considered for the cloud obscuration 

processing, the actual precipitation recorded during the 7 day period preceding an 

observation cannot be greater than the 30 day mean precipitation associated with fires 

for that same location and observation hour. 

 

2.3.2 Fire Spatial and Temporal Dynamics 

Fire activity in tropical areas tends to follow very specific patterns as a function of 

land use and land cover change. In those areas, the systematic use of fires for land 

clearing and maintenance creates reasonably consistent spatial and temporal patterns 

in satellite active fire detection from year to year [Giglio et al., 2006]. To establish 

the mean annual fire activity in time and space over Brazilian Amazonia, we used 

active fire records derived from GOES during 2003–2004. The 40×40 km grid used 

to extract the fire and precipitation relationship was also applied in this analysis. 

In order to derive the temporal distribution of fires, the year was divided into 

26 14-day periods. We used 14 day period intervals to properly represent the seasonal 

curves of fire activity. Fire seasons were usually constrained to approximately 2–3 

months, thereby 14 day periods allowed for a good representation of the progress in 

fire activity throughout the season while keeping our samples for each cell to a 

(7) 
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reasonable size. The probability distribution of fires detected during each one of the 

14-day periods in relation to the 2003–2004 totals was calculated for all 40×40 km 

grid cells according to: 
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Where PT is the active fire probability distribution for grid cell z, the numerator 

represents the number of fires detected during a 14 day period t, and the denominator 

represents the total number of fires observed in grid cell z during the entire period 

analyzed (2003–2004). A LUT containing the results for each grid cell was produced 

for every observation hour to be used in the final code. To reduce the effects of the 

inter-annual variability in fire activity on the adjustment factors produced, we used 

information from the year for which the processing was implemented (in this case 

2005) to account for departs from the mean values described by the LUTs containing 

the PT data described above. For this we used a metrics P14 describing the sum of fires 

detected during the preceding 14 day period for each 40 km grid cell that was 

systematically updated during processing. Therefore, any increase or decrease in fire 

activity for a particular grid cell would be considered in the calculation of the cloud 

obscuration adjustment produced by either increasing or decreasing the contribution 

from the term PT in Eq. (8) relatively to P14. 

 In addition to the annual distribution of fires observed with the active fire data 

record from 2003–2004, evaluation of fire's return frequency was also conducted. 

Vegetation fires are usually associated with a high return frequency in tropical 

(8) 
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regions [Cochrane and Schulze, 1999]. The analysis of GOES active fire data during 

the period of 2003–2005 including all observation hours showed that approximately 

66% of the areas under the influence of fires in one year also exhibited some activity 

in the following year (Table 2.1). However, the likelihood of observing a fire in a 

particular area during the same observation hour over sequential years becomes much 

less evident. Multiple factors were believed to contribute to the latter, including but 

not limited to changes in the hour of the day a fire is ignited, changes in the fuel load 

affecting fire intensity and duration therefore impacting detectability, changes in land 

use, etc. Modeling these factors and the interactions among them is difficult and was 

not attempted here. In order to account for this greater variability when analyzing 

observation hours individually a random function (ξ) was used with the cloud 

obscuration analysis to represent fire return probability at every hour. This random 

function was adjusted to uniformly represent the average ranges of return 

probabilities at the individual observation hour from Table 2.1. 

 

Table 2.1: Fire return rate based on GOES ABBA active fire product using a 4×4km grid 
covering Brazilian Amazonia. 
 

Years with Detection 1745UTC* All Hours Included* 
2003 & 2004 33% 68% 
2004 & 2005 40% 65% 
2003 & 2005 33% 66% 

2003 & 2004 & 2005 19% 52% 
* Values represent the percentage of all cells with fire activity in one year that also showed 
detections in subsequent years based on (i) the observation hour of 1745UTC and (ii) all 
observation hours. 
 

Complementing the analysis of the land use influence in the establishment of 

fire patterns across the study area, the spatial distribution of fires was determined with 
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the implementation of a 4×4 km grid nested in the previous 40×40 km grid. This finer 

grid was created to represent the GOES pixel map at nominal resolution. It was 

intended to distinguish between areas under the influence of fires where the cloud 

obscuration evaluation would be performed from areas with no fire activity recorded 

in the most recent years where no intervention was to be conducted. All 4×4 km cells 

showing fire activity during years 2003 and 2004 were identified and the information 

stored as binary values (0 — no fire history; 1 — fire prone) in individual LUTs for 

every observation hour. These LUTs were updated during the actual processing to 

account for areas of fire expansion by adding new fire prone pixels to the existing list. 

 

2.3.3 Implementation and Accuracy Assessment 

The methodology implemented during this study was designed to use the information 

derived from the previous steps for compensating year 2005 GOES-East fire data for 

the cloud obscuration of fires. GOES data were processed sequentially for every 

acquisition hour during year 2005 totaling 17,520 observations. For a particular 

observation date and time the code would initially search for all 40×40 km grid cells 

that, according to the temporal LUTs, are likely to show fire activity for that 

particular bi-week (Figure 2.5). Following this first selection, all 4×4 km areas 

contained by the grid cells (i.e., the nominal GOES pixels) with a history of fire 

activity are identified. The cloud mask product that was produced for the same year 

(2005) is then used to search for cloudy pixels among the previously selected ones. 

Two major scenarios were considered during processing, each representing distinct 

cloud coverage conditions. 
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Figure 2.5. Cloud obscuration processing diagram. 



 

 33 
 

In scenario one, a cloud covered pixel is selected for observation hour T and 

both adjacent detections (T−30 min and T+30 min) are also obscured by clouds. In 

this case, the actual precipitation data is assessed and compared against the values 

obtained from the LUT defining the mean precipitation curve associated with fire 

occurrence for that area (i.e., the 40×40 km cell). Having cleared the tests established 

in. (5), (6) and (7), the probability of fire omission (PF) will be derived for that pixel 

using (5), (6) and (8) and the random function (ξ), assuming the form: 

 

.ξ××= TRF PPP  

 

In scenario two, a cloudy pixel detected in time T has either the preceding 

(T−30 min) or the succeeding (T+30 min) observation hour cloud free. Under these 

conditions the code will use information from the current WF-ABBA fire product 

(searching for adjacent detections), the pixel's local time and from a general fire 

diurnal cycle curve. For this particular application, the curve chosen to represent the 

fire diurnal cycle in the region had its peak located at 1500 h local time in order to 

coincide with the normal hour of maximum air temperature – or inversely, minimum 

air humidity – [da Rocha et al., 2004] as temperature and humidity will be strongly 

related to fire spread conditions. The diurnal cycle curve was divided into three parts, 

each describing a particular trend in fire progress over time (Figure 2.6).  
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Figure 2.6. Stratification of the diurnal cycle of fire activity into three major areas, A1, A2, 
and A3. 
 

 

In area A1 of Figure 2.6, a cloudy pixel observed at local time Tlocal will be 

likely to omit a fire if an actual detection exists for Tlocal−30 min, since fire continuation 

will be favored by the usual increase in temperature followed by a decrease in relative 

humidity. The likelihood of a fire being omitted at local time Tlocal, when detection is 

observed during hour Tlocal+ 30 min will depend on the potential fire occurrence during 

hour Tlocal for that time of the year. Based on these considerations, cloudy pixels 

observed during local hour Tlocal and falling within area A1 will be evaluated 

according to the following criteria: 

 

Actual fire detection at Tlocal-30 min → PF = 1 

Actual fire detection at Tlocal+30 min → PF = PT. 

 

In this case, if both Tlocal − 30 min and Tlocal + 30 min observations are cloud free, 

condition (i) will prevail. For area A2 in Figure 2.6, a cloudy pixel observed during 

local hour Tlocal will have the trend in fire progress being inversely described 

according to the following criteria: 

(i) 

(ii) 
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Actual fire detection at Tlocal-30 min → PF = PT 

Actual fire detection at Tlocal+30 min → PF = 1. 

 

In this case, condition (ii) will prevail when both Tlocal −30 min and Tlocal + 30 min 

observations are cloud free. Lastly, for area A3 in Figure 2.6 a cloudy pixel detected 

during local hour Tlocal will receive a nominal probability PT if either Tlocal−30 min or 

Tlocal + 30 min observations are cloud free and a fire detection exists for any of those two 

observations. 

To verify the consistency of the outputs produced we tested the cloud 

obscuration processing described above using simulated cloud coverage data in 

combination with the actual fire detection data from WF-ABBA. We used year 2005 

cloud mask product to simulate the presence of clouds over randomly selected clear 

sky pixels found across the study area. The cloud obscuration analysis was then 

performed for those pixels selected in order to obtain the predicted number of fires 

missed due to clouds. For each pixel analyzed the actual fires detected by WF-ABBA 

were identified. The results were aggregated using the 40×40 km grid and the 

relationship between predicted fires versus observed fires assessed. The simulations 

demonstrated the predicted fires to be highly correlated with the observed fires (R2 

=0.82) (Figure 2.7). The sum of all fires produced by the cloud obscuration 

processing was able to represent the actual fires missed due to clouds to within 1.5% 

on an annual basis and to within 5% on a monthly basis. 

(i) 

(ii) 
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Figure 2.7. Relationship between fires produced by the cloud obscuration processing based 
on simulated data and observed fires for the same locations using 2005 data. 
 

2.4 RESULTS AND DISCUSSION 

The main processing code was used to process year 2005 data and the results are 

presented below. The numbers produced represent those cases where a cloud 

obscured pixel was identified and at least one of the criteria established above was 

met for any of the 17,520 annual GOES observations over an area of 5.4 million km2 

(335,800 pixels at 4×4 km spatial resolution) covering Brazilian Amazonia. The 

probability of fire omission derived for each pixel was accumulated over multiple 

hours and days of observation resulting in a total number of fires potentially missed 

due to the presence of clouds equivalent to 59,650, or approximately 11% of the 

actual GOES fires detected during 2005 (545,286 total — representing WF-ABBA's 

fire types 0–4 only; category 5 associated with low probability fires not considered) 

(Figure 2.8). 
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Figure 2.8. Fires omitted due to clouds (A) for year 2005 and the percentage contribution (B) 
of cloud adjusted fires in relation to the total number of GOESWF-ABBA fires detected in 
that same year for each 40×40 km grid cell covering Brazilian Amazonia. 
 

A 

B 
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The 2005 data set was also processed using the simple approach for 

compensating for clouds, which is based on the assumption that fires occur at the 

same frequency under clouds as they do in cloudless areas [Cardoso et al., 2003; 

Giglio et al., 2003b, 2006; Roberts et al., 2005]. In order to evaluate the impact of 

spatial sampling, the simple approach was implemented using two different grids of 

40×40 km and 120×120 km resolution each. The average fire frequency was 

calculated for the cloud free fraction of each grid cell based on: 

iz

iz
iF S

D
F

,

,
, =  

Where Dz is the number of actual fires detected within grid cell z during 

observation hour i, and Sz is the number of 4×4 km cloud free pixels in the same area. 

The number of cloud obscured pixels in each cell (i.e., 100—Sz,i and 900—Sz,i for the 

40×40 km and 120×120 km grids, respectively) was then multiplied by Eq. (10) in 

order to derive the number of fires potentially missed. For both 40 km and 120 km 

grid resolutions used, the simple approach produced a larger number of potentially 

missed fires due to cloud obscuration (178,968 and 241,804 – 33% and 44% 

increment – respectively) as compared to the proposed methodology described above 

(Figure 2.9). The difference was particularly important in areas where fires were 

unequally distributed in space, causing fire free pixels (e.g., pixels located in forested 

areas and distant from human activities) to be erroneously classified as fire omission 

areas by the simple rule approach. The use of LUTs describing the fire activity in 

space helped reduce this effect with the methodology proposed by only selecting fire 

prone pixels during the cloud obscuration processing. 

 

(10) 
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Figure 2.9. GOES WF-ABBA fire diurnal cycle distribution for Brazilian Amazonia and the 
corresponding adjustment produced using the cloud obscuration processing methodology and 
the simple rule approach using 40 km and 120 km sampling areas. 
 

 

The majority of the fire omissions identified by the proposed methodology 

were associated with the conditions described by scenario 1, where all three 

observation hours T−30 min, T, and T+30 min are obscured by clouds. Average cloud 

coverage in the region varied between a minimum of 22% and a maximum of 78% 

depending on the observation hour, with the lowest values found in the areas 

surrounding the evergreen tropical forests in the southern and eastern parts of the 

basin (Figure 2.10). These areas are generally composed of Cerrado (savanna) 

vegetation and transition forests. The highest values occurred in the western part of 

the basin where the hydrological cycle is enhanced by the prevalence of closed 

canopy forests resulting in high evapotranspiration rates and by westerly winds that 

bring supplemental moisture from the eastern parts of the basin. From the remote 

sensing perspective, this spatial distribution of fires and cloud coverage is beneficial 
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as it minimizes the cloud obscuration problem in areas where fire activity is most 

pronounced (e.g., the states of Mato Grosso, Tocantins, Maranhão, and eastern Pará). 

Minimum cloud coverage was found to coincide with the early afternoon observation 

hours (Figure 2.10), which has major implications for fire detection as it approaches 

the hour of maximum fire activity in the region [Giglio, 2007; Kaufman et al., 1998a; 

Prins et al., 1998]. This latter finding corroborates the discussion presented in 

Schroeder et al. [2005] where inter-comparison analyses using multi-sensor fire data 

and visual confirmation of smoke plumes demonstrated the strong diurnal signature 

of fire activity in the region. 

 

 

 

 
Figure 2.10. Average maximum and minimum percentage cloud coverage (A and B 
respectively) and hours of maximum and minimum occurrence arranged in 3 hour bins (C 
and d respectively). 

A 
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Figure 2.10. continued 

B 

C 
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Figure 2.10. continued 

 

 

In order to evaluate the implications of the method implemented above we 

used high resolution (20 m) China–Brazil Earth Resources Satellite (CBERS-2) burn 

scar maps to delineate areas of fire activity relating those areas to the fire omission 

pixels produced. The burn scar maps were generated for the state of Acre in the 

western Brazilian Amazonia covering the 2005 fire season in the region (July–

September). Using supervised classification we produced a burnt area mosaic based 

on 9 CBERS images corresponding to two individual scene locations (i.e., path 180 

rows 111 and 112) covering from early to late  fire season in 2005 (i.e., July to 

October respectively). Detailed mapping of burn scars resulting from maintenance 

D 
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(e.g., pasture and agricultural) and conversion (e.g., slash and burn) fires was 

produced for an area of roughly 22,000 km2. The quality of the burnt area mosaic was 

assessed using GPS points and digital photos collected from 40 h of over-flights from 

which all burnt area sites inspected could be visually confirmed [Foster Brown — 

personal communication 2005]. Cloud obscuration in the region is known to 

significantly influence active fire products, usually limiting detection capacity 

irrespective of the sensor used [Brown et al., 2006]. The GOES WF-ABBA fire 

counts (excluding fire category 5) were spatially aggregated into nominal 4×4 km 

cells along with the burn scar areas and the fire increments produced independently 

by the method proposed above and the simple rule approach (using 40 km and 120 

km grid resolutions) and error matrices were derived (Table 2.2a–d). 

The original WF-ABBA active fires detected during the same period covered 

by the burn scar map showed an omission error of 58.3% and a commission error of 

6.4%; multiple detections were frequently observed for individual 4×4 km cells 

across the area. Despite the reasonably high omission error, 4110 of a total of 4133 

fire detections observed during the period analyzed had a spatially coincident burn 

scar (i.e., within ± 2 km of WF-ABBA's fire pixel coordinate); whereas 15 of 23 fire 

coordinates associated with false detection had large burn scars located in the 

immediate vicinity of the pixel. Nevertheless, the fire pixels detected accounted for 

76% of the total area burned measured for the selected plot; with the remaining 24% 

associated with omission showing significantly different characteristics of mean burnt 

area size (4 times smaller than the confirmed detections) therefore potentially falling 

outside the detection envelope of the GOES imager. 
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Table 2.2: Error matrices for evaluating the performance of the original GOES WF-ABBA 
active fire data (a), the cloud processed data (b), and the simple rule approach using 40 km 
and 120 km area sampling (c, d respectively) based on 20 m resolution CBERS data (our 
“ground truth”) covering part of Acre state in western Brazilian Amazonia. 
 

 
 

 

The application of the cloud obscuration processing method showed a 

reduction in the omission error to 43.7% along with a minor increment of the 

commission error (8.8%). The pixels selected in this latter case accounted for 88% of 

the total area burned measured. The mean burned area size resembled the mean area 

size associated with the original WF-ABBA fire product to within 15%.  

The application of the simple rule approach showed a major reduction of the 

omission errors for both 40 km and 120 km grids used (10% and 0%, respectively) at 

the cost of substantial commission errors being produced (63% and 100%, 
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respectively). The mean burned area size described by the simple rule approach was 

considerably smaller (45%) as compared to the value observed with the original WF-

ABBA data, with the burned area frequency histogram having shifted towards smaller 

burn scars. Despite the improvements observed primarily in terms of the reduction of 

omission errors, the additional fires created during processing of the cloud 

obscuration did not have a significant impact on the relationship between the 

accumulated fire counts obtained for an individual pixel area and the associated size 

of the burn scar measured for that same plot. That relationship remained unresolved 

for all four data sets analyzed (i.e., the original GOES WF-ABBA active fire data, the 

cloud adjusted numbers derived with the above methodology, and with the simple 

approach at 40 and 120 km), with weak correlation being observed in all cases. 

 

2.5 FINAL REMARKS 

Fire detection omission due to cloud obscuration is a major problem affecting remote 

sensing of active fires. Here we described an approach designed to address the cloud 

obscuration problem using high frequency geostationary observations. The 

methodology takes advantage of three different input data, namely precipitation 

estimates, a cloud mask and active fire data that are derived from the same 

instrument. This consideration was especially important for facilitating data 

registration and also to reduce image navigation problems that can occasionally affect 

the GOES data. The use of active fire data from recent years along with precipitation 

data provided means to establish the general patterns of fire use in both space and 
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time across the entire study area, at the same time preserving specific regional and 

local characteristics with the implementation of pixel based processing. 

