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Abstract. A pan-tropical active fire dataset derived from observations made
with the Visible and Infrared Scanner (VIRS), onboard the Tropical Rainfall
Measuring Mission (TRMM) satellite, is described. The dataset consists of
monthly 0.5‡ resolution fire summary products from January 1998 to the
present, with geographical coverage spanning latitudes 38‡ S to 38‡N. Several
key issues previously not considered in summarizing satellite-derived fire ‘counts’
were addressed during development of the product. The dataset is intended to
provide a current, continuous, multi-year record of fire activity in the tropics and
subtropics for input to global studies on the Earth’s land and atmosphere
processes, their interaction, and relation to climate change. Following the
availability of improved global fire coverage from the Moderate Resolution
Imaging Spectroradiometer (MODIS), the VIRS fire dataset will continue to be
useful because it can provide new multi-year information on the diurnal cycle of
fire that is difficult to achieve at the global scale. Development of an efficient,
operational production stream for this dataset was achieved through an
innovative and cost-effective data-mining activity at the Goddard Earth Sciences
Distributed Active Archive Center (GES DAAC). For the remainder of the
expected six-year lifespan of the TRMM spacecraft (through 2003), the VIRS
fire products will continue to be generated through cooperation with the GES
DAAC. Facilities for Web-based distribution of the products are currently being
developed at http://daac.gsfc.nasa.gov.

1. Introduction

Since reliable ground-based estimates of vegetation fire activity are available

only for the industrial countries of the Northern Hemisphere and a few limited

regions in the Southern Hemisphere, satellite remote sensing plays an important

role in the development of biomass burning datasets which are required for regional

and global studies on: land use/land cover change, carbon and trace gas emissions

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2003 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/0143116031000070283

*Corresponding author; e-mail: giglio@hades.gsfc.nasa.gov

INT. J. REMOTE SENSING, 20 NOVEMBER, 2003,

VOL. 24, NO. 22, 4505–4525

QMD
Caixa de texto
https://modis-images.gsfc.nasa.gov/ftpdata/private/ichoku/PAPERS/Giglio_2003_IJRS_VIRS_Fire.pdf

https://modis-images.gsfc.nasa.gov/ftpdata/private/ichoku/PAPERS/Giglio_2003_IJRS_VIRS_Fire.pdf


to the atmosphere, and their implications for climate change (Justice and Korontzi

2000).

During the past decade, a number of regional and/or continental scale fire datasets

have been assembled using measurements from coarse resolution meteorological

satellite sensors including: the Geostationary Orbiting Environmental Satellite

(GOES) Imager, the Operational Linescan System (OLS), the Along Track Scanning

Radiometer (ATSR) and the Advanced Very High Resolution Radiometer (AVHRR)

(Giglio et al. 2000). To date, such products have provided a rough baseline of fire

distribution worldwide and some qualitative information for parametrizing input

on biomass burning emissions for global models. However, due to several limitations,

the existing datasets have not been able to improve substantially the major

uncertainties in estimates of fire activity and emissions from biomass burning

(Kaufman et al. 1998).

One of the key limitations is scarcity of appropriate satellite fire products.

Continuous global coverage has only been achieved for two periods spanning more

than a year: an 18-month period in 1992–1993 using daytime National Oceanic and

Atmospheric Administration (NOAA) AVHRR data and a three-year period

(August 1996–July 1999) using night-time ATSR data (Stroppiana et al. 2000,

Arino et al. 2001). While there is a reasonable amount of recent regional and/or

continental fire products, their temporal and diurnal coverage varies substantially

rendering comparison of data quality and retrievable information content extremely

difficult. In addition, none of the existing products has explicitly addressed bias

issues related to summarizing pixel counts in multitemporal products. This creates

another complication for efforts to ascertain the quality of fire information

extracted.

The launch of the EOS-AM1 (or Terra) platform in late 1999 marked the

beginning of a new era in satellite fire detection. Terra’s Moderate Resolution

Imaging Spectroradiometer (MODIS) instrument has 1 km resolution mid- and

long-wave infrared channels designed specifically for observing active fires. With

MODIS observations, for the first time, a continuous multi-year global fire dataset

will ultimately be available to provide improved information on global vegetation

fire activity (Justice et al. 1998). While MODIS observations will significantly

improve current capabilities for remote sensing of fire activity, the existence of a

multi-year dataset from MODIS will not be achieved for several more years. Due to

initial post-launch instrument problems, the start date for the archive of usable,

long-term active fire products did not begin until November 2000. In addition,

forthcoming results indicate that the late morning local overpass time of the Terra

spacecraft (10:30) may be suboptimal for observation of wildfires in certain regions.