The strong correlation between the predicted fires missed and the actual fires 

observed demonstrated the effectiveness of the approach. In terms of the overall 

trends caused by cloud obscuration across Brazilian Amazonia, we observed that the 

net effect of fire omission was partially minimized in areas of intense fire activity as 

these generally coincided with the areas of minimum cloud coverage. Nonetheless, in 

relation to the percentage contribution of fires missed due to clouds, we found areas 

where fire omission was significant (Figure 2.8) despite those being depicted as 

relatively low fire activity areas by the original WF-ABBA product (Figure 2.1). This 

could signal the need to more detailed analysis of fire dynamics in areas considered to 

be of low priority under current regional fire management programs (e.g., 

northeastern Roraima). 

Another important aspect presented was the partial overlap between the hours 

of minimum cloud coverage and of maximum fire activity as a result of a strong 

basin-wide fire diurnal cycle signature. The cloud adjusted numbers maintained the 

same fire diurnal cycle signal confirming our field observations that indicated 

systematic use of fires in the mid-afternoon hours as part of regional land 

management techniques. As compared to a more simplistic approach, the 

methodology was proven successful in reducing the omission errors while 

maintaining the commission errors nearly unchanged, and preserving the general 

quality of the fires described by the original fire product from WF-ABBA. 



 

 47 
 

By means of routine updating of the LUTs used during processing, this cloud 

obscuration modeling technique should be capable of consistently mapping fire 

omission in tropical areas such as Brazilian Amazonia. While the number of fire 

pixels missed due to clouds could be successfully defined, additional work is required 

to better describe the relationship between active fires and the total area burnt which 

modeling of biomass emissions so much depend on. 

We consider this methodology to be applicable to other geostationary systems 

covering different regions of the globe provided that similar data layers are available 

for use. The proposed cloud correction scheme can be included in the current effort 

by the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) Fire 

Mapping and Monitoring Theme (URL:http://gofc-fire.umd.edu) to establish a global 

fire monitoring network from geostationary satellites. This activity, also being 

coordinated using principles of the Committee on Earth Observation Satellites 

(CEOS; URL: http://www.ceos.org) constellation concept and incorporated into the 

Coordination Group for Meteorological Satellites (CGMS; URL: 

http://www.wmo.ch/web/sat/CGMShome.html) is also a contributor to Group on 

Earth Observations (GEO; URL: http://www.earthobservations.org/index.html) 

efforts. However, we must warn for the fact that sensor dependencies (e.g., detection 

omission and commission rates) need to be resolved before any global analysis of the 

effects of clouds on remote sensing fire products is attempted. 

In principle, an improved scheme to correct for cloud obscuration effects is 

also needed for active fire detections from polar orbiting satellites. Consistent 

correction is needed to integrate all geostationary and polar orbiting data into a long-

http://gofc-fire.umd.edu
http://www.ceos.org
http://www.wmo.ch/web/sat/CGMShome.html
http://www.earthobservations.org/index.html
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term active fire data record as part of the Fire Disturbance Essential Climate Variable 

(ECV) as defined in the Global Climate Observing System Implementation plan 

(GCOS; URL: http://www.wmo.ch/web/gcos/gcoshome.html). However, due to their 

limited observation frequency, polar orbiting satellites would require a different 

approach from the one presented here for the estimation of fire omission due to 

clouds. For instance, scenario 2 described in Section 2.3.3 which uses the information 

from adjacent observations of GOES (30 min before and after observation time t) 

would not be applicable to a polar orbiting system. Other issues such as variable 

imaging geometry would also impact the cloud analysis using sensors such as 

MODIS and AVHRR. 

http://www.wmo.ch/web/gcos/gcoshome.html
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Chapter 3: Validation of GOES and MODIS Active Fire 
Detection Products Using ASTER and ETM+ Data1 
 

 

3.1 INTRODUCTION 

Brazilian Amazonia currently represents one of the most active regions of 

deforestation and biomass burning in the world [Csiszar et al., 2005; Dwyer et al., 

2000; Giglio et al., 2006]. Widespread use of fires for land clearing and management 

necessitates consistent methods for monitoring and mapping biomass burning on a 

routine basis [Korontzi et al., 2004; Schroeder et al., 2005]. 

The number of operational or near-operational fire products serving Amazonia 

has increased considerably in the past decade as a result of growing demand for fire 

information from the regional and global scientific communities, environmental 

enforcement agencies, and other end users. Information on fire activity for Amazonia 

is currently available from geostationary and polar orbiting satellites [CPTEC, 2008; 

Govaerts, et al., 2007; UW Madison CIMSS, 2008]. 

While some studies have assessed the performance of the polar orbiting and 

geostationary active fire products through validation exercises [Menzel and Prins, 

1996; Prins et al., 1998; Morisette et al., 2005a; Morisette et al., 2005b; Csiszar et al., 

2006], detailed characterization of these products on a regional to sub-continental 

                                                 
1 The material presented in this Chapter is part of Schroeder et al. [2008b] 
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scale is still needed. The increased demand for these products requires that an effort 

be made to fully characterize the quality of their data. 

In this study we investigate the performance of two major active fire detection 

products available for Brazilian Amazonia derived from the polar orbiting Moderate 

Resolution Imaging Spectroradiometer (MODIS), on board the EOS-AM (Terra) and 

EOS-PM (Aqua) satellites, and the imager on board the Geostationary Operational 

Environmental Satellite, positioned at 75°W longitude along the equator (GOES-

East). We use a large selection of scenes from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) and the Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) at 30 m resolution to serve as our “ground truth” data to 

validate the coarser resolution products. The scene selection covers a wide range of 

vegetation fire conditions that are found across the study region. 

We rigorously test the accuracy of the MODIS and GOES active fire products 

to quantify sources of commission and omission errors, and suggest a method to 

enhance the current contextual fire detection algorithms using brightness temperature 

temporal profiles to reduce the commission error rate over tropical forest regions. We 

apply a bottom-up approach by associating the fire statistics derived from the 30 m 

resolution data to the moderate and coarse resolution data of MODIS and GOES, 

respectively. Complementary in-situ measurements are also used in this study along 

with data from an airborne imaging instrument to independently analyze the 

properties of the fires mapped by the orbital systems. 
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3.2 DATA 

The data used in this study cover nine states that form the Legal Brazilian Amazon, 

an area characterized by a large gradient of percentage tree cover (see Figure 3.1). In 

order to represent all of this variation in the validation process of GOES and MODIS, 

a large volume of data was processed. The details of each individual data set are 

given below: 

 

3.2.1 GOES 

The study region is centered within the regular scanning zone of the GOES East 

imager which produces 4×4 km resolution images at 30 min intervals. Centered in the 

fire sensitive mid-infrared region of 3.8–4.0 μm, channel 2 provides the primary 

radiometric measurement for GOES imager fire detection. In order to increase our 

sample size, we used a combination of versions 5.9 (2000–2002) and 6.0 (2002–

2005) of the Wildfire Automated Biomass Burning Algorithm (WF-ABBA) 

generated by the Cooperative Institute for Meteorological Satellite Studies (CIMSS) 

at the University of Wisconsin, Madison. The two products are very similar; changes 

in version 6.0 were mainly associated with the implementation of more stringent tests 

to eliminate potential spurious fires from highly reflective clouds [Prins and Menzel, 

1994; Prins et al., 2003]. 

We used the full resolution active fire masks provided by CIMSS as well as 

the regular ASCII data files commonly available to end users. GOES channel 2 

Variable Format (GVAR) data were also obtained from NOAA's Comprehensive 
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Large Array data Stewardship System (NOAA-CLASS; URL: 

http://www.class.noaa.gov/saa/products/welcome). The GVAR data were used for the 

purpose of image registration as well as to derive brightness temperature estimates 

used in Section 3.4.4. A total of 119 individual images were used for the validation 

analysis covering the acquisition dates and hours of ASTER or ETM+ data. An 

additional 446 images were used in the analyses described in Sections 3.4.3–3.4.4. 

 

3.2.2 MODIS 

The two MODIS instruments on board the polar orbiting Terra and Aqua satellites 

provide daily images of Amazonia at nominal 1×1 km spatial resolution. We used the 

Collection 4 MODIS Level 2 (un-projected swath) fire product (MOD14) [Giglio et 

al., 2003a], available from NASA's Land Processes Distributed Active Archive 

Center (LP-DAAC) (URL:http://edcimswww.cr.usgs.gov/pub/imswelcome/), in 

conjunction with the MODIS geolocation product (MOD03), available from NASA's 

Level 1 and Atmosphere Archive and Distribution System (URL: 

http://ladsweb.nascom.nasa.gov/data/). A total of 135 data granules (5-minute orbit 

segments) from Terra MODIS were used for the validation analyses coinciding with 

the acquisition dates of our 2001–2005 ASTER scenes. An additional 164 MOD14 

data granules were used along with the corresponding Level 1B Calibrated Radiance 

granules (MOD021km) to support the analyses described in Sections 3.4.3–3.4.4. 

 

http://www.class.noaa.gov/saa/products/welcome
http://edcimswww.cr.usgs.gov/pub/imswelcome
http://ladsweb.nascom.nasa.gov/data
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3.2.3 ASTER 

ASTER is an on-demand radiometer flying on board the Terra satellite and therefore 

it collects data simultaneously with Terra MODIS [Yamaguchi et al., 1998]. 

Although the instrument does not possess a mid-infrared channel, active fire detection 

was proven successful in previous studies by combining the top of the atmosphere 

(TOA) reflectance estimates from channel 3 near infrared data resized from 15 to 30 

m resolution and channel 8 short wave infrared data at 30 m resolution (Table 3.1) 

[Morisette et al., 2005b; Giglio et al., 2008].We used a total of 162 ASTER Level 1B 

Registered Radiance at the Sensor scenes obtained from the LP-DAAC (Figure 3.1). 

 

3.2.4 ETM+ 

The ETM+ instrument flies on board Landsat-7, which has a similar orbital path as 

the Terra satellite, albeit with an earlier daytime equator crossing time of 1000 

[Goward et al., 2001]. The spatial and spectral specifications of ETM+ channels 4 

and 7 are similar to those of ASTER channels 3 and 8, respectively, making ETM+ 

equally suitable for active fire mapping (see Appendix A). In this study we used 123 

scenes available through the National Institute for Space Research (INPE, Brazil) and 

the Global Land Cover Facility (GLCF; URL: 

http://glcf.umiacs.umd.edu/index.shtml). The scenes covered the period from 2000–

2003. 

 

http://glcf.umiacs.umd.edu/index.shtml
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Figure 3.1: Location of ASTER (red shaded areas) and ETM+ (red open boxes) scenes used 
to validate the MOD14 and WF-ABBA fire detection products, over percentage tree cover 
data [Hansen et al., 2002]. 

 

3.2.5 Vegetation Data 

The 500 m percentage tree cover data derived from the MODIS Vegetation 

Continuous Fields (VCF) [Hansen et al., 2002; Hansen et al., 2003] Collection 4 

product was used in this study to stratify the study region into vegetation sub-groups. 

A total of 12 MODIS 10°×10° Sinusoidal Projection tiles were required to produce a 

mosaic covering the entire study region. The annual VCF product for 2000–2005 was 

available through GLCF. 
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3.2.6 Ground Data 

In-situ fire temperature measurements were obtained for seven different burning 

locations. These measurements were derived as part of validation campaigns 

implemented during 2003–2004 when prescribed burns were arranged in different 

parts of the study region. We used a thermocouple linked to a data logger [Campbell 

Scientific Inc. CR21X] which recorded the development of the fire fronts at 0.2 Hz 

for the duration of the burning (i.e., from fire onset through the smoldering phase). 

These measurements were mainly intended to characterize the differences in fire 

intensity and duration among the main fire types typically observed in the study 

region. 

 

3.2.7 Airborne Data 

Airborne data were acquired for Roraima state in northern Brazilian Amazonia using 

the Airborne Hyperspectral Scanner [AHS AA5201, Argon ST] over two prescribed 

burns and over 90 randomly chosen fires during a 7-day field campaign in January 

2003. The AHS sensor consists of a 50 channel scanner covering 0.445–12.08 μm. 

The instrument is owned and operated by the System for the Protection of Amazonia 

(SIPAM) and it was first flown over vegetation fires during the field campaign in 

January 2003. We applied supervised tests to the data in order to produce fire masks 

at ground resolutions of 1–1.65 m. The fire masks were used to delineate the contour 

of the active flaming areas in each image. 
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Table 3.1: Main characteristics of the satellite imagery used. 
 

Instrument Primary Bands Used for 
Fire Detection 

Spatial 
Resolution 

Temporal 
Resolution 

Number of 
images  

GOES Imager Channel 2: 
3.80-4.00µm 

4km 30min 565 

MODIS Channels 21 & 22: 
3.929-3.989µm 

1km 1-2days 299 

ASTER Channel 8: 
2.295-2.365 µm 

30m 16days 162 

ETM+ Channel 7: 
2.09-2.35 µm 

30m 16days 123 

 

 

3.3 METHODS 

Three previous studies relied on ASTER data to validate the Terra MODIS active fire 

detection product. First, Morisette et al. [2005b] used 18 ASTER scenes from 

August–October 2001 to validate the MOD14 collection 3 and 4 products over 

Southern Africa. Next, Morisette et al. [2005a] used 22 ASTER scenes to 

simultaneously validate two different active fire detection products based on Terra 

MODIS data for three sites in Brazilian Amazonia. Lastly, Csiszar et al. [2006] used 

131 ASTER scenes to validate the MOD14 collection 4 product over Siberia. All 

three studies used active fire masks derived from ASTER imagery to validate the 

coincident Terra MODIS active fire product. 

In order to validate and characterize the MOD14 fire product over Brazilian 

Amazonia, we used a similar approach as described in the studies listed above. We 

produced active fire masks for all 162 ASTER scenes using a contextual approach 

based on ASTER channels 3 (0.76–0.86 μm) and 8 (2.295–2.365 μm) [Giglio et al., 
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2008]. The resulting 30-m mask indicates the presence (“1”) or absence (“0”) of 

active fires within each moderate-to-coarse resolution pixel, and 30-m pixel counts 

are used as surrogates for actively burning area. We recognize this is still an 

intermediate step towards deriving validation statistics based purely on “true” 

physical quantities defining fires. 

We used information from the Terra MODIS geolocation product (MOD03) to 

overlay the MOD14 product on top of the ASTER fire masks. From the fire mask 

data we derived the sum of 30-m active fire pixels and the number of individual fire 

clusters within each MODIS pixel. These statistics were used to determine the 

detection performance of the MODIS instrument by means of a statistical logistic 

regression model defined as: 
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Here P(xi) is the probability of detection (0-1) of MODIS pixel i based on the 

linear combination of ASTER fire pixel summary statistics (j = 1, n), and α and βj are 

parameters derived from the data [Agresti, 1990; Morisette et al., 2005b]. Error 

matrix analysis was also applied using information on the number of 30-m active fire 

pixels to produce empirical curves defining the omission error estimates for the 

MODIS fire product. 
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In order to account for the effects of the MODIS triangular point spread 

function [Wolfe et al., 2002], the projected surface area for the MODIS pixel was 

considered equal to 2×1 km at the sub-satellite point. This procedure is applied for all 

MODIS pixels overlapping the ASTER image.  

We tested the consistency of the fire masks using 1.5 m resolution data from 

the AHS instrument over two prescribed burns conducted in January 2003 which 

were coincident with ASTER imaging (Figure 3.2). Additionally, hundreds of image 

quick looks were produced to verify the consistency of the MOD14 detections when 

overlaid on top of the ASTER fire masks and false color composites.  

 

 

Figure 3.2: Prescribed burn of a deforestation plot located at 1º35’08” N 60º57’18”W on 
January 28, 2003. (A) 1.5m resolution data from AHS RGB combination of bands 9 (0.685 
µm), 5 (0.565 µm) and 1(0.445 µm) acquired at 1438 UTC; (B) fire mask derived from AHS 
band 43 (4.95 µm); (C) ASTER image of the same fire (RGB bands 8-3-1) acquired at 1436 
UTC. The fire perimeter (white contour) derived from the ASTER fire mask is also shown in 
(C). 

A 
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Figure 3.2 continued 
 

B 
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Our validation analyses of the GOES active fire detection product followed a 

similar approach to the one described above for the MODIS data. However, three 

major issues necessitated that a slightly different processing scheme be used for the 

GOES data: 

(i) Temporal differences in image acquisition needed to be considered 

in order to avoid the effects of short-term changes in fire 

characteristics. As part of our field campaign in January 2003, 

multi-temporal data from the AHS instrument were acquired during 

a prescribed burn of a 75 ha deforestation plot in Roraima state. 

Approximately 1.5 hours of fire activity were monitored by the 

AHS instrument at 1.5 m resolution. Once the fire lines were well 

established and moving freely, four sequential AHS images were 

produced separated by 5 minute intervals from each other. We 

found the instantaneous fire-affected areas to be within 10% of the 

mean estimated area (35 ha) mapped during the 20 minute interval. 

In a separate study, Csiszar and Schroeder [2007] used ETM+ and 

ASTER images acquired 30 minutes apart to assess the impact of 

varying fire conditions on the performance of the MODIS active 

fire product. Their results suggested that short term changes in 

vegetation fire conditions have only a minor impact on moderate 

resolution active fire products. In this study we adopted a 

conservative approach limiting the use of the 119 GOES images 
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selected for the validation analysis to within 15 minutes of the 

acquisition of the available higher resolution data. 

(ii) Navigation errors are known to affect the GOES images on a 

regular basis, and image geolocation problems can occur even 

between 30 minute acquisitions [Menzel and Purdom, 1994]. To 

eliminate the problem, all GOES images used were manually co-

registered to within 1 pixel. 

(iii) Due to the coarse resolution of the GOES imager, fewer pixels are 

sampled compared to MODIS for the same area covered by 

ASTER. Consequently, a larger number of ASTER scenes must be 

processed in order to create an equivalent sample size. 

Alternatively, one can use ETM+ data to increase the area covered 

by each scene processed (see Appendix A). Therefore our 

validation of the WF-ABBA product used ASTER and ETM+ fire 

mask data to produce 30 m active fire summary statistics for all co-

located GOES pixels within a 15 min window between acquisition 

times.  

For projecting the GOES pixel area on top of the higher resolution data we 

used a full nominal resolution pixel size in the along and across scan directions (i.e., 

4×4 km in size near nadir). We considered this area estimate to be a good balance 

between the pixel size resulting from the over-sampled image matrix and the pixel 

dimensions if accounting for the GOES point spread function.  
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3.4 RESULTS AND DISCUSSION 

Two major types of fires are normally observed across our study region, namely 

conversion and maintenance fires. Conversion fires will normally be associated with 

deforestation activities occurring along the new frontiers of land development 

dominated by high percentage tree cover (i.e., > 60%). As they burn large biomass 

volumes, these fires will normally be characterized by high flame temperatures 

followed by a relatively hot smoldering stage which can last from a few hours to a 

few days (Figure 3.3). Maintenance fires are normally used to rejuvenate pastures or 

to clear crop residue and are particularly important in areas dominated by low 

percentage tree cover (i.e., < 20%). As such, these fires are characterized by relatively 

low flame temperatures followed by a shorter smoldering stage ranging from a few 

minutes to a few hours. Compared to conversion fires, maintenance fires show a 

narrower flaming front as well as a shorter smoldering stage (Figure 3.3). Between 

these two major classes we can also find intermediate fire types (e.g., fires resulting 

from the clearing of secondary forests and woody Cerrado (savannas)) with reduced 

biomass load compared to old growth or pristine tropical forests. These fires can be 

more variable in terms of their flame temperature and burning duration. Data in 

Figure 3.3 suggest that the intensity and duration of conversion fires may facilitate 

their detection as compared to other types of tropical vegetation fires. 
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Figure 3.3: Typical temperature profiles associated with fires used for: forest conversion, 
burning of piled debris from deforestation, rejuvenating grassland, and clearing of secondary 
forest re-growth. 

 

 

3.4.1 Overall Detection Performance 

The processing of all pairs of MODIS-ASTER images resulted in approximately 

7,300 MODIS pixels containing at least one ASTER 30 m active fire pixel. A total of 

1,640 MOD14 pixels were flagged as “fire” for that data set. The pairs of GOES-

ASTER images resulted in approximately 2,900 GOES pixels containing at least one 

ASTER active fire pixel; the pairs of GOES-ETM+ images covered another 14,500 

GOES pixels with at least one ETM+ 30 m active fire pixel. This entire dataset 

included a total of 560 WF-ABBA fire detections.  

Summary statistics were produced from the higher resolution fire masks for 

all MODIS and GOES pixels sampled. These statistics were used to fit the logistic 
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regression model in (1), from which the general detection probability curves for 

MOD14 and WF-ABBA were derived. The differences in detection performance 

between the MOD14 and WF-ABBA fire products are shown in Figures 3.4A and 

3.4B, respectively. However, the distances that separate the curves and the associated 

performance of the two products are smaller than expected. For the MODIS-ASTER 

configuration used in this study, all MODIS pixels sampled were imaged close to 

nadir resulting in pixels with 1×1 km nominal spatial resolution. The pairs of GOES-

ASTER and GOES-ETM+ images used were acquired under slightly variable 

conditions in terms of the pixel size sampled, ranging from near nadir geometry to 

cases where the additional pixel area enlargement was equivalent to about 20%. 

Consequently, the spatial resolution ratio of MODIS to GOES was always greater 

than or equal to 16×, which should result in an equivalent difference between their 

detection performances. However, an approximate ratio equal to or less than 4× 

separates the pairs of detection curves for each tree-cover interval described by the 

MOD14 and WF-ABBA products in Figures 3.4A and 3.4B. 
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Figure 3.4: Fire detection probability curves for MOD14 (A) and WF-ABBA (B) fire 
detection products derived for four percentage tree cover intervals. 

 

 

In the case of Figure 3.4, a one-to-one comparison of the two instruments is 

difficult even for a small case study analysis as differences between products will 

A 

B 
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likely be a result of: (i) varying sensor-target-sun relative positions; (ii) atmospheric 

attenuation, including fire obscuration by heavy smoke released during burning; (iii) 

relative position of the actual pixel area in relation to the location of the active fire 

zone and the effects of the point spread function, (iv) timing of acquisition, etc. Since 

the actual high-resolution validation data sets for MODIS and GOES are different, 

some difference in fire types may add uncertainty despite the rigorous sample used 

for this analysis. 

Our field data indicated that conversion and maintenance fires can show 

temperature variations on the order of hundreds of Kelvins even over very small 

areas. Consequently, their peak in emittance is likely to spread over a broader spectral 

interval than most land surfaces (e.g., bare soils and vegetated areas). With the GOES 

imager having a broader mid-infrared channel compared to MODIS (Table 3.1), it is 

plausible that the former will sense the radiative signal from a wider range of fire 

temperatures. This increase in the fire signal compared to the background could 

produce a higher relative capacity of GOES to detect them. 

 

3.4.2 Omission Errors 

Omission estimates were empirically derived for WF-ABBA and MOD14 by 

assessing the number of 30 m active fire pixels corresponding to true fire detections 

using an error matrix analysis. We counted the number of WF-ABBA or MOD14 

detections for each subset of GOES and MODIS pixels, respectively, showing a 

number of ASTER or ETM+ fire pixels greater or equal to N. By varying N between 
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1 and the maximum value in our data set (~1,200), we produced the omission error 

estimates for the two products (Figure 3.5).  

 

 

Figure 3.5: Omission error estimates produced for MODIS and GOES based on fires 
sampled at approximately 1030 local time. 
 

 

Two areas of relatively high omission error are found for WF-ABBA at high 

counts of 30-m active fire pixels, one around 770 counts and a second one near 350 

counts. Visual inspection of the areas affected by such large fires indicated that the 

vast majority of the events were indeed associated with long fire lines occurring over 

areas of savanna-like vegetation with associated percentage tree cover typically less 

than 20%. In this case, the fire characteristics are analogous to the maintenance fire 
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depicted in Figure 3.3. Consequently, the total radiant energy released is small 

compared to other types of fires rendering the detection of such events less likely. In 

addition, low thermal contrast with the warmer background was also found to 

contribute to the reduction in detection performance of WF-ABBA. In fact, we can 

distinguish two areas in the MOD14 curve where comparable high count omission 

errors are found, one near 170 counts and the second one near 245. As with WF-

ABBA, the areas of high count omission in the MOD14 data were also found to be 

associated with fires occurring over low percentage tree cover areas. 

Another factor potentially leading to high count omission errors in the GOES 

data is related to a nuance of the WF-ABBA detection algorithm. The detection code 

includes a persistence check analysis, which takes advantage of the high observation 

frequency of the GOES imager. The test checks each candidate fire pixel for the 

presence of any coincident detection in the previous 12 hours, allowing some 

tolerance in the spatial search criterion for small navigation drifts. In doing so, 

potential spurious detections can be filtered out of the product, therefore reducing 

commission errors. However, some new or short lived fires may also be removed 

from the final product. In order to quantify the effects of the temporal filtering, we 

also plotted in Figure 3.5 the corresponding omission error curve derived from the 

GOES data prior to the application of the persistency test. The result shows a 

significant increase in the total number of true detections produced (from 458 to 600) 

and a reduction of the omission errors especially towards the very high counts on the 

graph. 
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Although useful for eliminating spurious fires, the application of temporal 

filters could represent a problem if one considers the instantaneous impact on the 

omission of relatively large fires that were mistakenly discarded from the final 

product. However, if such fires persist and maintain or increase their size and 

intensity in the subsequent GOES observations hours, a second detection will likely 

occur over time, causing the pixel to pass the persistency test as the previous 

observations would serve to confirm it. 

As suggested by previous studies [Giglio 2007; Menzel and Prins, 1996; Prins 

and Menzel, 1992, 1994; Prins et al., 1998], a strong fire diurnal cycle exists for 

regions such as Brazilian Amazonia. Under this circumstance, it is expected that fires 

observed during the mid to late-morning hours imaged by the ASTER and ETM+ 

instruments will likely grow in size and intensity towards the peak of fire activity 

located in the early to mid-afternoon hours. To assess the potential effects of 

changing fires conditions, we derived the overall omission error estimate for the WF-

ABBA product data using all GOES acquisition hours following the time of 

observation of the fire event by the higher resolution imagery until about 20:00h local 

time. The resulting omission error of 38% indicates that a large fraction of the fires 

observed in the morning hours which have persisted over subsequent observation 

hours might have intensified or increased their areas therefore entering the detection 

envelope of the GOES imager WF-ABBA fire product. 
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3.4.3 Commission Errors 

False detections were characterized in our analysis as those showing zero 30-m active 

fire pixels within their footprints. We identified a total of 245 false detections among 

the 1,640 detections produced by the MOD14 product, whereas 102 false detections 

were identified for WF-ABBA based on a total of 560 detections sampled by that 

product. Contrasting surface temperature between the target pixel and its background 

dominated the false detection occurrences of MOD14 and WF-ABBA representing 

99% and 100% of the cases, respectively. Detection errors caused by the presence of 

clouds, sun glint zones or anthropogenic sources could not be identified in the data 

set. 

The areas of high thermal contrast were particularly pronounced along the 

deforestation expansion regions throughout Brazilian Amazonia where relatively cool 

evergreen tropical forests are replaced by bare soil and senescent grasses -- surfaces 

with increased surface temperature. Despite the differences in instrument 

characteristics, spatial resolution and algorithm used, both products agree to a large 

extent in the commission errors produced for all four percentage tree cover intervals 

considered (Figure 3.6). Errors increase rapidly as a function of the percentage tree 

cover indicating a potentially larger thermal contrast between the target pixel - often 

characterized by little or no vegetation - and the gradually greener and cooler 

background. 
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Figure 3.6: Commission error estimates for MOD14 and WF-ABBA. Mean tree cover values 
(A) estimated for an area of approximately 20×20 km centered on the commission error pixel; 
standard deviation values (B) determined by sampling a 9×9 pixels window centered on the 
commission error pixel. 
 

A 

B 
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 Detailed inspection of each individual false detection occurrence using all 

available bands of ASTER and ETM+ at their highest spatial resolution enabled us to 

refine the classification of those areas and separate them into four different classes 

(Table 3.2). The data indicated that a large fraction of the false detections were indeed 

associated with recent burning activity as confirmed by the presence of fairly 

homogeneous areas of dark char covering part or all of the MODIS and GOES pixel 

footprints. Areas of smoldering were also confirmed over a smaller number of cases 

via the identification of smoke traces or the indication of warm pixels in the short 

wave infrared channels 8 and 7 of ASTER and ETM+, respectively. When summed, 

these false detections over areas of fire-related activity corresponded to 

approximately 87% and 81% of the commission errors of MOD14 and WF-ABBA, 

respectively. The remaining false detections were unrelated to fire and mainly the 

result of warm and reflective bare soils surrounded by contrasting green vegetation. 

These false detections corresponded to approximately 3% of all detections made by 

the MOD14 and the WF-ABBA products. This later result agrees with the findings of 

Csiszar et al. [2006] for the MOD14 product over Northern Eurasia. 

 

Table 3.2: Classification of MOD14 and WF-ABBA commission errors based on visual 
inspection of 30 m RGB composites of ASTER and ETM+ data. 
 

Product Recent Burning 
(scars visible) 

Bare Soil Smoldering Spurious 
detection 

MOD14 79% 12% 8% 1% 
WF-ABBA 75% 19% 6% - 
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As most of the false detections were associated with areas of recent burning, it 

is possible that these locations show a strong contrast with their backgrounds for as 

long as the dark char and ashes remain evenly spread across the burning site. This 

could lead to repeated false detections affecting those locations over multiple days or 

even weeks or until the signs of burning are removed from the surface. To investigate 

this possibility, we checked every false detection location sampled by our data set for 

the presence of equivalent detections in the previous days. We restricted our analysis 

to the 30 day period occurring before the observation of the false detection based on 

the 30 m resolution imagery. The use of a 30 day sampling period was based on the 

assumption that char and ashes can be removed by wind and rain or by land use (e.g., 

plowing, seeding, and irrigation). Using spatially coincident 30 m resolution data 

acquired 16, 32 and 48 days apart we could confirm that scars remained visible for as 

long as 32 days. For periods greater than that, the burning imprint on the landscape 

becomes less evident.  

We searched for all fire detections from Terra (MOD14) and Aqua (MYD14) 

data co-located to within 1 km of the original false detection. Aqua data was used to 

improve observation frequency to identify the very first detection made in the 30 day 

period along with all subsequent ones. Lacking other forms of confirmation, we 

assigned the actual fire occurrence date to the first detection found for each location 

and labeled all subsequent detections as potential false detections (Figure 3.7). 

Approximately 60% of the false detections in our data set had co-located detections 

from MOD14 or MYD14 occurring in the previous 30 days. Of those, about 50% had 
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the first detection occurring in the previous 14 days. The average number of 

subsequent false detections was 4.  

 

 

 

Figure 3.7: Daily number of hot spot detections from Terra MODIS (MOD14) and Aqua 
MODIS (MYD14) data coincident with 60 different locations where MOD14 false detections 
were identified via 30 m ASTER imagery. The shaded area describes the accumulated 
percentage of all 60 locations for which a first detection was assigned during the 30-day 
period before the confirmed false detection. 
 

 

The locations mapped with the analysis above showed that the Terra 

(MOD14) product produced almost twice as many false detections as Aqua (MYD14) 

(117 vs. 67). The two products are processed using identical routines, reducing or 

even eliminating the chance of algorithm artifacts affecting our results. To compare 

these MODIS results to the GOES data, we analyzed all WF-ABBA false detections 
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found in our validation data set by monitoring their progress throughout the day. We 

searched for co-located WF-ABBA detections occurring during the GOES 

observation hours made after the false detection was observed. In this case, we 

applied a search radius of 0.1º (or the equivalent to about 10 km) to allow some 

flexibility due to potential navigation drift affecting some of the unregistered data 

used. The number of persisting detections was mapped along with the occurrence of 

clouds, sun glint areas and gaps in image coverage due to rapid scan operations which 

could prevent proper observation of the target pixel. The number of false detections 

persisting in the data gradually decreased with the hours of the day (Figure 3.8). At 

about the same overpass time as Aqua (i.e., 1715-1845 UTC) the number of false 

detections was reduced by approximately 50%. Our results for the commission errors 

of GOES (WF-ABBA) were similar to the results produced for MODIS (MOD14 and 

MYD14) suggesting a good agreement between the two fire products. Although the 

WF-ABBA detection algorithm includes an adjustment to one of the primary tests 

used (i.e., the brightness temperature (BT) test on channel 2) based on the solar zenith 

angle measured for every pixel and observation hour (BT2 > cosine (solar zenith 

angle) × 15 K + 285 K), the resulting correction factors for the approximate overpass 

times of Terra and Aqua were found to be similar for the study region therefore 

reducing their influence on the result above. 

 



 

 76 
 

 

Figure 3.8: Half hourly distribution of WF-ABBA false detections identified in the validation 
data set. The absolute number of confirmed false detections identified via ASTER or ETM+ 
is shown on top of the vertical bars. 
 

 Two major factors can contribute to the reduction in commission errors 

towards the afternoon hours. First, cloud coverage in tropical areas such as Amazonia 

may have a pronounced effect limiting the imaging of the land surface by passive 

remote sensing instruments. The impact of cloud obscuration on the detection of 

active fires in Amazonia has already been documented and it is suggested to account 

for an omission rate of approximately 11% of all fires imaged by coarse resolution 

sensors [Schroeder et al., 2008a]. In the case of the commission errors reported above 

however, areas of cloud shadow and semitransparent clouds which may not interfere 

on the detection of active fires will affect the thermal properties of the surface thereby 

potentially enhancing their impact beyond the 11% estimate produced for the active 

fire data. 
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 Changes in the thermal contrast between adjacent areas with different 

vegetation cover conditions could also influence the commission errors. To test this 

assumption, we randomly selected 20 areas of low vegetation cover surrounded by 

forests to evaluate the changes in thermal contrast measured between the two surfaces 

throughout the day. We used two sets of GOES imagery acquired on 19 September 

2001 and 4 August 2002 covering the entire day at 30 min observation frequency. 

The two sets of images were characterized by low cloud coverage over the areas of 

major deforestation activity in Brazilian Amazonia favoring the extraction of cloud 

free brightness temperature profiles for the selected areas.  

Overall, the results showed a decrease in the thermal contrast between 

forested and non-forested areas measured for the approximate overpass time of Aqua 

compared to Terra, with the thermal contrast for the latter being 1 K to 10 K greater 

than the former. Figure 3.9 shows the profiles obtained for two adjacent areas of 

forest and non-forest surfaces where false detections were produced by the WF-

ABBA product. The difference between the two curves is included along with the 

approximate overpass times for Terra and Aqua. For the particular location used in 

Figure 3.9, clear sky conditions prevailed during the majority of the time. We can see 

in Figure 3.9 that the increased thermal inertia of the forest causes the peak in contrast 

with the deforested area to move closer to the observation hour of the Terra satellite. 