For these areas, observations from the EOS-PM1 (or Aqua) platform, with its early

afternoon (13:30) overpass, will provide superior data. A continuous archive of

global fire data from Aqua MODIS is expected to begin in early 2002.

Although intended for cross-calibrating precipitation measurements derived

from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and

Precipitation Radar instruments with those derived from the heritage geostationary

satellite systems [e.g. Geostationary Meteorological Satellite (GMS), GOES], the

Visible and Infrared Scanner (VIRS) carries mid- and long-wave infrared channels

that also make it useful for observing active fires. Since the tropical and subtropical

regions that fall within TRMM’s observational path present some of our greatest
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uncertainties in estimates of biomass burning emissions, VIRS offers an excellent

opportunity for generating a new multi-year fire dataset. This may prove especially

useful for filling critical data gaps in Earth science and climate change research

during the period prior to the availability of multi-year global fire observations

from MODIS.

In this paper we describe the preparation and preliminary evaluation of a pan-

tropical active fire dataset derived from the current VIRS archive, spanning January

1998–January 2002. An overview of the instrument, input data, and processing

framework are provided in §2 and §3. In §4, we outline the fire detection algorithm

including important considerations that went into defining the science data

products described in §5. Finally, in §6, we present the results from our first efforts

towards characterizing algorithm performance and validating the VIRS fire

products.

2. Instrument

2.1. TRMM orbit

The TRMM satellite, launched in November 1997, occupied a 350 km circular

orbit inclined at 35‡ (Kummerow et al. 1998). The local overpass time consequently

drifts over the entire 24 hours of each day roughly once each month for rainfall

monitoring. This is also an attractive aspect of the platform for fire observation as

it permits a complete sampling of the diurnal burning cycle. At equatorial latitudes

two VIRS observations (spaced about 12 h apart) are typically made every other

day; at temperate latitudes two to three VIRS observations (spaced a few hours

apart) are made every day. Detailed information about the TRMM orbit is

available from the TRMM Science and Data Information System (TSDIS) on-line

overflight finder*.

In August 2001 the satellite orbit was boosted to 402.5 km. The implications for

VIRS-derived fire products are discussed in §7.

2.2. VIRS characteristics

The VIRS has five bands centred at 0.63, 1.61, 3.75, 10.8, and 12.0 mm,

designated channels 1–5, respectively. Each detector has a 6.02 mrad field of view,

yielding pre-boost trapezoidal pixels nominally 2.1 km in size (2.4 km post-boost) at

the Earth’s surface (Kummerow et al. 1998). Channels 4 and 5 saturate at an

equivalent blackbody temperature of 325K, while channel 3 saturates at a lower

321.2K.

3. Input data and processing framework

Calibrated VIRS radiance data (1B01) were obtained from the Goddard Earth

Sciences Distributed Active Archive Center (GES DAAC). Observations for each

orbit are contained in a single file, along with navigation, viewing geometry and

comprehensive metadata. For each 1B01 file an intermediate product was generated

containing top-of-atmosphere reflectances and brightness temperatures needed by

the detection algorithm.

A problematic aspect of the 1B01 product (in the context of fire detection) was

that saturated, zero radiance and missing data pixel values were assigned a single

missing-data value. As active fires routinely cause saturation of the 3.75 mm

*http://www-tsdis.gsfc.nasa.gov/tsdis/PredictOrbit.html
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channel, this would normally render the dataset largely useless for fire detection.

For this reason, pre-processing was required to identify and restore saturated pixels.

Restoration was based upon examination of neighbouring valid pixels to determine

whether or not these were ‘warm’; if so, the missing pixel was assumed to be

saturated. Since it is far more common for an entire scan to be truly missing rather

than just a few pixels within an otherwise valid scan, restoration was not attempted

on those scans with no valid observations.

With a data rate of 1.5GB/day (compressed), management and processing of

the VIRS Level 1B01 data product in a timely matter was also problematic.

TRMM VIRS data cover the time period from 21 December 1997 to present. For

over three years of historical data, the data volume exceeds 1.6 TB. To mitigate the

problems associated with managing such a large amount of data, it was decided to

participate in the GES DAAC’s development of a pilot Knowledge Discovery in

Databases (KDD) subsystem (Lynnes and Mack 2001). The DAAC has found that

many large-volume users actually seek a relatively small information component

within the data, which they extract locally using KDD techniques. To improve the

efficiency of this process, the DAAC has implemented a KDD subsystem that

supports execution of a user’s algorithm at the data centre, dramatically reducing

the volume that is sent to the user. The data are extracted from the archive in a

planned, organized ‘campaign’, the algorithms are executed, and the output

products sent to the users over the network. By allowing the DAAC to execute the

fire detection algorithm code, over three years of VIRS data (1.6 TB) were

processed and reduced to a manageable volume of 115GB in less than two months.