The false detections are found equally distributed around the area of greater thermal 

contrast and therefore tend to become more evident near the observation hours close 

to the Terra overpass and less so near the observation hour of Aqua. In this case, the 

reduction in thermal contrast for the two surfaces between the Terra and Aqua 
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overpasses was small (~ 2 K) and false detections could also be observed until about 

15 minutes after the Aqua overpass time. In other situations where the change in 

surface conditions between Terra and Aqua overpasses is greater, the peak in thermal 

contrast approaches the Terra overpass time leading to fewer false detects during the 

observation hours near and after the Aqua overpass time. 

In many cases the effects of clouds and changes in thermal contrast were seen 

to manifest concomitantly making it difficult to separate and properly quantify the 

exact contribution of each term to the reduction of the commission errors observed. 

 

 

Figure 3.9: Diurnal cycle of brightness temperature derived from channel 2 of the GOES 
imager for two adjacent areas characterized by contrasting vegetation cover conditions. The 
images were acquired on 04 August 2002 and the forested and deforested areas were located 
at 11º59’29” S 52º49’52” W and 12º06’20 S 52º49’09” W, respectively. The two curves 
describe the mean values based on 3 and 4 pixels representing the deforested and forest areas, 
respectively. The occurrence of WF-ABBA false detections are presented along with the 
difference between the two curves. 
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3.4.4 Reducing Commission Errors 

From the results presented above it becomes clear that one of the major complications 

involved with the application of contextual fire detection methods over tropical forest 

regions is the effect of contrasting warm and bright surfaces generating false 

detections. The parameters available with the MOD14 product Scientific Data show 

significant overlap between true and false detections (Figure 3.10), which eliminates 

the potential for successful post-processing of false detections using any of the 

available fire pixel information.  

 

 

Figure 3.10: Boxplots for channel 21 brightness temperature differences between the target 
pixel and its background for true and false MOD14 detections. Parameters depicted in the 
plot include: minimum, 25th percentile (lower quartile), mean, 75th percentile (upper quartile) 
and maximum value. 
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Another approach to resolve the commission errors affecting the two data sets 

is the use of temporal metrics to complement the spatial analysis provided by the 

contextual method. Change detection methods based on the application of temporal 

metrics to assess sudden variations in the pixel signature of moderate and coarse 

resolution sensors are growing in importance as satellite data sets with improved 

navigation quality become available [Calle et al., 2006; Koltunov and Ustin, 2007; 

Schaaf et al., 2002].  

We selected over 100 detections from each of our MODIS and GOES 

validation data sets including true and false detections. Brightness temperatures (BT) 

were derived from the mid-infrared channels 21 and 22 of MODIS and channel 2 of 

GOES using MOD02 and GVAR Man computer Interactive Data Access System 

(McIDAS) AREA file data, respectively. The BT data were used to construct 30-day 

profiles from which the mean and standard deviation were extracted for each pixel. 

Figures 3.11A and 3.11B show a plot of the BT temporal profiles for two pixels fixed 

in space representing different cases of true and false detections in the MODIS and 

GOES data, respectively. The plots describe two important aspects of the data. First, 

MODIS shows a greater variability of the BT values compared to GOES, likely a 

function of variable imaging geometry. Despite its lower navigation quality, the 

GOES brightness temperatures show less variation over time. Second, since MODIS 

pixels are smaller compared to GOES, fires naturally occupy larger fractions of them, 

resulting in a greater departure from the mean value observed for the 30-day period 

analyzed. As a result, the potential limitations caused by a variable pixel size could be 

balanced by a high sensitivity to the presence of active fires within the pixel footprint, 
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rendering this kind of application useful to separate false detections from true 

detections. On average, true detections departed by more than 4 standard deviations 

from the 30 day mean BT values, whereas for false detections the departure was 

limited to about 2 standard deviations. These results were equally valid for MODIS 

and GOES.  

 

 

Figure 3.11: Brightness temperature (BT) profiles for true (filled circle) and false (filled 
square) detections using MODIS (A) and GOES (B) data. Open circles and squares represent 
the BT values during detection-free days. Detection information for the pixels marked in (C-
F): false MOD14 detection (C): 55.1237o W 12.129o S, 23 May 2002 at 1403 UTC; true 
MOD14 detection (D): 56.4828o W 13.225o S, 05 October 2002 at 1409 UTC; false WF-
ABBA detection (E): 50.879o W 8.4169o S, 29 August 2002 at 1315 UTC; true WF-ABBA 
detection (F): 50.711o W 10.0335o S, 29 August 2002 at 1315 UTC. False color composites 
used: 30 m ASTER image (C-D); 30 m ETM+ image (E-F). 
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Figure 3.11. continued 

B 
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Figure 3.11. continued 

D 
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Figure 3.11. continued 

 
 

 The graphs in Figure 3.11 did not receive any rigorous treatment to reduce 

spurious oscillations in the derived BT values. Appropriate techniques could, 

however, be used for instance to model the daily variation of the MODIS BT data. In 

addition, the BT profiles in Figure 3.11 benefit from the favorable conditions 

observed in Amazonia where stable surface temperature conditions prevail 

throughout most of the year [da Rocha et al., 2004]. Nevertheless, the commission 

errors described above appear to be mainly associated with land use regimes marked 

F 
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by large deforestation rates typical of the tropical forest regions. In these regions, 

similar surface conditions should be expected. 

 

3.5 CONCLUSIONS 

The MODIS and GOES fire products assessed in the validation analysis described 

above utilize conceptually similar algorithms based on the use of contextual tests to 

detect pixels with active fires. However, these algorithms are applied to images of 

markedly different spatial and spectral resolutions. The resulting detection 

performance estimates obtained through the validation analysis indicated that an 

approximate factor of 4 separates the detection curves of MOD14 and WF-ABBA 

products, a relatively small difference compared to the 16× factor between their 

nominal spatial resolutions.  

Although MODIS and GOES showed relatively high overall omission errors, 

their interpretation should be oriented by the type of application pursued. In this case, 

fire data users interested in larger biomass burning events may find both MODIS and 

GOES to have reasonably high rates of successful detection as is evidenced by the 

sharp decrease in omission errors especially near the low end of fire clusters 

described in Figure 3.5. 

The background conditions associated with active deforestation regions in 

Amazonia had a major effect on the false detections produced with both products. 

False detections can span multiple days provided that the burning scars remain 

evident and similar thermal conditions are preserved between adjacent areas. The 
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reduction in commission error rates observed towards the afternoon hours has 

important consequences for the derivation of the fire diurnal cycle using contextual 

algorithms. In this case, an enhanced contrast between morning and afternoon hours 

should be noticed if all potential false detections are removed from the data. 

Removal of false detections based on the metrics which are routinely 

produced by the contextual algorithms proved difficult. Alternatively, we successfully 

tested the application of temporal metrics of brightness temperature to isolate false 

detections in our data set. The use of a hybrid fire detection algorithm which 

implements change detection methods in addition to the contextual tests appears 

promising especially over tropical regions. In these areas, stable surface thermal 

conditions might facilitate the extraction of temporal metrics which could be used to 

separate false detections or increase our confidence about the true ones. However, we 

recognize that this is a topic for further investigation necessitating careful 

consideration of all aspects involved. 

The results described above are valid for open sky fires typical of forest 

conversion and agricultural maintenance in Amazonia, but do not apply to cases of 

understory burning. Although a few sub-canopy fires could be visually confirmed in 

our validation data, proper identification of those events via automated detection was 

difficult even at the 30 m resolution level. Consequently, detection of active 

understory fires using MODIS or GOES data appears to be significantly difficult 

using standard mid-infrared detection algorithms. 

Another limitation of our analyses involves the conversion of 30 m active fire 

pixels statistics derived from ASTER and ETM+ into fire area and temperature 
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estimates. Although theoretical assessment of ASTER channel 8 saturation was 

attempted relating minimum fire area and temperature [Giglio et al., 2008], a more 

complete characterization of fire properties is still under investigation. Advancement 

in this area is limited primarily by inadequate specifications of existing orbital 

sensors. 

This study extends a series of validation analyses applied to the MODIS 

Thermal Anomalies product and is the first one of its kind applied to the GOES WF-

ABBA product. Our results corroborate previous findings and include new aspects 

involving the performance of the MODIS and GOES fire detection algorithms which 

can help the fire data user community optimize their use of these products. 

Lessons learned from the validation of MODIS and GOES imager will be 

used to develop validation procedures for the fire products from new generation of 

US polar orbiter (NPOESS Visible Infrared Imager Radiometer Suite -- VIIRS) and 

geostationary (GOES-R Advance Baseline Imager -- ABI) platforms. Of particular 

importance is the development of a multi-platform validation system and the 

quantification of validation errors stemming from the use of non-simultaneous space-

based or airborne reference data. In addition, the better understanding of the detection 

envelopes of MODIS and GOES imager derived from this study can be used to assess 

the expected performance of the higher resolution VIIRS and ABI fire products. 
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Chapter 4: Integrating Geostationary and Polar Orbiting Data 
for Monitoring Vegetation Fires in Brazilian Amazonia 
 

 

4.1 INTRODUCTION 

Biomass burning is a major problem affecting in particular the tropical regions 

[Crutzen et al., 1979; Andreae, 1991; Hao and Liu, 1994]. Vegetation fires contribute 

to large amounts of trace gases and aerosols emitted during combustion [Crutzen and 

Andreae, 1990; Crutzen et al., 1979; Seiler and Crutzen, 1980]. The large rate of 

emissions from tropical fires was found to have important consequences to 

atmospheric composition and to the global radiation budget [Penner et al., 1992, 

Andreae et al., 2004]. Chemically reactive constituents produced during combustion 

such as CO and nitrogen oxides (NOx) may combine to form tropospheric O3 

[Crutzen, 1979; Delany et al., 1985; Rummel et al., 2007; Watson et al., 1990], which 

under high concentrations near the surface can have adverse effects on live vegetation 

and human health [Crutzen and Andreae, 1990; Hansen et al., 2000; Vitousek et al., 

1997]. The role of biomass burning aerosols as cloud condensation nuclei was also 

proven to alter the nature and distribution of clouds in tropical regions especially 

when smoke concentrations are high [Andreae et al., 2004; Koren et al., 2004]. 

Quantification of vegetation fire activity and the associated emissions from 

biomass burning in Amazonia has been approached via remote sensing and modeling 

techniques [Andreae et al., 2004; Freitas et al., 2005; Kaufman et al., 1990, 1992; 
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Setzer and Pereira, 1991]. In both cases, satellite active fire detection data represent 

one of the most important parameter for calculating source emissions. Fire alert 

systems alike depend heavily on satellite data to monitor fire activity in Amazonia as 

this is the only form of systematic observation available for the region [CONAE, 

2008; CPTEC, 2008; DIMARENA, 2008]. 

Fire monitoring and emissions modeling applications usually require the best 

spatial and temporal resolution data available [GCOS, 2006]. Early detection is most 

important for fire alert systems demanding information at high observation frequency 

and fine spatial resolution to increase the probability of detecting a fire immediately 

after its initiation or when its active area is still small. Similar data needs are valid for 

emissions modeling applications which depend on high temporal and spatial 

resolution data to determine the lifetime of individual fires and to calculate the 

resulting emissions [Freitas et al., 2005]. Emissions modeling applications also 

require characterization of fire properties (e.g., total radiative energy, area, 

temperature) for calculating emissions, demanding quality pixel data which can only 

be achieved by non-saturating satellite sensors [Justice et al., 2002; Kaufman et al., 

1998b]. 

The lack of orbital systems capable of delivering fire detection data at both the 

spatial and temporal resolutions required by users is a major limitation affecting 

current fire products [Schroeder et al., 2005]. Variations in product performance as a 

result of sensor characteristics and the diurnal cycle of fires introduce additional 

complications for fire data users influencing the use of the data [Giglio, 2007; 

Schroeder et al., 2005, 2008b]. To cope with these limitations, fire data users must 
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incorporate assumptions in their analyses (e.g., emissions modelers need to estimate 

the lifetime of a fire using hypothetical curves) or prioritize one data set over others 

thereby avoiding conflicts among different products. However, the tendency of most 

emissions models and fire alert systems to deliver increasingly detailed data on fire 

activity creates a great demand for an integrated satellite product which takes 

advantage of the complementarities among current fire detection data [GOFC, 2006]. 

In this study, we assess the potential for integrating the fire product 

information derived from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) on board Terra and Aqua satellites and the Geostationary Operational 

Environmental Satellite (GOES) imager. We use in our analyses the Thermal 

Anomalies MOD14 and MYD14 Collection 4 active fire detection products for 

MODIS Terra and Aqua, respectively, and the Wildfire Automated Biomass Burning 

Algorithm (WF-ABBA) version 6.0 for GOES [Giglio et al., 2003a; UW Madison 

CIMSS, 2008]. The high temporal resolution of the GOES imager and the moderate 

spatial resolution of MODIS provide a unique opportunity to test how fire detection 

products from instruments with very different configurations complement each other. 

Our main objective is to investigate how the fire detections from MODIS and GOES 

can be used in concert to improve fire monitoring capability and to assess the 

feasibility of developing a hybrid product based on the two products. We focus our 

analyses on Brazilian Amazonia, a region routinely covered by MODIS Terra and 

Aqua and the GOES imager. In this region, significantly high annual fire activity 

spreading over rather remote areas requires that optimized monitoring systems be 

used. 
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We tested the hypothesis of data complementarity using two different 

approaches. First, we analyzed the MODIS and GOES imager fire detection 

information by assessing the Fire Radiative Power (FRP) estimates produced from 

each data set. The reasons for using FRP estimates to relate MODIS and GOES fire 

information are threefold: (i) it provides a physical parameter which facilitates 

interpretation of the results, (ii) it provides quantitative characterization of fire 

activity which is more informative compared the to categorical data represented by 

simple fire detection and (iii) it has been demonstrated that FRP can be used to 

estimate biomass combustion rates, an important parameter in emissions modeling 

[Kaufman et al., 1998b; Wooster, 2002; Wooster et al., 2003]. Therefore FRP 

becomes a potentially valuable parameter for fire data users and emissions modelling 

applications. Secondly, we assess the relationship between spatially and temporally 

coincident MODIS and GOES active fire detections using the binary classification 

(i.e., 1 = fire detection; 0 = no fire detection). Although less informative, binary fire 

detections are by far the most commonly used information among satellite fire data 

users. The comparison of the binary data examines the factors that influence the rates 

of the spatially and temporally coincident detections produced by MODIS Thermal 

Anomalies and WF-ABBA products. We substantiate our analyses of the MODIS and 

GOES fire products using sub-pixel fire characterization derived from higher 

resolution imagery from the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) and the Enhanced Thematic Mapper Plus (ETM+) instruments. 
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4.2 VEGETATION FIRES IN BRAZILIAN AMAZONIA 

Fires are used in Amazonia primarily for land clearing and maintenance applications 

[Andreae, 1991; Cochrane, 2003]. Burning occurs in a somewhat controlled fashion 

and is used to eliminate forest debris, or crop residues, or to replace or rejuvenate 

grasslands. Under these circumstances, fires tend to be constrained to the perimeter of 

the land being used although escaped fires are also commonly reported [Alencar et 

al., 2006]. 

The humid climate of Amazonia limits fire use to a small window of 

opportunity centered in the peak months of the dry season [Schroeder et al., 2005, 

2008a]. The decision to burn is highly influenced by the development of the dry 

season and the “signs” of the subsequent wet season. Correct identification of those 

“signs”, especially by small farmers, can represent the difference between a 

prosperous year or perhaps starvation. The strong bonds among individuals 

occupying adjacent areas limit the apparent window of opportunity for burning even 

further. In this case, initiation of a fire in one property can influence others to follow. 

Consequently, vegetation fires can become significantly concentrated in time. For 

instance, Schroeder et al. (2005) reported that approximately 2,000 MODIS Aqua 

(MYD14) fire detections were produced for the state of Acre in western Brazilian 

Amazonia during 1-3 September  2003, representing nearly 30% of all fire detections 

in that year. 

 We used 285 ASTER and ETM+ scenes to quantify active fire size in 

Brazilian Amazonia and the minimum distance between adjacent fire clusters. The 

scenes were distributed in the main areas of fire activity in the region and were 
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acquired during 2001-2005. Active fire masks at 30 m resolution were produced for 

ASTER and ETM+ data following the approach described in Giglio et al. (2008) and 

Schroeder et al. (2008b), respectively. Contiguous 30 m active fire pixels were 

clustered together to produce individual fire size estimates. Figure 4.1A shows the 

distribution of fire cluster size for the region. Fire size statistics derived from the data 

above are valid for fires imaged at around 10:00-10:30 local time; it is plausible that 

larger fires might prevail during the early afternoon hours as a result of the diurnal 

cycle of fires [Giglio, 2007; Prins et al., 1998]. Also, fire cluster sizes depicted in 

Figure 4.1A are expressed in terms of 30 m active fire pixels derived from the fire 

masks and will likely differ from the actual area occupied by flaming fronts. 

Regardless of the approximations involved, the typical spatial scale of Amazonian 

fires is seen to represent only a small fraction of a nominal 1×1 km MODIS or 4×4 

km GOES pixel areas. 

 The minimum distance between adjacent fire clusters was determined using 

the same data set above (Figure 4.1B). Approximately 50% of the fire locations 

derived from the 30 m fire masks showed an adjacent fire cluster within 2 km or less 

from their outer limits. This proximity between clusters reinforces the concept that 

fires are used simultaneously at several properties in one particular region, making 

them concentrated in time as well as in space. 
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Figure 4.1: Cumulative frequency graphs of fire cluster size (A) and minimum distance to 
nearest fire (B). 
 

 

Complementing the characterization of vegetation fire conditions in 

Amazonia, 2,785 burnt area polygons were digitized using a representative subset of 

the 30 m resolution data above composed of 33 ETM+ scenes. While active fires 

represented only a small fraction of a moderate-to-coarse resolution pixel footprint, 

the resulting burnt area polygons were large enough to approach or even exceed the 

A 

B 
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size of a MODIS or GOES pixel (Figure 4.2). The occurrence of pixel-size burn scars 

in Amazonia has important implications for active fire detection in particular in areas 

of high percentage tree cover where there is a high contrast between forest and non-

forested pixels in the mid-infrared spectral region [Tucker et al., 1984]. The 

occurrence of burn scars occupying large fractions of non-forested pixels may further 

reinforce the contrast with surrounding forest areas causing contextual algorithms 

such as used by the MOD14, MYD14 and WF-ABBA products to generate false 

detections, therefore resulting in high commission error rates [Schroeder et al., 

2008b]. 