4. Algorithms

4.1. Cloud and water masking

Cloud detection was performed using the technique employed in the production

of the International Geosphere Biosphere Program (IGBP) AVHRR-derived

Global Fire Product (Stroppiana et al. 2000). Daytime pixels are considered to be

cloud-obscured if the following condition is satisfied:

r1zr2Þ > 1:2ð Þ or T5v265 Kð Þ or r1zr2Þ > 0:8 and T5v285 Kð Þðð
where r1 and r2 are the VIRS channel 1 and 2 reflectances, respectively, and T5 is

the channel 5 brightness temperature. Night-time pixels are flagged as cloud if the

single condition T5v265K is satisfied. No changes were made to account for the

different spectral regions encompassed by the AVHRR and VIRS channel 2. These

criteria were found to be adequate for identifying larger, cooler clouds, but

consistently missed small clouds and cloud edges. One advantage, however, was

that fire pixels were never observed to have been mistakenly flagged as cloud, a

problem that has been experienced with other cloud masking methods (Giglio et al.

1999). In addition, the fire detection algorithm is generally very resistant to subpixel

cloud-induced false alarms, and this simple cloud detection scheme was therefore

sufficient for production of this dataset.

Water pixels were identified with the 1 km Multi-angle Imaging Spectro-

radiometer (MISR) Digital Terrain Elevation Data (DTED) Intermediate Dataset

(Ritter 1994). To match the coarser resolution of the VIRS more reasonably, water

boundaries were expanded by approximately 2 km.
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4.2. Fire detection algorithm

Fire detection was performed using a modified existing algorithm developed for

the AVHRR (Giglio et al. 1999) that exploits the strong emission of mid-infrared (-IR)

radiation from fires (Dozier 1981, Matson and Dozier 1981). A description of the
algorithm is provided in the following paragraphs, where the VIRS channel 3 and 4

brightness temperatures are denoted asT3 and T4, respectively, the channel 2 reflectance

again denoted as r2, and the brightness temperature difference T34 defined as T32T4.

The algorithm examines each pixel of the VIRS swathe, and ultimately assigns to

each one of the following classes: missing, cloud, water, non-fire, fire or unknown.

Pixels lacking valid data are immediately classified as missing and excluded from

further consideration. Cloud and water pixels are identified using the previously

described cloud and water masks, and are assigned the classes cloud and water,
respectively. The algorithm considers only those clear land pixels that remain. A

pixel is identified as a potential fire pixel if T3w310K, T34w6K and r2v0.32,

otherwise it is classified as non-fire. (Night-time requirements are T3w306K and

T34w6K, with no r2 test.) If the pixel has been identified as a potential fire,

an attempt is made to use the neighbouring pixels to estimate the brightness

temperatures of the potential fire pixel in the absence of fire. Valid background

pixels in a window centred on the potential fire pixel are identified; these are defined

as those pixels that (1) contain valid observations, (2) are neither cloud nor water,
and (3) are not potential background fire pixels. Potential background fire pixels are

defined as those background pixels having T3w318K and T34w12K. The window

starts as a 565 pixel square ‘ring’ around the potential fire pixel (the eight pixels

immediately surrounding the potential fire pixel are excluded). The ring is increased

to a maximum of 21621 pixels, as necessary, until at least 25% of the background

pixels within the window are valid, and the number of valid background pixels is at

least six. If an insufficient number of valid background pixels is identified, the

candidate fire pixel is classified as unknown, otherwise the following statistics are
computed: T34B and d34B, the respective mean and mean absolute deviation of

T32T4 for the valid background pixels; T4B and d4B, the respective mean and mean

absolute deviation of T4 for the valid background pixels.