 

 

 
Figure 4.2: Burnt area size histogram derived using ETM+ data for Brazilian Amazonia. 
Data are representative of 2,785 individual burn sites extracted from 33 ETM+ scenes. A 
nominal MODIS pixel is equivalent to 100 ha, whereas the nominal GOES pixel covers an 
area of approximately 1600 ha. 
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4.3 METHODS 

The use of pixel level analyses methods applied to the active fire detection data from 

MODIS and GOES was not implemented in this study primarily due to limitations 

involving the distinct image geometry of the two instruments. Geometric distortion of 

off-nadir pixels introduced important across-image mapping and resampling errors 

[Wolfe et al., 2002]. Also, orbit oscillations affecting in particular the GOES data 

resulted in different navigation offsets across sectors of the images often leading to 

poor overall navigation quality. Persistent cloud coverage across Amazonia created 

major limitations for the use of automated methods to register data sets and to reduce 

navigation differences. Lastly, the spatial characteristics of Amazonian fires 

described in Figure 4.1 suggest that moderate or coarse resolution fire products may 

likely contain multiple fires distributed over adjacent detections. To cope with the 

limitations involving instruments’ characteristics and the spatial characteristics of 

fires in the region, we opted to aggregate the fire detection information into clusters 

by analyzing groups of contiguous detections. When analyzing fire detections from 

MODIS and GOES, we also used area averaged estimates of fire activity in order to 

minimize the effects of localized fire detection differences. 

 

4.3.1 MODIS FRP 

In our analyses we used the FRP estimates available as part of the MODIS Thermal 

Anomalies Collection 4 product Scientific Data Set [Giglio et al., 2003a]. The 

MODIS FRP derivation is based on the relationship between the emitted fire energy 
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and the mid-infrared brightness temperature, and is expressed as [Kaufman et al., 

1998b]: 

 

( )8
4

8
4

191034.4 bTTFRP −×= −   

 

Where T4 and T4b are the brightness temperature estimates in the 4 μm region of band 

22 (or alternatively band 21 when band 22 becomes saturated) for the target and the 

background pixels, respectively. The constant in equation (1) is adjusted for the 

spectral interval of MODIS channel 21-22.  

 

4.3.2 GOES FRP 

Currently there is no FRP estimate available with the operational WF-ABBA version 

6.0 product. Alternatively, fire size and temperature estimates derived using Dozier’s 

(1981) approach are available with the product. However, problems inherent to 

Dozier’s technique are known to affect the estimates produced [Giglio and Kendall, 

2001], limiting their application for FRP retrievals. Nonetheless, Wooster et al. 

(2003) have demonstrated that it is possible to derive physically sound FRP by 

approximating Planck’s Radiation law using a fourth order power law applied to mid-

infrared remote sensing data (e.g., channel 2 on the GOES imager) over the interval 

of typical vegetation fire temperatures (i.e., 600 – 1500 K). After relatively simple 

considerations are made following the approximation above, FRP estimates can be 

calculated through the application of the following equation [Wooster et al., 2005]: 

 

(1) 
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( )SLL
a

FRP bf ,2,2 −=
σ  

 

Where L2,f and  L2,b are here represented by the GOES channel 2 radiances (W m-2 sr-1 

μm-1) estimated for the target pixel containing the fire and for the background pixels, 

respectively, σ is the Stefan-Boltzmann constant (5.67×10-8 W m-2 K-4), a is a 

constant derived for the particular spectral response function of channel 2 (value for 

GOES-12 imager: 3.08×10-9 Wm-2 sr-1 μm-1 K-4), and S is the ground equivalent pixel 

area (m2).  

Derivation of the GOES FRP must take into consideration the significant 

along scan pixel overlap which occurs during normal imager operation [Menzel and 

Purdom, 1994]. Under such conditions, every point on the surface is effectively 

imaged by two adjacent pixels. Consequently, two WF-ABBA detections will likely 

be produced representing an individual surface fire. This condition could lead to an 

overestimation of GOES FRP based on (2), as term S would be biased by a factor of 

two. To deal with the uncertainties in sub-pixel fire location and the effects of along 

scan pixel overlap, we calculated GOES FRP for fire clusters containing two or more 

adjacent pixels in the along scan direction by assigning variable weights to those 

pixels. The criterion for determining the weight of different cluster elements was 

based on the brightness temperature of each pixel; brighter pixels were assigned 

greater weight in the FRP calculations. For a fire detection cluster composed of three 

adjacent pixels in the along scan direction we calculated the GOES FRP using the 

following two steps: 

(i) Rank pixels according to their brightness temperatures (e.g., T2>T1>T3) 

(2) 
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(ii) Assign greater weight to brighter pixels in the calculations by adjusting the pixel 

area in (2) using: 

( ) ( )

( ) ( )

( ) ( )
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Where the symbols are similar to equation (2) except for Si ∩ j, which indicates 

the area of overlap between adjacent pixels i and j. 

 

4.3.3 Simulation Data 

As shown in Figure 4.1A, Amazonian fires are relatively small and therefore occupy 

only a reduced fraction of a moderate-to-coarse resolution pixel. Because of the Point 

Spread Function (PSF) characteristics of sensors such as MODIS and GOES, the 

radiance corresponding to each pixel will be influenced by the spatial arrangement of 

the sub-pixel features and might as well be affected by radiance coming from surface 

elements located just outside the pixel’s nominal area [Cahoon et al., 2000; Zhang et 

al., 2006]. Using simulation data, we investigated how the relative position of a fire 

line contained in a moderate-to-coarse resolution pixel affects the FRP estimates 

derived from MODIS and GOES. Target pixels of nominal spatial resolution (1×1 km 

for MODIS and 4×4 km for GOES) were reproduced containing two distinct thermal 

components, namely: (i) the fire background at 311 K, and (ii) a high temperature 
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source at 800 K with a fixed area of approximately 5.5 ha (155×365 m). The 

background pixels necessary for the calculation of FRP were simulated as single 

thermal component pixels with their temperatures set at the same fire background 

temperature of 311 K. Those conditions were considered representative of typical 

Amazonian fires detected by MODIS and GOES. The location of the fire line relative 

to the pixel center varied in our simulations to the extent permitted by each 

instrument, i.e., 0.5 km along scan and 0.5 km along track for MODIS; 1.25 km along 

scan and 2 km across scan for GOES. The reduced along scan spatial tolerance in 

GOES was designed to reproduce the over-sampling characteristic of its imager. The 

formats of the PSF used for MODIS and GOES are shown in Figure 4.3A and 4.3B, 

respectively. 

 

 

 

Figure 4.3: 3D scheme of the Point Spread Function of MODIS (A) and GOES (B) 4 
µm channels. 
 
 

A B
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4.3.4 Comparing MODIS and GOES Fire Detections 

The relationship between MODIS (MOD14 and MYD14) and GOES (WF-ABBA) 

fire detections was derived using three years (2003-2005) of daytime data for 

Amazonia. The main objective of this analysis was to determine the rates of spatially 

and temporally coincident detections produced by the two products above. The 

instantaneous rate of coincident detections was derived from pairs of MODIS and 

GOES acquisitions separated by less than 15 minutes. Contiguous fire detections 

were aggregated into clusters and a search radius of 8 km was used to locate WF-

ABBA detections corresponding to a MOD14 (or MYD14) cluster, and vice-versa. 

This larger search radius was intended to accommodate navigations errors in the 

GOES data. 

We also derived the rates of coincident detections between MOD14 (and 

MYD14) and WF-ABBA using all daytime observations from GOES. In this case, the 

objective was to determine how the increased observation frequency of GOES would 

influence the rates of coincident detections. Using the spatial criterion above, we 

searched for same day WF-ABBA detections produced during the period of 

approximately 7:00 to 19:00 local time. 

To facilitate the interpretation of the results, the rates of spatially and 

temporally coincident fire detections produced by MODIS and GOES were separated 

into four discrete intervals of percentage tree cover based on the 500 m Vegetation 

Continuous Fields (VCF) product [Hansen et al., 2002; Hansen et al., 2003]. 

Complementing the analysis above, we derived the relationship between 

MOD14 (and MYD14) and WF-ABBA detections for a rectangular area of 200×300 
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km2 centered in Mato Grosso state, southern Brazilian Amazonia. The area was 

oriented following the orbit inclination of Terra and Aqua in order to sample portions 

of the daily MODIS images showing similar pixel geometry. We derived the sum of 

MOD14 (and MYD14) and WF-ABBA fire detections occurring within 15 minutes 

from each other for the spatial subset above. The results were summarized according 

to discrete MODIS scan angle intervals in order to evaluate the effects of variable 

imaging conditions on the MODIS product. 

 

4.4 RESULTS AND DISCUSSION 

4.4.1 MODIS and GOES FRP 

FRP estimates were produced for 12 pairs of near coincident MODIS Terra and 

GOES imagery and for 11 pairs of near coincident MODIS Aqua and GOES imagery, 

each containing several fire detection clusters. The GOES images were registered to 

MODIS in order to minimize navigation errors, and FRP values were derived for each 

detection cluster. Clusters with one or more saturated pixels (more commonly seen in 

the GOES data) were not used. To ensure that individual pairs of MODIS and GOES 

detection clusters were representative of the same surface fire, we discarded all cases 

having more than one detection cluster from each instrument within a 10 km radius. 

The spatially and temporally coincident FRP estimates for MODIS Terra and 

GOES and MODIS Aqua and GOES are shown in Figures 4.4A and 4.4B, 

respectively. The correlation between MODIS and GOES remained low despite all 

measures adopted to reduce artifact contamination of the pairs of FRP values 
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produced. Visual inspection of a subset of 77 pairs of MODIS Terra and GOES fire 

detection clusters using coincident ASTER data helped us identify the major factors 

influencing our results. 

 

 

 
 
Figure 4.4: Scatter plots of FRP estimates produced for spatially and temporally coincident 
MOD14-WF-ABBA (A) and MYD14-WF-ABBA (B) fire detections clusters. The one-to-one 
line is plotted for reference. 
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Figure 4.4 continued 
 

 

First, differences in FRP were found to prevail over areas of high landscape 

heterogeneity. Fire detections located in areas of marked variation in vegetation cover 

occurring at the same spatial scale of the MODIS or GOES pixel (e.g., deforestation 

sites in high percentage tree cover regions) showed systematically larger differences 

in FRP compared to areas of homogeneous background (e.g., grasslands in low 

percentage tree cover regions) (Figure 4.5). Differences between the vegetation cover 

of the target pixels and their surrounding areas are expected to influence the 

background characterization affecting the derivation of FRP through (1) and (2) 

[Wooster et al., 2003]. Detection clusters covering areas of deforestation where the 

surrounding pixels were partially or entirely covered by evergreen tropical forests 

were particularly prone to produce large differences between MODIS and GOES FRP 

B 
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values. In these cases, the brightness temperature of the forested pixels can be 15 K 

cooler than the fire pixel background, resulting in a potential overestimation of FRP > 

20% according to (1) (assuming an intermediate fire detection condition). 

Differences between FRP estimates from MODIS Terra and GOES were also 

associated with omission of secondary fire lines contained in adjacent pixels. The 

landscape heterogeneity was equally important in this case as it influenced the 

propagation of fire lines, resulting in fragmented fires composed of several small 

flaming areas. Omission pixels constitute a relatively small percentage of the total 

energy of a fire cluster; however, their occurrence can also influence the 

characterization of the background pixels therefore amplifying their net effect on the 

FRP calculation. 

 

 

Figure 4.5: Fire intensity (Wm-2) estimates for four percentage tree cover intervals [VCF, 
Hansen et al., 2002] calculated by dividing per pixel FRP estimates for GOES and MODIS by 
the approximate active fire area determined using coincident 30 m resolution ASTER and 
ETM+ imagery [Schroeder et al., 2008b]. Values plotted represent the median of the fire 
intensity data available for each VCF interval. 
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 Finally, large differences between MODIS and GOES FRP values were found 

to result from the effects of the PSF of each instrument. The same fires occupying the 

center of a pixel from one sensor and the edge of a pixel from the other sensor 

resulted in significantly different FRP estimates. Using the simulation data described 

in Section 4.3.3, we evaluated the contribution of the PSF of MODIS and GOES to 

the FRP values calculated (Figure 4.6). The reduction in FRP observed when a fire 

cluster is located away from the more responsive area near the pixel’s center 

represented the single most important factor contributing to the differences in FRP 

estimates produced by MODIS and GOES. Due to the predominantly small size of 

Amazonian fires, the effects of PSF become particularly pronounced in the GOES 

and MODIS data. 

 

 

 

Figure 4.6: Simulated FRP for MODIS (A) and GOES (B) as a function of distance to the 
pixel’s center. FRP estimates are calculated for a single thermal component fire at 800 K 
covering an area of approximately 5.5 ha, with background temperature of 311 K. 
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Figure 4.6 continued 
 

 

4.4.2 MODIS and GOES Fire Detections 

Our analysis of correspondence between the MODIS Thermal Anomalies and GOES 

WF-ABBA products used approximately 115,000 MOD14 detections, 225,000 

MYD14 detections, and 25,000 and 93,000 WF-ABBA detections produced within 15 

minutes from the MODIS Terra and Aqua overpasses, respectively.  

Figures 4.7A and 4.7B show the rates of coincident detection between 

MOD14 and WF-ABBA and between MYD14 and WF-ABBA, respectively, using 

the instantaneous observation of GOES at near the same overpass time of Terra and 

Aqua. Commission error estimates derived in Chapter 3 are also shown in Figures 

4.7A and 4.7B for reference. The low overall rate of MOD14 and MYD14 detections 

having a coincident WF-ABBA match occurs primarily due to the greater detection 

performance of the MODIS product [Schroeder et al., 2008b]. The rate of coincident 

detections increases towards intermediate-to-high percentage tree cover intervals as a 

B 
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result of longer lasting and higher intensity fires which are typically found in those 

regions. These fires have a greater probability of detection by WF-ABBA [Schroeder 

et al., 2008b], thereby contributing to the increase of coincident detection rates with 

MOD14 and MYD14. Figures 4.7A and 4.7B also show the effects of the fire diurnal 

cycle on the results. The systematically lower (higher) rates of coincident detections 

between MOD14 (MYD14) and WF-ABBA show the contribution of smaller (larger) 

fires which predominate in the morning (afternoon) hours in response to the local 

atmospheric and fuel conditions. Due to its coarser spatial resolution, the WF-ABBA 

product will likely omit a greater percentage of the small morning fires compared to 

MOD14 creating the differences seen between Figures 4.7A and 4.7B. 

The results describing the rates of coincident detection between MOD14 and 

WF-ABBA and between MYD14 and WF-ABBA using all daytime observations 

from GOES are shown in Figures 4.7C and 4.7D, respectively. Similar to Figures 

4.7A and 4.7B, commission error rates for MOD14 and MYD14 derived from 

Chapter 3 are displayed in Figures 4.7C and 4.7D for reference. The increased rates 

of coincident detection produced demonstrate how effective the high observation 

frequency of GOES is in reducing the overall differences in detection performance 

seen in Figures 4.7A and 4.7B. The higher rates of coincident detection of MOD14 

and WF-ABBA in Figure 4.7C show once again the effects of the diurnal cycle of 

fires. Compared to MYD14, morning MOD14 fires have a greater potential to benefit 

from the diurnal variation in atmospheric and fuel conditions as they enjoy an 

extended number of hours of increasing temperature and decreasing humidity of both 

fuel (i.e., vegetation) and the surface air layer. Therefore, small fires detected only by 
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MOD14 in the morning hours can develop into larger and more intense burning 

events until they become active enough to trigger a WF-ABBA detection during the 

subsequent observation hours [Schroeder et al., 2008b]. 

The fraction of MOD14 and MYD14 detections in Figures 4.7C and 4.7D 

occurring over intermediate-to-high percentage tree cover areas (VCF >40%) without 

a coincident WF-ABBA detection was similar to the commission error rates estimated 

for the MODIS products. Visual interpretation of 30 m ASTER scenes covering 46 

MOD14 false detections coincidently imaged by GOES data showed that the majority 

of the cases (n = 44) did not produce a coincident WF-ABBA detection; whereas all 

coincident MOD14 and WF-ABBA detections examined (n = 73) showed visual 

confirmation of fire activity. This result suggests that: (i) coincident detections 

produced by different products can be classified as true positives; and (ii) isolated 

MOD14 detections occurring in densely vegetated areas could be associated with 

false detections (more so than MYD14 based on Figures 4.7C and 4.7D). 

Consideration of commission errors could not help explain a large fraction of MOD14 

and MYD14 detections without spatially coincident WF-ABBA detections over low 

percentage tree cover areas. Short duration and low intensity fires which typically 

occur in Cerrado (savanna) regions may be the primary cause for the lower rates of 

coincident detections found as MOD14, MYD14 and WF-ABBA will show only 

small probability of detecting these highly dynamic fires. 
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Figure 4.7: Rates of coincident detection (gray bars) for MOD14-WF_ABBA instantaneous 
(A), MYD14-WF_ABBA instantaneous (B), MOD14-WF_ABBA day-time (C), and 
MYD14-WF_ABBA day-time (D) observations. Commission error rates for MOD14 and 
MYD14 are also shown (black bars). 
 