For daytime scenes the following conditions are then evaluated:

T34 > T34Bz3:5 d34B ð1Þ

T34 > T34Bz6 K ð2Þ

T4 > T4Bzd4B{1:5 K ð3Þ

For night-time scenes condition (3) is not required. If any condition is not

satisfied, the pixel is classified as non-fire. If all conditions are satisfied, however,

night-time pixels are classified as fire and daytime pixels undergo a final Sun-glint

rejection test. This is essential due to the wide range of Sun positions experienced by

the TRMMsatellite. For these daytime pixels, the angle between vectors pointing in the

surface-to-satellite and specular reflection directions, hg, is calculated, where

cos hg~cos hv cos hs{sin hv sin hs cos w ð4Þ

Here hv and hs are the view and solar zenith angles, respectively, and w is the
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relative azimuth angle. A count is made of adjacent water pixels, i.e. the number of

water pixels within the eight pixels surrounding the candidate fire pixel, and is

denoted by Nw. The following conditions are then evaluated:

hgv 50 ð5Þ

hgv150 and r2 > 0:2 ð6Þ

hgv200 and Nw > 0: ð7Þ

If one or more of the conditions are satisfied, the fire pixel is rejected as Sun glint

and classified as non-fire, otherwise it is classified as fire.

4.3. Fire detection confidence

For each fire pixel a detection confidence estimate is provided. In addition to

several of the previously defined variables, it incorporates the background window

size L (the background window is L6L pixels in size), and two standardized

variables, z4 and z34, defined as

z4~
T4{T4B

d34B
ð8Þ

z34~
T34{T34B

d34B
ð9Þ

Both quantities represent the number of absolute deviations that T4 and T34 lie from

their respective means, and are analogous to the more commonly used Z-scores.

Our scheme for quantifying fire detection confidence employs a ramp function,

defined as:

S(x; a,b)~

0; x¡a

(x{a)=(b{a); avxvb

1; x¢b

8><
>:

ð10Þ

For the daytime detection algorithm, the confidence assigned to each fire pixel is

made up of a combination of five sub-confidences, labelled C1–C5. Each has a range

of 0 (lowest confidence) to 1 (highest confidence), and are defined as:

C1~S T3; 310 K, 321:2 Kð Þ
C2~S T34; 6 K, 15 Kð Þ
C3~S z34; 3:5, 5ð Þ
C4~S z4; {0:5, 0:5ð Þ
C5~1{S L; 5, 21ð Þ

For C1, 310K is the minimum brightness temperature required for a pixel to be

considered a fire pixel (and is thus less obviously a fire), while 321.2K is the largest

brightness temperature that can be expected due to saturation. For C2, 6K is the
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smallest value of T34 required for a pixel to be considered a fire pixel, and, based on

operational experience, 15K represents a typical value for a strong fire. For C3,

z34~3.5 is the minimum value for a fire pixel, and z34~5 is a typical value (again

based on operational experience) for an isolated, strong fire pixel. C4 drops sharply

as T4 falls below the background channel 4 brightness temperature, and indication

that the fire pixel might be an undetected cloud pixel. Finally, C5 reduces the

confidence as the size of the background window grows larger, accounting for the

fact that the characterization of the local background is less likely to be

representative as the distance from the candidate fire pixel increases. From these

individual sub-confidences, the daytime summary detection confidence C is then

defined as their geometric mean

C~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1C2C3C4C5

5
p

ð11Þ
which possesses the property of having a value of zero if any of the sub-confidences

is zero. Alternative combinations include the arithmetic mean and the product of

the sub-confidences. With the former, low individual sub-confidences penalize C

mildly; with the latter they penalize C very heavily. The geometric mean lies

between these two extremes.

For the night-time detection algorithm C4 is omitted entirely and the lower

threshold a of C1 is instead 306K. The night-time detection confidence is then the

geometric mean of C1, C2, C3 and C5.

5. Product description

5.1. General description and considerations

Three types of fire products were generated as part of this activity: an individual

orbit-level fire product, a daily 0.5‡ ‘global’ fire product, and a 0.5‡ global monthly

fire summary dataset. The first two are primarily intermediate products used to

produce the monthly fire product, and as such will not be described in detail.

Each orbit-level product is generated from a single 1B01 input file, and contains

an active-fire mask and a table of information about each fire pixel (location,

radiometric properties, etc.). Each day’s orbits are used to produce a global daily

fire product, ‘global’ being used here to mean all fires detected in the TRMM VIRS

geographical range of observation (38‡ S to 38‡N). The coarse-resolution, gridded

monthly product is more appropriate for many purposes. As a monthly product, it

offers the advantage of a more representative sampling of the diurnal burning cycle

that is not provided in individual orbit-level or daily products.

In producing a gridded, temporally composited active fire dataset, ideally one

must compensate for various biases that can be introduced in the process. One of

the more significant sources is the multiple observation of the same fire over

successive satellite overpasses. This will bias fire counts upward in regions of more

frequent observation, and is generally a more serious issue for fire counts derived

from the VIRS due to the highly-inclined TRMM orbit. This oversampling also

affects fire products derived with polar-orbiting platforms such as the AVHRR,

ATSR and MODIS, but has largely been ignored in previous work. Other bias

sources include variable cloud cover and missing observations. Biases can also be

introduced by the detection algorithm itself, in terms of both missed fires and false

detections, and are dependent upon viewing geometry, biome, season and other

factors (Giglio et al. 1999).
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5.2. Product data layers

The monthly product consists of 14 separate data layers. Twelve of these are 160

row by 720 column images covering the Earth’s surface between latitudes 40‡ S to

40‡N with 0.5‡ equal-angle bins. These image layers contain raw and corrected
pixel counts, land-cover information and some quality assurance-related fields.

Additional specialized layers are stored in a more compact table format. Examples

of three product layers are shown in figure 1, and a description of each layer is

provided below.

In the following discussion we refer to the fraction of the grid cell at (i, j)

overlapped (or covered) by the kth orbit swathe as the coverage fraction, and denote

it by ck(i, j), where 0fck(i, j)f1. This quantity is important due to the difference in

pixel size at different parts of the VIRS scan. The coverage fraction is used to
compensate for the fact that different overpasses may overlap the same fraction of a

particular grid cell, yet the number of pixels falling within the cell from each swathe

may differ significantly. In our implementation, it was computed using a high-

resolution grid nested within each coarse-resolution grid cell. To simplify notation,

the index of all summations appearing in the following equations is not shown

explicitly but understood to be k.

Raw fire pixels. The total number of active fire pixels was detected in each grid

cell over the entire month, denoted by Nfire(i, j) This layer is the traditional ‘gridded
fire counts’; as discussed in §5.1, it is biased for several reasons.

Figure 1. Three data layers from August 1999 tropical active fire product: (a) corrected fire
pixels; (b) mean cloud fraction [range (0,1) shaded between pure black and pure
white]; and (c) predominant Hansen et al. 2000 fire-pixel land cover type (woodland
shown in cyan, wooded grassland shown in magenta, forest types shown in various
shades of green).
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Corrected fire pixels. The total number of fire pixels observed in each grid cell

was corrected for multiple satellite overpasses and missing observations. This is

accomplished by normalizing the raw fire pixel counts to the equatorial coverage in

a full month containing no missing observations. Specifically, the corrected fire

pixel count, denoted by N 0
fire~ i, jð Þ, is given by

N 0
fire i, jð Þ~Ndays�cceq

P
Nfire,k i, jð ÞP

ck i, jð Þ ð12Þ

where Ndays is the number of days in the particular month for which the product is

being generated and �cceq is the ideal average daily equatorial grid cell coverage. The

latter quantity is the average fraction of the equator that is covered by the VIRS

swathe each day. For an orbit inclination of c and a swathe width of w, it is given by

�cceq~
wN

pRE sin c
ð13Þ

where RE is the radius of the Earth and N is the number of orbits each day.

Inserting values appropriate for the TRMM satellite and the VIRS instrument

following the orbit boost (c~35‡, w~830 km, N#15.6) yields �cceq&1:13.
Fire pixel density. The density of corrected fire pixel counts within each grid cell

in km{2 was denoted by sfire and defined as

sfire~
N 0

fire i, jð Þ
fland i, jð ÞAcell ið Þ

ð14Þ

where fland(i, j) is the land fraction of the grid cell at (i, j) and Acell(i) is the grid cell

area (which is solely a function of i due to the equal-angle grid used to composite

pixels). The fire pixel density is defined only for those cells in which fland(i, j)w0; it

is included to allow an unbiased visual interpretation by compensating for the

apparent reduction in fire pixel counts at higher latitudes (a consequence of the

equal-angle grid used for the product).

Mean cloud fraction. The average fraction of each grid cell obscured by cloud

over the entire month can be useful for deriving additional high-level products. It is

computed from the cloud fractions fcloud;k(i, j) of the individual orbit swathes that overlap

each cell, where fcloud;k(i, j)~Ncloud;k(i, j)/Ntotal;k(i, j). The mean cloud fraction is then

the average of the cloud fractions for each overpass, weighted by the cell coverage:

�ffcloud i, jð Þ~
P

fcloud,k i, jð Þck i, jð ÞP
ck i, jð Þ ð15Þ

Cloud-corrected fire pixels. The total number of fire pixels observed in each grid

cell were corrected for multiple satellite overpasses, missing observations, and

variable cloud cover. This correction is based upon the assumption that the rate of

fire occurrence within both clear and cloud-obscured areas is the same, which may

or may not be reasonable (Eva and Lambin 1998). The quantity is nevertheless

included as part of the product to provide an upper limit on fire activity. The cloud-

corrected fire pixel count, denoted by N 00
fire i, jð Þ, is given by

N 00
fire i, jð Þ~ N 0

fire i, jð Þ
1{fcloud i, jð Þ ð16Þ

In the event the mean cloud fraction is unity [which also implies that Nfire(i, j)], the

cloud-corrected fire pixel count is undefined and assigned a value of zero.
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Mean detection confidence. The mean detection confidence of all fire pixels

detected within each grid cell is included primarily for quality assurance.

Fire-pixel land cover statistics. For each grid cell, the fraction of fire pixels

within each of the land cover classes were obtained from the University of

Maryland Laboratory for Global Remote Sensing Studies 1 km land cover product

(Hansen et al. 2000). To reduce storage requirements, this layer is stored as a

compact table.

Fire-pixel predominant land cover type. The predominant land-cover type of all

fire pixels within the grid cell was determined using the mode of land-cover classes

for all fire pixels within each cell. A summary of the previous layer is in a simpler

image format.

Volcano layers. Tables of volcanoes that appeared to be active during the

month, and affected grid cells are included. A comparison of fire-pixel locations

with an external database (Simkin and Siebert 1994) was used to identify volcanic

sources. These layers allow users to investigate volcanic activity and remove

potentially misleading non-fire ‘hot spot’ sources if desired.

Additional data layers. Additional layers containing simple counts of missing,

unknown and total pixels are included to assist quality assurance and simplify the

production of experimental high-level datasets. Counts of missing and unknown

class pixels are useful for identifying large areas of saturation, such as deserts, in

which the algorithm becomes incapable of detecting fires.

6. Algorithm performance and product evaluation

Two independent methods were employed to assess algorithm performance and

evaluate the fire products. First, simulated VIRS imagery was used to quantify

algorithm detection and false alarm rates under a wide range of environmental

conditions within different biomes. Second, active fire pixels within images from

selected locations were manually identified and compared to fire pixels detected by

the algorithm. The use of two independent methods for product evaluation was

intended to help offset the inherent limitations of each.

6.1. Simulated fire scenes

6.1.1. Method

Simulated VIRS channel 3 and 4 scenes were generated using a modification of

the method used by Giglio et al. (1999) for the evaluation of several AVHRR active

fire detection algorithms. These scenes contained idealized fires of various sizes and

temperatures in 13 tropical and subtropical biomes. The fire detection algorithm

was applied to the simulated VIRS imagery and its performance was characterized

in terms of probability of fire detection (Pd) and false alarm (Pf ) as functions of fire

temperature and area, solar and viewing geometry, visibility, season and biome.

This approach allows complete knowledge of all components within every scene,

permitting algorithm performance to be determined over the widest possible range

of fire and environmental conditions. It is also inherently less realistic, however,

being limited by, among other things, assumptions within the model, imperfect

knowledge of parameters required by the model, and the model itself. Nevertheless,

the simulation approach to algorithm and product evaluation can provide useful

information, albeit coarse, to guide the use of the data.

4514 L. Giglio et al.



6.1.2. Results

Because the probability of detection (Pd) is so strongly dependent upon the

temperature and area of the fire being observed, Pd is summarized as a detection

matrix in which fire temperature and area form the rows and columns of the matrix.

Such matrices are shown graphically in figure 2.

For the biomes considered, the ‘envelope’ of detection (i.e. the range of fire sizes

and temperatures having non-zero Pd) is generally comparable. The size of the

smallest flaming fire having a reasonable chance of being detected by VIRS under

ideal conditions, defined as Pdo0.3, was between 100–200m2. Within this range, Pd

rises to 1, and remains fixed with increasing fire temperature and/or area until

saturation in the mid-IR channel ultimately drives Pd back to 0 (Giglio et al. 1999).

Purely smouldering fires must be y10 times larger to achieve a similar probability

of detection.

An exception occurs in dry-season tropical savanna (wooded grassland in the

Hansen et al. 2000 classification) during the day for solar zenith angles below #50‡.
For this case, the envelope of detection was much smaller than all of the other

biomes modelled, and the probability of detection never exceeded #0.5. This

relatively poor performance is caused by frequent mid-IR channel saturation, in

turn the result of elevated surface temperatures and the prominent reflected solar

radiation accompanying the exposed soil and senescent vegetation of this biome.