 

The results in Figures 4.7A-D describe the rates of MODIS (MOD14 or 

MYD14) fire detections having a spatially coincident WF-ABBA detection. We also 

assessed the opposite condition, i.e., we derived the rates of WF-ABBA fire 

detections having spatially coincident MODIS detections. The results were 

considerably less intuitive in this case. On average, only 50% of the WF-ABBA 

detections produced at the time of MODIS Terra overpass showed spatially 

coincident MOD14 detections (Figure 4.8A). An even lower percentage (40%) of 

WF-ABBA detections produced at the time of MODIS Aqua overpass had spatially 

A B

C D
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coincident MYD14 detections (Figure 4.8B). The low rates of coincident detections 

were consistent across all four percentage tree cover intervals. Visual inspection of 30 

WF-ABBA morning fire detections without a coincident MOD14 detection using 

ASTER 30 m scenes revealed that the majority of the cases (75%) were associated 

with a false detection. The remaining 25% of the WF-ABBA detections inspected had 

significantly small active fires within the GOES pixel footprint, and could indicate 

potential false alarms induced by relatively cooler background conditions. 

 

 

 

Figure 4.8: Rates of coincident detection (gray bars) for WF-ABBA-MOD14 (A), WF-
ABBA-MYD14 using instantaneous GOES data. Commission error rates for WF-ABBA are 
also shown (black bars). 
 

 

The daily sums of paired MOD14-WF-ABBA and MYD14-WF-ABBA 

detections derived for a 200×300 km2 area centered in Mato Grosso state, southern 

Brazilian Amazonia are shown in Figure 4.9. We used three years of data (2003-

2005) totaling 15,000 MODIS and 8,000 GOES fire detections overlapping with the 

area above.  The fixed location of the spatial subset used resulted in constant GOES 

viewing conditions, while the observation geometry of MODIS varied on a daily 

A B
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basis. Consequently, the performance of the MODIS fire product changed as a 

function of scan angle due to the pixel distortion towards the edges of the swath. 

The diurnal cycle signature was also found to be pronounced in Figure 4.9. 

Morning fire detections were predominantly originated from MODIS Terra data, with 

the contribution of GOES detections increasing towards the afternoon. Both MODIS 

Terra and Aqua data showed the effects of pixel distortion. Assuming the detection 

performance of WF-ABBA to be invariant across the subset area and period analyzed, 

we estimated the detection performance of MODIS near the edge of the swath to be 

on average approximately 40% lower compared to nadir viewing conditions. Greater 

variability in detection performance is seen to affect both MOD14 and MYD14 

products at higher scan angles as indicated by the boxes and lines in Figure 4.9. The 

longer atmospheric path described at extreme MODIS scan angles could help explain 

such variability as it will likely affect the detection probability of underlying active 

fires for heavily contaminated atmospheres. The bow tie effect which produces 

significant pixel overlap at large MODIS scan angles could also contribute to the 

detection variability observed. In this case, the pixel overlap can produce duplicate 

detections composed of single or multi-pixel clusters with consequences to the daily 

sum statistics of fire detections of MODIS Terra and Aqua. 
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Figure 4.9: Box plots for the relative contribution of MOD14 (A) and MYD14 (B) products 
to the sum of MODIS and GOES fire detections produced using an area of 200×300 km2 
centered in Mato Grosso state, southern Brazilian Amazonia. Parameters depicted in the plot 
include: minimum, 25th percentile, median, 75th percentile, and maximum values. Results 
were separated into 10o scan angle intervals of MODIS. Positive and negative scan angles 
describe the east and west parts of the MODIS swath, respectively. 
 

A 

B 



 

 114 
 

4.5 CONCLUSIONS 

Each year earth remote sensing satellites detect hundreds of thousands of vegetation 

fires across Brazilian Amazonia and thereby represent the primary source of 

information for a large number of fire data users. In this study, we assessed how 

different satellite active fire detection data might be used synergistically to provide 

improved detection rates with higher confidence than can be obtained from individual 

products.  

Our study showed that fires of relatively small active area predominate in 

Brazilian Amazonia. Approximately 90% of all fires sampled had an area of less than 

3 hectares (assuming the ASTER and ETM+ 30 m pixels used to create the statistics 

were completely covered by active fires), therefore representing a significantly small 

fraction of a moderate-to-coarse resolution pixel. Amazonian fires were also found to 

be both spatially and temporally concentrated, with multiple fires occurring 

simultaneously within a few kilometers from each other. Consequently, single or 

multi-pixel fire detection clusters coincidently produced by MOD14 (MYD14) and 

WF-ABBA were prone to contain different amounts of fire activity within each pixel. 

The challenges for active fire detection products based on moderate-to-coarse 

resolution data are many in this case, regardless of the algorithm used. For instance, 

fire characterization via FRP may result in biased estimates depending in particular 

on the number of individual active fires contained within the fire detection pixel and 

on how the energy released by the fire is represented by the instrument’s PSF. 

Additionally, Amazonian fires tend to concentrate in areas of deforestation where the 

landscape heterogeneity is high making the derivation of FRP values even more 
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difficult. As a result, the potential for creating a hybrid fire product combining 

MODIS and GOES FRP estimates is significantly limited. 

 The analyses of fire detections revealed that if one is interested in representing 

the total fire occurrence for high percentage tree cover areas (>40%), the better 

temporal resolution of the GOES data detecting the diurnal cycle of fires improves 

upon the twice daily detection of MODIS at a higher spatial resolution. Therefore, 

differences in daily fire detection in particular between MOD14 and WF-ABBA may 

be reduced or even eliminated. False detections produced by MOD14 were 

predominantly isolated from WF-ABBA detections, while 100% of the areas showing 

coincident detections from those two products had visual confirmation of fire activity. 

Consequently, MOD14 (and similarly MYD14) could be used to reinforce our 

confidence of coincident WF-ABBA detections, while the remaining non-coincident 

MOD14 detections (more so than MYD14 ones) may indicate areas of potential 

commission errors particularly in high percentage tree cover areas (>40%).  

For low percentage tree cover areas, omission errors are high and fires are 

very dynamic thereby reducing the number of coincident detection between MOD14 

(MYD14) and WF-ABBA. In this case, the low overall commission error rates 

suggest that combining MOD14, MYD14 and WF-ABBA fire detections could be the 

best approach to improve biomass burning monitoring in those regions. 

 Visual inspection of 30 m resolution ASTER imagery suggested that 

commission errors in WF-ABBA could be largely responsible for the low rates of 

coincident detections between WF-ABBA and MOD14. Large burnt areas occurring 

at the same spatial scale of the GOES pixels were seen to produce WF-ABBA fire 
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detection clusters without a MOD14 match. The percentage of WF-ABBA fire pixels 

without a coincident MOD14 or MYD14 detection exceeded the commission errors 

estimated for the WF-ABBA by Schroeder et al. [2008], and further investigation is 

required. 

The detection performance of the MOD14 and MYD14 at extreme scan angles 

(55º) was found to be approximately 40% lower compared to nadir viewing 

conditions. The use of area averaged statistics of daily MOD14 (MYD14) and WF-

ABBA fire detections as a means to compare the two products resulted in poor 

correlation between those datasets across a range of MODIS observation conditions. 

The ratio between MOD14 (MYD14) and WF-ABBA detections were especially 

variable at high MODIS scan angles, where the bow tie effects and the occurrence of 

thick smoke plumes could influence the number of detections produced. 

The results above summarize some of the major limitations of current satellite 

active fire detection products. The nature of fire activity in Brazilian Amazonia and 

the image characteristics of MODIS and GOES were found to affect fire detection 

probability and the retrieval of physical parameters of a large percentage of 

vegetation fires in the region. 

Regardless of the limitations above, increasingly sophisticated fire alert 

systems and biomass burning emissions models create a large demand for higher 

temporal and spatial resolution fire data [Freitas et al., 2005; GCOS, 2006; GOFC, 

2006; Wooster et al., 2003]. The next generation suite of sensors to become 

operational on board the National Polar-orbiting Operational Environmental Satellite 

System (NPOESS) and the GOES-R will show improvements in terms of spatial (and 
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temporal in the case of GOES-R) resolution which could result in greater fire 

detection and characterization capabilities compared to existing products. However, 

the primary channel for active fire detection located in the mid-infrared region in both 

systems might be affected by inadequate pixel saturation specifications and pixel 

resampling methods which could penalize the performance of future fire detection 

products derived from those data sets. Unless the quality and the integrity of the new 

data are preserved, the user community may continue to experience a shortage of 

detailed information about fire activity with important consequences to the 

understanding of regional and global climate system processes and their implications 

to society. 
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Chapter 5:  Integrated Fire Product 

 

 

5.1 INTRODUCTION 

The results derived from Chapters 2-4 were used to guide the production of a new 

integrated fire product for Brazilian Amazonia based on MOD14, MYD14 and WF-

ABBA input data. The new product was aimed to generate the best possible fire 

detection data with reduced commission and omission errors. A 4 km grid was used 

to process daily MODIS and GOES data including all daytime and nighttime 

detections. A set of criteria was developed utilizing the complementarity of the above 

products to generate an integrated product of fire detection data, namely: 

 

i. Cloud obscuration omission errors were calculated for each 4×4  km cell using 

the methodology described in Chapter 2; 

ii. Commission errors were calculated for each 4×4 km cell as a function of 

percentage tree cover based on the results from Chapter 3; 

iii. False detections in MOD14 (MYD14) and WF-ABBA were considered non-

coincident. Based on the results from Chapter 4, spatially coincident 

detections (i.e., detections within the same 4×4 km cell) produced by more 

than one product were classified as true positives; 
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iv. Daytime MOD14 fire detections without a spatially coincident MYD14 or 

WF-ABBA detection were discarded for high percentage tree cover areas 

(>40%) based on the results from Chapter 4. 

 

In addition, nighttime detections were all considered true positives based on 

the analysis of 20 ASTER scenes used to validate the MOD14 product derived from 

nighttime MODIS Terra overpasses using the same methodology described in 

Chapter 3. All nighttime detections validated (n = 62) were classified as true 

positives, suggesting that false detections are primarily a result of daytime land 

surface temperature dynamics. 

 

5.2 METHODS 

The integrated product differs from the simple sum of MODIS and GOES fire 

detection products as it is based on the use of multiple criteria to determine the 

consistency of fire detections produced for an individual 4×4 km area. Starting at 

00:30 h local time each day, individual 4×4 km cells contained within Brazilian 

Amazonia were monitored for the occurrence of fire detections produced by MOD14, 

MYD14 and WF-ABBA until 24:00 h local time (Figure 5.1); all hours reported 

hereafter are considered local time. 
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Figure 5.1: Flow diagram describing the processing scheme used to integrate MOD14, 
MYD14 and WF-ABBA fire detections. Ingestion of WF-ABBA and cloud obscuration 
omission error estimates occurs at 30 min intervals during day and nighttime periods of every 
24 h cycle. 
 

 

Daytime fire detections were adjusted for commission errors based on the 

percentage tree cover values of the affected 4×4 km cell following the error matrix 

analysis presented in Chapter 3. Percentage tree cover estimates were derived using 

the 2005 500 m Vegetation Continuous Fields (VCF) product [Hansen et al., 2002; 

Hansen et al., 2003]. Commission error rates at the time of Aqua overpass were 

assumed 50% lower compared to the time of Terra overpass based on the results from 

Section 3.4.3. Commission error rates for the WF-ABBA product at observation 
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hours different from the Terra and Aqua overpass times analyzed in Chapter 3 were 

estimated using information describing the approximate diurnal cycle of brightness 

temperature of forest and non-forested pixels in the mid-infrared spectral region 

(Section 3.4.3, Figure 3.9). Large differences in brightness temperature values 

between forest and non-forested pixels were found to be an important factor leading 

to false detections in the MODIS and GOES active fire detection products validated 

in Chapter 3. Using the false detection and brightness temperature data shown in 

Figure 3.9, a second order polynomial was fitted to the curve representing the 

brightness temperature contrast between forest and non-forested GOES pixels and 

normalized. This was done in order to have the commission error rate at 13:30 h 

being 50% lower than at 10:30 h, with a peak (value equal to 1) centered at 

approximately 11:45 h. The resulting curve intercepts the zero commission error mark 

at approximately 8:30 h and 14:30 h; i.e., commission errors are considered null for 

GOES images acquired earlier than 8:30 h or later than 14:30 h. This approximation 

may be revised in the future provided that improved commission error estimates 

become available. 

For deriving the integrated product, when multiple daytime WF-ABBA fire 

detections occur for an individual 4×4 km cell, we used the lowest commission error 

estimated from all the observation hours producing detections. Based on the 

assumption that false detections from different products do not overlap, grid cells 

showing multiple daytime fire detections originated from more than one fire detection 

product are confirmed to have vegetation fire activity for the calendar date in 

question. 
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Omission errors due to cloud obscuration estimated at 30 min intervals for 

individual 4×4 km cells are accumulated for each 24 hour cycle, resulting in a 0-

100% chance of fire omission at the end of each calendar date. 

Lastly, the occurrence of any nighttime fire detection overrules any of the 

previous assumptions, leading to confirmed fire activity for a 4×4 km cell irrespective 

of the product which originated the entry. 

 

5.3 RESULTS 

The integration analysis used data from 2005 for which the cloud obscuration 

omission error estimates derived in Chapter 2 were available. The 2005 MOD14, 

MYD14, WF-ABBA, and integrated fire detection density maps re-sampled to a 40 

km grid are shown in Figure 5.2A-D, respectively. Although the spatial extent of 

most features depicted by the original MOD14, MYD14 and WF-ABBA fire 

detection maps are similar, the integrated product helped highlight areas of increased 

fire activity across the region. Active deforestation areas including southeastern Pará, 

central Mato Grosso, and northern Rondônia resulted in the largest fire detection 

densities in Brazilian Amazonia. Areas typically associated with low percentage tree 

cover (east and south regions on the map) also showed large fire detection densities in 

the integrated product suggesting that fire activity in those areas could be 

underestimated by the original fire products. The relatively small fire detection 

densities depicted by the MOD14 product in Figure 5.2A show that a strong fire 

diurnal cycle could significantly limit the detection rates of sensors flying on morning 

orbits. 
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Figure 5.2: Annual (2005) fire detection density maps for the original MOD14 (A), MYD14 
(B), and WF-ABBA (C) products, and the integrated product (D) for Brazilian Amazonia. 
The scales represent the average number of days with detections calculated for individual 40 
km cells. 
 

 

 The differences in detections between the integrated product and the simple 

sum of fire products are shown in Figure 5.3. Negative and positive values result 

primarily from corrections applied to the integrated product to reduce commission 

errors and omission errors due to cloud obscuration, respectively. The result suggests 

that large areas of Brazilian Amazonia showing small differences between the 

A B

C D
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integrated product and the simple sum of fire products could have those errors 

balanced. However, small regions including central Mato Grosso state could be under 

the influence of a systematic bias resulting in an overestimation of fire activity. In 

fact, high fire detection rates were observed in the integrated product over certain 

locations described by individual 4×4 km sub-cells. In those areas, potentially 

unrealistic annual detection rates exceeding 30 days of co-located burning activity 

suggested that the bias due to commission errors could be even larger than is depicted 

in Figure 5.3. While the number of individual locations with high fire detection rates 

was relatively small (approximately 1,000 sites compared to 340,000 cells contained 

in region), the persistent burning signal which results from those areas could have 

important implications for both fire alert systems and biomass burning emissions 

modeling.  

 

Figure 5.3: Net correction applied to the combined detections of MOD14, MYD14 and WF-
ABBA based primarily on commission error rates and omission errors due to cloud 
obscuration. The scale represent the average number of days with detection that were added 
(positive values) or subtracted (negative values) from the integrated data for individual 40 km 
cells compared to the simple sum of the products above. 
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5.4 QUALITY ASSESSMENT 

A quality assessment of the results produced by the integrated product in central Mato 

Grosso was performed using two sets of Landsat 5 Thematic Mapper (TM) scenes at 

30 m resolution acquired 16 days apart (row/path: 227/68; first set acquired on July 

01 and July 17 2005; second set acquired on August 02 and August 18 2005). The 

Landsat 5 TM data were complemented by two collocated 20 m resolution China-

Brazil Earth Resources Satellite (CBERS) images acquired on July 13 2005 and 

August 08 2005. The selection of the central Mato Grosso region to assess the quality 

of the integrated product was motivated by two primary reasons: (i) results from 

Chapter 3 and from Section 5.3 above suggest that this area could have high 

commission errors; and (ii) the availability of Landsat 5 TM and CBERS images 

acquired within only a few days from each other provided a unique opportunity to 

generate detailed fire information for the area.  

To derive the reference burn area maps, the image data covering the 0.77-0.90 

µm region in each sensor were inter-calibrated in order to provide comparable top of 

the atmosphere reflectance measurements. In this spectral region, burned areas can be 

easily distinguished from the surface background as a result of a sharp reduction in 

the reflectance values measured over ash and char covered pixels. After resizing the 

CBERS images to 30 m resolution and registering them to the Landsat 5 TM data, 

image differences were computed and an empirical threshold was applied to classify 

new burn scars occurring between two consecutive acquisition dates. 

The reference burn scar data produced using the approach described above, 

supported the assessment of the integrated fire product generated for the same time 
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periods separating two consecutive Landsat 5 TM and CBERS images. The 4×4 km 

cells showing burn scars of any size were identified and compared to the integrated 

fire detections produced using the same grid cell resolution and time interval. 

Despite the large number of fire detections appearing in the integrated product 

during the periods analyzed, the number of new burn scars was relatively small 

suggesting that potentially large commission errors could remain in the integrated fire 

product. However, inspection of active fire pixels identified using an empirical 

threshold applied to the 2.09-2.35 µm channel of Landsat 5 TM showed that the large 

majority of the fires (> 90%) occurring in that region and time period did not produce 

a detectable burn scar. Visual interpretation of the active fires mapped indicated the 

prevalence of small areas of burning often associated with closely aligned fire lines 

typical of piled debris. Therefore, the use of higher resolution imagery acquired only 

a few days apart did not provide appropriate means to assess the quality of the 

integrated product at the critical area of central Mato Grosso. 