Under these conditions, the contrast between active fires and the background

surface is substantially reduced, and the algorithm is largely incapable of detecting

fires (indeed, with the Sun directly overhead Pd is uniformly 0).

In the simulation, no false detections were observed under any circumstances,

including coastal and dry-season tropical savanna scenes for which the original

AVHRR-tuned algorithm produced false alarms during the day at solar zenith

Figure 2. Pre-boost daytime (top row) and night-time (bottom row) detection matrices for
various biomes: (a) tropical rainforest with 0‡ scan angle, 0‡ solar zenith angle
(daytime case); (b) dry-season tropical deciduous forest with 0‡ scan angle, 0‡ solar
zenith angle (daytime case); (c) summer temperate grassland with 0‡ scan angle, 40‡
solar zenith angle (daytime case); and (d ) dry-season tropical savanna with 0‡ scan
angle, 40‡ solar zenith angle (daytime case).
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angles below 30‡ (Giglio et al. 1999). This was expected, as the simulation itself was

used, in conjunction with extensive operational testing, to alter the original

AVHRR-specific thresholds for the VIRS algorithm. In addition, several years of

operational experience have demonstrated that this simulation underestimates false

alarm rates. As such, a valid goal in tuning the algorithm is to require the

simulation-derived false alarm rates to be zero.

6.2. Visual inspection of VIRS scenes

6.2.1. Method

In the second approach, images from selected evaluation sites were manually

examined to identify active fires for comparison with fire pixels detected by the

algorithm. Based upon experience with different sensors and fire detection

algorithms, regions in which both true fires and false alarms occur were chosen

and are shown in figure 3. For each of the evaluation sites, images from days

randomly selected in each month of the 1998–1999 dataset were prepared; these

contained all channels present in the intermediate 1B01 product described in §3, and

the active-fire mask produced by the fire detection algorithm.

Unambiguous and ambiguous fire pixels in each image were identified by visual

inspection. In daytime scenes, unambiguous active fire pixels were frequently

accompanied by an obvious smoke plume, and sometimes a large adjacent burn

scar, identifiable in the visible and short-wave IR channels. Ambiguous fire pixels

included those that appeared to contain active fires but which lacked unequivocal

evidence such as a smoke plume or night-time mid-IR saturation.

For each image, manually identified fire pixels were stored in an ‘expert’ fire

mask. These were then compared to the fire masks generated by the detection

algorithm and used to produce truth tables characterizing algorithm performance at

each evaluation site. The presence of pixels that cannot be conclusively identified by

an expert, i.e. the ‘ambiguous fire pixels’, means that only upper and lower limits

for the probability of detecting a fire (Pd) and the probability of a false alarm (Pf )

may be computed (rather than a single representative value of Pd and Pf for each

site). These limits are denoted Pd;max and Pd;min, the respective upper and lower

limits of Pd, and Pf ;max and Pf ;min, the respective upper and lower limits of Pf .

To calculate the above limits, seven quantities are required for each evaluation

site. The first six are the elements of the truth table containing the numbers of pixels

within the different classes assigned by the detection algorithm and the expert

(table 1); these are denoted by Mn;n, Mn;a, Mn;u, Mf ;n, Mf ;a and Mf ;u. For these

Figure 3. Locations of the 22 product evaluation sites. Regions in which true fires and false
alarms could be expected were selected on the basis of experience with multiple
sensors and detection algorithms. The Algerian site contained small gas flares.
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variables, the first subscript indicates the class assigned by the detection algorithm

[non-fire (n) or fire (f)], and the second indicates the class assigned by the expert:

non-fire (n), ambiguous fire (a), or unambiguous fire (u). Finally, the number of clear

land pixels for all images at each site, Mclear, is also needed. It is used in place of the

total number of pixels at each site because the detection algorithm was not applied

to water or cloud pixels.

In this evaluation, pixels assigned a class of unknown were reclassified as non-fire

pixels. Although a third row could have been included in the truth table to

accommodate such pixels, the total number encountered in this class was negligible

(y100 for all sites combined). In addition, operational experience has shown that

nearly all pixels assigned a class of unknown are in fact not active fires, thus it is

more sensible to treat them as non-fire pixels in this analysis.