Alternatively, evaluation of the integrated product was attempted using the 30 

m active fire pixels mapped with the Landsat 5 TM data. The integrated product was 

processed for four individual calendar dates corresponding to the same acquisition 

dates of the Landsat 5 TM images selected. The main purpose of this analysis was to 

compare the fire detections produced by the original input fire products to the fire 

information resulting from the integrated product using the 30 m active fire data to 

validate the results. Only fire detections initiated at the approximate overpass time of 

Landsat 5 TM were considered (± 30 min tolerance); detections produced for those 

same locations during subsequent hours were also used for processing the integrated 
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product. The time difference constraint limited the analysis to the WF-ABBA data 

only, since the Landsat 5 TM images in Amazonia overlap with areas without 

daytime MOD14 coverage for the same acquisition date. This lack of coverage results 

from the MODIS ground sampling characteristics near the equator which creates 

large spatial gaps [Wolfe et al., 2002]. The use of MYD14 was equally compromised 

due to the large differences in overpass time separating the orbits of the Landsat 5 and 

Aqua satellites.  

The WF-ABBA detections were classified as true positives and false positives 

depending on the presence or absence of coincident 30 m active fires, respectively. 

Similarly, the locations classified as fire in the integrated product were validated 

using the 30 m active fire data. Table 5.1 shows the classification of all fire locations 

indicated by WF-ABBA and the integrated product. Fractional numbers appearing in 

the columns representing the integrated product in Table 5.1 resulted primarily from 

the application of corrections to account for commission error rates in the WF-ABBA 

data ingested into the integrated product processing routine. Compared to the original 

WF-ABBA fire detection data, the integrated product resulted in a small decrease in 

false positives while preserving true positive detections nearly unchanged. This first 

evaluation suggests that the integrated product could improve the fire detection 

information of WF-ABBA although we recognize that due to the small sample used, a 

more comprehensive quality assessment of the integrated product should be in the 

subject for future study. 

 

 



 

 128 
 

Table 5.1: Evaluation of WF-ABBA detections and the integrated fire product data using 30 
m active fire data derived from Landsat 5 TM imagery. 
 

 True Positives  
(number of detections) 

False Positives 
(number of detections) 

WF-ABBA 28 16 

Integrated Product 27.8 14.1 

 

 

5.5 CONCLUSIONS 

A new integrated fire detection product based on the MOD14, MYD14 and WF-

ABBA products was presented in this Chapter. A set of judicious criteria was used to 

exploit the complementarity among those products and to increase the consistency of 

the detections represented in the integrated product. Areas of high detection 

frequency were highlighted in the integrated product. Those areas coincided with 

active deforestation regions reinforcing the concept that conversion fires are 

responsible for the largest detection frequencies in Brazilian Amazonia [Eva and 

Fritz, 2003; Morton et al., 2008]. The large differences among the detection rates 

derived using MODIS Terra and Aqua and GOES data reflected the importance of the 

fire diurnal cycle in the region and the need for more systematic high temporal 

resolution imaging of fire activity in Brazilian Amazonia. 

A complete quality assessment of the integrated fire product over areas 

including central Mato Grosso state could not be accomplished primarily due to the 

scarce availability of validation data and the absence of burn scars from these fires. 
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Those two aspects limited the evaluation of the integrated fire product to the times 

near the acquisition hours of Landsat-equivalent data when fire activity is reduced.  

The occurrence of fires without a distinguishable burn scar in areas such as 

central Mato Grosso state raise some of the potential limitations involving burn scar 

mapping products using classification schemes based on visible and near-infrared 

bands (e.g., the MODIS burned area product [Roy et al., 2005]). It also highlights the 

importance of complementing those burn scar products with active fire data in order 

to achieve a more complete representation of biomass burning in the region.  

Although some problems undoubtedly remain in the integrated fire product 

described above, it improves upon single source and multisource products based on 

the simple accumulation of individual fire detections. The quantification of some of 

the primary sources of errors influencing the MOD14, MYD14 and WF-ABBA 

products and the relationships between them could provide invaluable information to 

assess the main implications for biomass burning emissions modeling in South 

America as well as to guide future improvements of the fire detection products. 

Consideration of the full diurnal cycle during processing of multiple fire 

detections required that improved validation data sets be used to fully assess the 

qualities and limitations of the new integrated product. The use of airborne systems 

providing higher frequency image acquisition may be necessary to comprehensively 

assess the diurnal cycle of commission errors and the performance of the integrated 

product.  
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Chapter 6: Conclusions 

 

 

6.1 SYNTHESIS OF RESEARCH 

The demand for information on fire activity in Amazonia has significantly increased 

in the past two decades with the concern about the fate of the tropical rainforest 

[Nepstad et al., 1999b; Nepstad et al., 2001; Morton et al., 2006; Shukla et al., 1990]. 

Satellite active fire detection products represent the primary data source for 

Amazonian fire alert systems. These data are also of interest to the scientific 

community. However, little information is available about the performance of the 

current products and differences among data sets create additional problems for the 

user community. This dissertation was designed to quantify the errors and to assess 

the complementarity amongst different products. The main objective of the research 

was to improve the quantification of vegetation fire activity in Brazilian Amazonia 

through the use of multiple satellite remote sensing fire data. 

 

6.1.1 Omission Errors due to Cloud Obscuration 

Fire detection omission errors due to cloud obscuration in the WF-ABBA 

product derived from GOES-East imager data were quantified in Chapter 2. A pixel 

based probabilistic approach was proposed, using information on previous fire 

occurrence and precipitation. The methodology was implemented using data covering 
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the entire diurnal cycle of fire activity and cloud occurrence. The results suggested 

that by ignoring land use patterns and rainfall regimes and by adopting generalized 

grid based analyses, previous studies using more simplistic approaches have 

overestimated the effects of cloud obscuration on fire detections. 

Fire occurrence was found to be influenced by regional precipitation regimes 

which limit fire use to a short period of time in the dry season, and was largely related 

to areas of rapid land cover change found in particular along the Arc of Deforestation. 

The assessment of the omission errors due to cloud obscuration used satellite 

precipitation data and WF-ABBA fire detection records from previous years to 

delineate the spatial and temporal characteristics of fire activity in the region. A cloud 

mask was generated for the GOES data and omission errors were estimated using a 4 

km grid to reproduce the nominal spatial resolution of the GOES imager. The 

methodology was proven successful, resulting in consistent cloud obscuration 

omission error estimates for the WF-ABBA fire product. 

 

6.1.2 Clear Sky Omission and Commission Errors 

Following the analyses of fire omission errors due to clouds, a comprehensive 

validation study was implemented to quantify clear sky omission and commission 

errors for the WF-ABBA and the MOD14 products over Amazonia. The analyses 

discussed in Chapter 3 represent the first in depth assessment of the fire detection 

performance of the WF-ABBA product using real time validation data. The validation 

approach built on the work of Morisette et al. (2005a) who first tested the application 

of 30 m resolution ASTER imagery to assess the detection performance of the 
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MODIS Fire product (MOD14) for Southern Africa. That methodology was expanded 

to incorporate the GOES data into the analyses and a new active fire detection 

product was generated using Landsat ETM+ imagery. As with the ASTER data, the 

30 m resolution Landsat ETM+ fire product was used as “ground truth” data to 

validate the WF-ABBA fire detections. This validation approach fulfills the 

requirements for independent data usage to assess the quality of remote sensing 

satellite products defined by Morisette et al. [2002]. Compared to ground validation, 

higher resolution imagery provide more appropriate means to tackle related scaling 

issues of fine-scale processes in moderate resolution data, and in this respect the use 

of 30 m Landsat ETM+ and ASTER data to validate MODIS and GOES products is 

recognized as a viable alternative [Morisette et al., 2002]. To assure the quality of fire 

masks derived from the Landsat ETM+ and ASTER, an extensive quality control was 

performed including detailed visual inspection of all images used. Errors in the 

Landsat ETM+ and ASTER fire mask data were therefore considered negligible. 

Also, comparison of near coincident Landsat ETM+ and ASTER fire masks showed 

that the two data sets produced similar results and therefore could be used 

interchangeably. Sum statistics of 30 m active fire pixels derived from ASTER and 

ETM+ were produced for the footprint of individual GOES pixels and used to fit a 

logistic regression model describing the detection probability curve for the WF-

ABBA product. 

The differences in detection performance for MOD14 and the instantaneous 

WF-ABBA product were systematically validated for different surface conditions. On 

average, WF-ABBA required four times more active fire area than MOD14 to 
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achieve equivalent detection probability rates for similar fire conditions. The distance 

separating the detection probability curves of MOD14 and WF-ABBA derived from 

the logistic regression analysis was proportionally less than the difference in spatial 

resolution of the two instruments. In this case, other sensor characteristics including 

the spectral location and bandwidth of the mid-infrared GOES channel could have 

contributed to enhance the response of the WF-ABBA product to sub-pixel fires, 

thereby reducing the difference in detection performance relative to the MOD14 

product. 

Omission error rates estimated for the approximate time of the ASTER and 

ETM+ overpasses (i.e., 10:00-10:30 local time) were high for both WF-ABBA and 

MOD14 products when fires of all sizes detected with the 30 m resolution fire masks 

were considered. In particular, high omission errors were seen to affect the MOD14 

and the WF-ABBA products in areas of low percentage tree cover. Major differences 

in fire conditions across different land uses and land cover types were found through 

the analysis of data collected from multiple prescribed burns during three different 

field campaigns in Brazilian Amazonia. Maintenance fires (e.g., pasture and crop 

residue burning) predominating in areas of low percentage tree cover were 

characterized by lower temperature (~ 700 K) and narrow flaming fronts, followed by 

a relatively cool smoldering phase. These highly dynamic conditions result in a 

significantly small window of time during which fire detection is possible. The 

surrounding background conditions associated with those fires was also found to be 

an important factor influencing detection probability of contextual algorithms based 

on moderate or coarse resolution sensor data. The occurrence of warm and bright 
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background pixels in low percentage tree cover regions resulted in reduced contrast 

with the fire affected pixel, therefore causing the latter to fail the contextual tests. 

Consequently, detection performance of moderate (500 -1 km) and coarse resolution 

(> 1 km) fire products over low percentage tree cover conditions could be considered 

limited, being subjected to potentially large omission errors. 

Vegetation fires used for clearing forest debris along biomass-rich 

deforestation areas showed different characteristics compared to the fires occurring in 

low percentage tree cover regions and omission error rates were consequently 

smaller. Forest conversion fires burned at very high temperatures (~ 1100 K) and for 

a prolonged time (hours as opposed to minutes), significantly increasing the chances 

of detection by one or more instruments. 

The high temporal resolution of the GOES imager proved very useful to 

reduce the instantaneous omission error rates derived for the WF-ABBA product 

using coincident ASTER and ETM+ data. In fact, when all daytime GOES imager 

data were considered the estimated WF-ABBA omission error was half of that found 

for the instantaneous MOD14 product based on a similar fire sample. This finding 

reinforces the importance of fire diurnal cycle in the region, suggesting that fire 

activity tends to intensify towards the afternoon hours enabling the detection of an 

increased number of fire pixels by the WF-ABBA product. 

Similarities among the commission error rates estimated for WF-ABBA and 

MOD14 showed a tendency of contextual algorithms to fail over areas characterized 

by large gradient in percentage tree cover. False detections were particularly prone to 

occur along areas of active deforestation in Brazilian Amazonia, resulting from the 
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strong brightness temperature contrast in the mid-infrared region established between 

recently burned deforestation sites and the surrounding forests. Multiple false 

detections persisting over the same location suggested that the radiometric signature 

of some burn scars could remain unaltered for as many as 32 days, the maximum 

separation found for spatially coincident false detections in the MOD14 data. 

Smaller differences in thermal inertia between forested and deforested areas 

were largely responsible for a 50% reduction in commission errors during the early 

afternoon hours when fire activity approaches its maximum. This decrease in 

commission error rates should enhance the character of the diurnal cycle of fire 

detections even further provided that false alarms occurring during mid-to-late 

morning hours are accounted for. Fire-unrelated commission errors (i.e., pixels with 

no indication of active burning or burn scars) accounted for only 3% of all fire 

detections produced by WF-ABBA and MOD14. Therefore, active fire detection 

products could provide useful information for burned area mapping algorithms by 

identifying areas of fire occurrence with low commission error rates. 

Commission errors in MOD14 could not be reduced using the additional 

scientific data available for the detection pixel and its surroundings provided in the 

product. The data include the brightness temperature in the mid-infrared and thermal 

infrared channels for the target pixel and its background, detection confidence 

estimate, and fire radiative power derived for the fire pixel. Due primarily to the 

ambiguity between the conditions describing true and false detections based on the 

parameters above, post-processing of commission errors was not possible. However, 

refinement of both MODIS Thermal Anomalies and WF-ABBA products could be 
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accomplished through the adoption of additional tests to help differentiate true and 

false detections. For instance, a method to reduce commission error rates was tested 

using temporal metrics based on the brightness temperature calculated for the mid-

infrared channels of GOES and MODIS. The application of such method to a subset 

of the validation data proved successful in separating true and false detections and 

thereby represents a potential area for future development of active fire detection 

products. Regions of tropical deforestation where high commission error rates (> 

30%) predominate are particularly suited to the application of a fire detection 

algorithm which incorporates the use of temporal metrics in the mid-infrared region. 

In those areas, surface temperature conditions remain mostly invariant for prolonged 

times favoring the use of change detection schemes to capture anomalous variations 

in pixel brightness temperature values between images that can be caused by 

vegetation fires. 

The clear sky omission and commission errors reported in Chapter 3 were 

largely a function of the fire use and land cover types found in Brazilian Amazonia. 

High commission error rates associated with recently burned forest clearings of 

approximately the same size of a MODIS or GOES pixel footprint could be specific 

to the Arc of Deforestation and less common elsewhere.  Despite the commission 

problem identified in this study, MODIS and GOES fire detection data provide 

invaluable information for the Amazon fire data user communities. Basin wide 

commission errors were approximately 15% for both MODIS and GOES fire 

products, with commission problem almost exclusively (> 80%) associated with 

recent fire activity.  The estimated fire-unrelated commission error rates of 3% agreed 
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with the results of Csiszar et al. [2006] and Schroeder et al. [2008c] who derived 

clear sky commission and omission errors for the MODIS Terra Thermal Anomalies 

product over Northern Eurasia and the conterminous United States, respectively. This 

result suggests that a global commission error rate for the MODIS fire product may 

be ~3%.  

Additional fire product error assessment remains an important topic for 

regional studies. Priority regions for validation analyses include parts of Africa and 

southeast Asia where high fire detection frequency and intensive land use and land 

cover change similar to Amazonia may result in comparable commission issues. 

 

6.1.3 Towards Integrating MODIS and GOES Fire Detection Data 

With the characterization of omission and commission errors completed, Chapter 4 

discussed the potential for integrating MODIS and GOES active fire data. The use of 

high temporal resolution GOES data combined with the moderate spatial resolution of 

MODIS created an optimum environment to test how fire products generated from 

sensors with different characteristics complement each other. 

The spatial and temporal characteristics of Amazonian fires were first 

considered in order to determine the most appropriate approach to use for the 

integration analyses. Fire size statistics derived from 30 m resolution ASTER and 

ETM+ data suggested that nearly 90% of the fires actively burning at 10:00 local time 

were composed of fire clusters with less than 30 pixels, or the equivalent to 

approximately 3 ha of a variable mix of flaming and smoldering fire components and 

unburned background vegetation. Fire size statistics demonstrated how vegetation 
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fires in Amazonia are small in size. In most cases fires are used in a controlled 

fashion therefore being constrained to small subsets of individual properties where 

the land is being managed. Consequently, Amazonian fires usually occupy only a 

reduced fraction of a MODIS (<3%) or GOES (<0.2%) pixel. 

The communal use of fires involving simultaneous burning in neighboring 

properties which predominates in various parts of Amazonia was clearly depicted by 

the statistics describing the distance separating adjacent active fires. Approximately 

80% of the fires showed a second area of burning within less than 8 km. This small 

separation is equivalent to just about two adjacent GOES pixels, and is similar to the 

navigation error of the GOES data. 

 The small size of vegetation fires in Amazonia and the proximity between 

areas of simultaneous burning created major limitations for the use of any kind of 

pixel level analysis to integrate the MODIS and GOES fire detection products since 

overlapping pixels would likely contain different amounts of fire activity. To 

overcome this constraint, the effects associated with a high fire spatial frequency 

were minimized by aggregating adjacent MODIS or GOES fire detections into 

clusters. 

 The integration analysis tested the use of Fire Radiative Power (FRP) to 

integrate the MODIS and GOES fire data. FRP is a physical parameter describing the 

energy released primarily by the flaming components of vegetation fires; therefore it 

facilitates the comparison between different products while also being useful to 

estimate biomass burning combustion rates [Kaufman et al., 1998b; Wooster, 2002; 

Wooster et al., 2003]. The analysis involving MODIS and GOES FRP estimates was 
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implemented using a conservative approach to reduce artifact contamination of the 

results, including the adoption of strict spatial criteria and removal of data points 

containing saturated pixels. Spatially and temporally coincident MODIS and GOES 

detection clusters produced significantly different FRP estimates for a large fraction 

of the cases analyzed. The results suggested that due to the conditions describing 

Amazonian fires, FRP estimates derived from moderate and coarse resolution data 

could be systematically subjected to large and variable errors, making it difficult to 

relate MODIS Thermal Anomalies and GOES WF-ABBA data via this parameter. 

The divergence between MODIS and GOES FRP estimates was particularly large in 

areas of high percentage tree cover, providing indications that landscape 

heterogeneity is an important factor limiting accurate FRP retrievals in Amazonia. 

Previous studies have almost entirely neglected the effects of Point Spread 

Function (PSF) on the calculation of FRP of MODIS and GOES. However, the 

simulation analysis implemented in Chapter 4 suggested that PSF could represent the 

largest single source of error on FRP estimates derived from those sensors. The 

results revealed that fires situated away from the more responsive area of the PSF 

located near the pixel center can have their energy underestimated by the FRP 

estimates produced. The simulations of MODIS and GOES pixels containing a 

typically small Amazonian fire were prone to significantly underestimate true FRP 

values due to the effects of PSF of those instruments. This result suggests that the 

potential for using FRP for biomass emissions modelling applications in Amazonia 

using MODIS or GOES data might be limited, since emission rates calculated from 

underestimated FRP values could be negatively biased. 
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The results produced by the analyses using MOD14 (MYD14) and WF-

ABBA fire detection clusters suggested a strong influence of the diurnal cycle of fires 

on the rates of spatially and temporally coincident detections. Relative to MOD14, a 

larger number of MYD14 fire detections showed coincident WF-ABBA detections 

indicating that greater fire activity predominates during the afternoon hours. Inclusion 

of the daytime GOES data in the analysis significantly increased the rate of MOD14 

(MYD14) and WF-ABBA coincident detections. This result suggests that an 

important fraction of the smaller fires only detected by MOD14 and MYD14 could 

show variations in size and intensity during their life cycle, which evidently based on 

the temperature profiles shown in Chapter 3 (Figure 3.3) extends beyond the 

acquisition times of MODIS Terra and Aqua. 

The fraction of MOD14 and MYD14 detections without a corresponding WF-

ABBA detection occurring over high percentage tree cover areas was similar to the 

commission error rates derived for those MODIS products. This result suggests that 

MOD14 and MYD14 detections without a WF-ABBA match occurring in those areas 

could be primarily associated with false detections. Therefore, use of WF-ABBA 

detections to describe fire activity in high percentage tree cover areas (i.e., > 40%) 

could provide similar detection rates for most (> 90%) fires observed by MOD14 and 

MYD14 without the limitations of spatial coverage which create gaps in the MODIS 

data along the equator. Nonetheless, false detections in the WF-ABBA data need to 

be corrected for in order to reduce the commission errors observed over those high 

tree cover areas. 
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In areas characterized by low percentage tree cover (i.e., < 40%), small rates 

of coincident detections for MOD14 (MYD14) and WF-ABBA resulted as a 

consequence of lower temperature and short duration fires influencing the detection 

probability of those products. Nonetheless, commission error rates were significantly 

reduced in low percentage tree cover areas therefore the combined use of MOD14, 

MYD14 and WF-ABBA should provide the highest detection rates for those areas. 

Large daily variations in detection performance of MOD14 (MYD14) and 

WF-ABBA could be verified using daily fire detection sum statistics from those 

products for a fixed area centered in southern Brazilian Amazonia. The variable pixel 

geometry of MODIS as a function of scan angle resulted on average in a 40% 

reduction of fire detection rates at the edge of the swath (i.e., ±55º) compared to nadir 

conditions. Differences between area averaged MOD14 (MYD14) and WF-ABBA 

fire detection statistics were particularly large over extreme MODIS scan angles 

where the bow tie effect in the MODIS imagery and the longer atmospheric path 

which cause greater attenuation of the fire emitted radiation could introduce 

additional variations in detection rates. Consequently, the use of area averaged 

statistics to integrate WF-ABBA, MOD14 and MYD14 detections was considered 

inadequate due to the large uncertainties involved. 

 

6.1.4 Integrated Fire Product 

In Chapter 5 a new integrated fire detection product was derived based on MOD14, 

MYD14 and WFABBA 2005 data. The results from Chapters 2-4 were used to 

generate a set of judicious criteria which takes advantage of multiple detections 
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produced from daytime and nighttime MODIS and GOES imagery. These criteria 

were applied to the data to generate improved daily fire information for Brazilian 

Amazonia. The integrated data product was generated using a 4×4 km grid at 30 min 

temporal resolution. 

 Areas of high detection frequency were highlighted in the integrated product 

reinforcing the strong association between forest conversion and areas of high fire 

activity in Brazilian Amazonia. The low overall fire detection densities generated 

from MODIS Terra data indicated that a strong fire diurnal cycle prevails in most of 

the region, whereas the high fire detection frequencies produced with the GOES data 

suggested that higher temporal resolution instruments may offer great advantage for 

Amazonian fire monitoring. 

 A validation exercise designed to assess the quality of the integrated product 

near central Mato Grosso state, an area under the influence of potentially large 

commission errors, revealed that numerous active fires in that region could result 

from the burning of crop residue or piled forest debris which leave no distinguishable 

burn scars on the surface. Consequently, future validation of the integrated detections 

must rely on coincident ground reference data to permit proper characterization of the 

product’s quality. 

 

6.2 IMPLICATIONS FOR SATELLITE-BASED FIRE MONITORING IN 

BRAZILIAN AMAZONIA 

Amazonian fire alert systems and biomass burning emissions models demand high 

quality remote sensing data at the highest temporal and spatial resolution available, 
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requiring that active fire detection products from different sensors be combined. In 

order to integrate different satellite active fire detection data sets, the performance of 

individual products must be fully characterized and omission and commission errors 

quantified. 

 The main objective of this dissertation was to assess the potential for 

integrating the MOD14, MYD14 and WF-ABBA fire detections products in order to 

improve fire monitoring in Amazonia. Those products are routinely generated for the 

region providing important fire information for a large number of users. The WF-

ABBA product derived from the GOES data has been running operationally since 

1995, representing one of the longest time series of fire detection data available for 

Amazonia. The WF-ABBA product generates the highest temporal resolution fire 

detection data available for the region, serving rapid response fire alert systems as 

well as biomass burning emissions models [CPTEC, 2008; Freitas et al., 2005]. 

Despite their shorter time series, the MOD14 and MYD14 products quickly gained a 

large number of users in Amazonia as they provide moderate resolution fire detection 

data with lower saturation levels and improved navigation quality compared to other 

polar orbiting sensors such as the Advanced Very High Resolution Radiometer 

(AVHRR) series. 

For the first time ever cloud obscuration omission errors and clear sky 

omission and commission errors were quantified in detail for the MOD14, MYD14 

and WF-ABBA products over Amazonia. The results suggested that additional data 

layers such as vegetation, precipitation and cloud mask products must be used in 

conjunction with the active fire data in order to reduce errors in those products. 
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One of the big advantages of the method developed to quantify the cloud 

obscuration omission errors consisted in using GOES imager data to derive all input 

layers required to calculate the omission errors, including: a cloud mask, precipitation 

estimates and the land use data. In doing so, pixel level processing could be 

implemented and data registration errors and differences in data acquisition could be 

minimized. The use of pixel based processing is also advantageous as it facilitates 

aggregation of the omission error estimates for any particular grid cell resolution of 

current biomass burning emissions models. In fact, the methodology described in 

Chapter 2 will be used to generate fire detection omission error estimates due to cloud 

obscuration for the Coupled Aerosol and Tracer model to the Brazilian developments 

on the Regional Atmospheric Modelling System (CATT-BRAMS) dedicated to 

model biomass burning emissions in South America. 

The large number of false detections found in areas of high percentage tree 

cover demonstrated the importance of using land cover information to estimate 

commission error rates. The use of the 500 m Vegetation Continuous Fields data 

[Hansen et al., 2002; Hansen et al., 2003] in combination with the fire detection data 

proved particularly successful in this study as it allowed easy determination of the 

dependency of commission error rates on percentage tree cover. Based on the 

commission error rates derived in Chapter 3, the approximate number of MOD14 

(MYD14) and WF-ABBA false detections can be determined by weighting the 

distribution of fire detections as a function of percentage tree cover for any given 

area. The use of alternative land cover maps is contingent on users’ preferences and 
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on the potential of those maps to reproduce a continuum of vegetation classes that can 

be easily related to commission error rates. 

The potential for improving current contextual fire detection algorithms with 

the use of additional tests based on mid-infrared brightness temperature data to reduce 

commission errors was also demonstrated in Chapter 3. The results suggested that the 

stable surface thermodynamic conditions of Amazonia could facilitate the use of pixel 

based temporal metrics of brightness temperature estimates derived from the mid-

infrared channels of MODIS and GOES to identify false detections or increase our 

confidence about the true ones. In Section 3.4.4, 30-day averaged brightness 

temperature estimates derived for the pixel were used to detect changes in 

instantaneous brightness temperature measurements that were typically associated 

with true or false detections. 

The high clear sky omission error rates found for MOD14 and WF-ABBA 

have important implications for early warning fire alert systems, as the low detection 

probabilities of small fires will likely increase the latency of those systems. For other 

applications such as biomass burning emissions modeling which prioritize the 

detection information for larger and potentially more important fires with respect to 

their emissions, the relatively rapid decrease in omission errors with the increase in 

active fire area results in improved detection performance. 

Errors in the FRP estimates from MODIS and GOES suggest that the use of 

such parameter for modeling of biomass burning emissions in Amazonia could be 

significantly compromised. The increased uncertainty found over higher percentage 

tree cover areas is a major limitation to the use of FRP. Because FRP is being 
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considered as a means to estimate biomass combustion rates [Kaufman et al., 1998b; 

Wooster, 2002; Wooster et al., 2003], even small errors in the total FRP value 

estimated for a fire detection cluster in high percentage tree cover areas will likely 

introduce large errors in the emission rates produced due to the high rates of biomass 

combustion involved. 

Consideration of land cover conditions was proven essential for the 

integration of fire detection data from MOD14 (MYD14) and WF-ABBA. Regions 

characterized by high percentage tree cover including the core of Amazonian forests 

and the surrounding areas of active deforestation must be treated separately from 

other regions where low percentage tree cover vegetation types such as the Cerrado 

(savanna) predominate. By doing so, the complementarities among MOD (MYD14) 

and WF-ABBA fire detections can be better assessed and commission errors properly 

accounted for. 

Finally, the close proximity between simultaneous active fires and 

consequently between burnt areas suggest that any validation analysis of active fire 

detection in Amazonia must use coincident ground truth information such as provided 

by ASTER and ETM+ data. This consideration significantly reduces the potential for 

validation of fire detection products derived from sensors flying on afternoon orbits. 

In this case, higher resolution data from sensors such as ASTER or ETM+ are not 

available and the potential for airborne and field data collection is limited as costs 

tend to be prohibitive. Greater coordination of the scientific community will be 

required to enable proper assessment of fire detection data sets without coincident 
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higher resolution spaceborne imaging in order to leverage costs and optimize the 

results of future validation campaigns. 

 This study targeted two main Amazonian fire data user communities: 1) 

regional fire monitoring and management, and 2) regional biomass burning emissions 

and smoke transport modeling. Both groups require accurate and timely fire detection 

information.  Different tolerance for omission and commission errors between 

communities suggests that the results of this study apply differently to the policy, 

management, and science objectives users.  Key limitations involving primarily the 

spatial resolution of GOES and MODIS and the geolocation accuracy of the GOES 

imager can significantly reduce the capacity of the related fire detection products to 

resolve individual fire clusters and to quantify their properties. Nonetheless, other fire 

data user groups including decision makers and climate modelers usually show less 

stringent data requirements. In Table 6.1 user requirements derived from the 

implementation plan for the Global Climate Observing System [GCOS, 2006], from 

the report on the Committee on Earth Observation Satellites (CEOS) Land Product 

Validation  (LPV) working group workshop on global geostationary fire monitoring 

applications [GOFC 2004], from current regional and global emissions models 

[Freitas et al., 2005; van der Werf et al., 2006], and from personal communication 

with Amazonian fire managers are presented. While most users may benefit from the 

integrated fire product presented in Chapter 5, fire alert systems in Amazonia usually 

have low tolerance to commission errors as resources designated to law enforcement 

and field inspection tend to be limited. Consequently, fire alert systems might gain 

additional benefits from using regionally adjusted fire detection algorithms that lower 
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false detection rates to complement the information provided by the hemispheric- to 

global-scale GOES and MODIS algorithms used in this study. 

 

 

Table 6.1: Fire data requirements applicable for five major fire data user groups. 
 

User Group & 
Source 

Spatial 
Resolution 

Temporal 
Resolution 

Geolocation 
Accuracy 

Tolerance to 
omission & 
commission 

errors  

Fire Alert Systems 
GOFC [2004] 500 m 5 min 

Not specified; 
assumed equal or 
better than spatial 

resolution  
(500 m) 

Low 

     
Resource Managers 

Personal 
communication 

County level Daily ~ 500 m Low 

     

Regional emissions 
modeling 

Freitas et al. [2005] 

Limited to a 
few tens of 
kilometers 

Daily 

Dependent on spatial 
resolution of land 

cover classification 
used 

(500 m - 1 km) 

Moderate 

     

Global scale 
emissions modeling 

van der Werf et 
al.[2006] 

Gridded data 
of 

0.25º×0.25º 
to 

1º×1º 
resolution 

Weekly to 
monthly 

Dependent on spatial 
resolution of land 

cover classification 
used  

(500 m < grid size) 

High 

     

Global Climate 
change community 

GCOS [2006] 
250 m Daily 

Not specified; 
assumed equal or 
better than spatial 

resolution  
(250 m) 

Moderate 
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6.3 FUTURE DEVELOPMENTS 

The analyses discussed in this dissertation represent the first detailed assessment of 

two of the major active fire detection products currently available for Brazilian 

Amazonia. Consideration of commission and omission errors and product inter-

comparison discussed in Chapters 2-4 should provide the basis for future 

development of fire detection algorithms and integration of different products in 

tropical areas. 

The quantification of omission errors due to cloud obscuration will be used to 

create a 10+ years time series of WF-ABBA fire detections for Brazilian Amazonia as 

part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). 

Improvements in WF-ABBA fire data information are already being implemented for 

the new version 6.5 product, including an opaque cloud mask layer which could allow 

direct derivation of cloud obscuration omission errors using the methodology 

described in Chapter 2. 

The next generation of sensors which will replace the existing GOES imager 

series and the MODIS sensors should provide enhanced capabilities for active fire 

monitoring. For instance, the improved geolocation accuracy and higher spatial 

resolution of the Advanced Baseline Imager (ABI) which will fly on board the 

GOES-R series and the reduced along scan pixel size variation of the Visible Infrared 

Imaging Radiometer Suite (VIIRS) which will fly on the upcoming National Polar-

orbiting Operational Environmental Satellite System (NPOESS) could facilitate the 

application of tests based on temporal change detection in addition to the spatial 

contextual tests to identify potential false detections in the fire products derived from 
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those data. Consequently, problem areas such as high percentage tree cover regions 

where high commission errors are currently observed could benefit from the use of 

more comprehensive set of detection tests. Similarly, derivation of FRP should 

benefit from higher spatial resolution imagery as average Amazonian fires will tend 

to occupy a considerably larger fraction of the higher spatial resolution pixel 

footprints reducing the PSF effects on those estimates. The creation of temporal 

metrics aimed for active fire detection may also be advantageous to estimate the fire 

background conditions necessary to derive FRP values, since average brightness 

temperature conditions may be estimated for the fire affected pixel reducing the need 

to use information from radiometric distinct adjacent pixels. 

The need for continued validation of current and future remote sensing active 

fire detection products requires that higher resolution data be available for the 

scientific community. In this respect, changes in data sharing policy to be 

implemented by the United States Geological Survey (USGS) should facilitate 

significantly the access to higher resolution imagery from the Landsat mission and the 

upcoming Landsat Data Continuity Mission (LDCM). The availability of cost free 

data should make validation exercises more frequent contributing to our 

understanding of the qualities and limitations of fire detection products over broader 

spatial scales and fire regimes. Thanks to this new data policy, the use of Landsat data 

to validate the GOES fire product will be implemented at the Satellite Analysis 

Branch (SAB) of the National Environmental Satellite, Data and Information Service 

(NOAA/NESDIS) in Camp Springs, Maryland. Similar plans are being proposed to 

validate MODIS Terra Thermal Anomalies product at far off-nadir viewing angles 
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using Landsat 5 data for the Conterminous United States. The use of additional 

validation data could help identify the major factors leading to the poor overall rate of 

coincident detections between WF-ABBA and MODIS Thermal Anomalies as 

presented in Section 4.4.2. 

Finally, the use of the data integration scheme presented in Chapter 5 should 

provide a valuable test-bed to assess the implications of fire detection errors for 

biomass burning emissions modeling as well as for operational fire monitoring in 

Brazilian Amazonia and elsewhere. Assimilation of the results presented in Chapter 5 

into the CATT-BRAMS model will be addressed and is expected to complement the 

10+ years fire detection data series being created for Brazilian Amazonia with a 

biomass burning emissions inventory. 
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Appendix A 
 

ETM+ Active Fire Mask 
 
In order to improve our sampling capacity of the GOES data, a new 30 m fire mask 

product was created using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

imagery. Due to similarities in spectral and spatial resolution between the ASTER 

and ETM+ data, the new ETM+ fire mask product builds on the Giglio et al. [2008] 

algorithm used for producing the ASTER product. Denoting the ETM+ channel 4 and 

7 top-of-atmosphere reflectance as ρ4 and ρ7, respectively, unambiguous fire pixels 

are classified using the criteria: 
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Next, candidate pixels are selected based on the following tests: 
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We apply a fixed 61×61 window centered on the candidate pixel to calculate the 

background statistics which will be used for the contextual part of the detection code. 

The mean and standard deviation are calculated for the reflectance ratio ( 74R  and 

74Rσ , respectively) and for channel 7 reflectance ( 7ρ and 7ρσ , respectively). 
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Unambiguous fire pixels and water pixels (pixels for which 04.07 <ρ ) are excluded 

from the computation. Candidate pixels which satisfy the following conditions are 

classified as fires: 
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where the Max indicates that the maximum value is to be used. The numerical 

constants appearing in the tests were empirically derived for the scenes used in this 

study, and the resulting fire masks were visually inspected for consistency. 

If needed.  
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