The minimum probability of false alarm occurs when all ambiguous fire pixels

are true fires, and the maximum probability of false alarm occurs when all

ambiguous fire pixels are not true fires. Using the notation described previously, the

lower and upper limits for Pf are:

Pf,min~Mf,n=Mclear ð17Þ

Pf,max~ Mf,nzMf,að Þ=Mclear ð18Þ

The minimum probability of detection occurs when, of all ambiguous fire pixels,

those undetected by the algorithm are in fact true fires:

Pd,min~Mf,u= Mn,azMn,uzMf,uð Þ ð19Þ

The maximum probability of detection occurs when, of all ambiguous fire pixels,

those detected by the algorithm are in fact true fires:

Pd,max~ Mf,azMf,uð Þ= Mf,azMn,uzMf,uð Þ ð20Þ

Over 500 images were analysed in this manner. To account for the different day and

night algorithmmodes (§4.2), separate daytime and night-time statistics were generated.

Compared to the simulation approach, this evaluation method offers greater

realism, at the expense of complete knowledge of each scene and comprehensive

sampling of the various environmental conditions that may be encountered.

Table 1. Elements of truth table used to calculate limits of detection and false alarm
probabilities. The first subscript denotes the class assigned to a pixel by the
algorithm; the second denotes the class assigned by the expert.

Algorithm class

Expert class

Non-fire Ambiguous fire Unambiguous fire

Non-fire Mn;n Mn;a Mn;u

Fire Mf ;n Mf ;a Mf ;u
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Table 2. Daytime evaluation summary.

Location
Clear land

pixels (Mclear)
Unambiguous
fire pixels

Ambiguous
fire pixels

Detected
unambiguous
fire pixels
(Mf ;u)

Detected
ambiguous
fire pixels
(Mf ;a)

False fire
pixels (Mf ;n)

Pd Pf

Min. Max. Min. Max.

Algeria 165 715 33 56 6 0 0 0.07 0.81 0 0
Angola 205 794 1256 1298 577 104 15 0.23 0.50 7.3610{5 5.8610{4

N. Argentina 429 962 50 108 22 26 0 0.17 0.63 0 6.0610{4

E. Australia 228 167 16 32 16 12 0 0.44 1.0 0 5.3610{5

N. Australia 207 656 76 65 49 29 9 0.44 0.74 4.3610{5 1.8610{4

W. Australia 225 431 55 108 36 19 1 0.25 0.74 4.4610{6 8.9610{5

Brazil 188 901 106 135 90 66 7 0.51 0.91 3.7610{5 3.9610{4

CAR 290 843 664 568 227 106 12 0.20 0.43 4.1610{5 4.1610{4

China 210 417 9 5 9 2 1 0.75 1.0 4.8610{6 1.4610{5

Guatemala 161 361 368 441 238 88 7 0.33 0.71 4.3610{5 5.9610{4

Guinea 293 681 243 555 181 95 18 0.26 0.82 6.1610{5 3.8610{4

N. India 404 113 2 11 2 5 3 0.25 1.0 7.4610{6 2.0610{5

Mexico 232 338 30 31 21 21 3 0.52 0.82 1.3610{5 1.0610{4

Paraguay 280 853 190 459 145 177 15 0.31 0.88 5.3610{5 6.8610{4

South Africa 272 361 12 15 10 2 0 0.40 0.86 0 7.3610{6

South-east Asia 319 401 48 123 34 50 2 0.28 0.86 6.3610{6 1.6610{4

USA, Alabama 506 097 9 6 5 0 1 0.33 0.56 2.0610{6 2.0610{6

USA, Georgia 629 512 3 9 3 7 1 0.60 1.0 1.6610{6 1.3610{5

USA, Florida 204 797 18 15 16 8 0 0.64 0.92 0 3.9610{5

USA, Texas 553 460 38 24 30 12 3 0.60 0.84 5.4610{6 2.7610{5

USA, California 323 704 10 10 10 10 0 1.0 1.0 0 3.1610{5

Zambia 469 907 963 1469 518 172 28 0.23 0.61 6.0610{5 4.3610{4

CAR~Central African Republic.
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Table 3. Night-time evaluation summary.

Location
Clear land

pixels (Mclear)
Unambiguous
fire pixels

Ambiguous
fire pixels

Detected
unambiguous
fire pixels
(Mf ;u)

Detected
ambiguous
fire pixels
(Mf ;a)

False fire
pixels (Mf ;n)

Pd Pf

Min. Max. Min. Max.

Algeria 327 460 38 73 34 6 0 0.32 0.91 0 1.8610{5

Angola 261 860 42 25 20 0 0 0.30 0.48 0 0
N. Argentina 290 145 16 34 14 0 0 0.28 0.88 0 0
E. Australia 378 395 17 31 15 0 0 0.31 0.88 0 0
N. Australia 223 593 75 148 52 5 0 0.24 0.71 0 2.2610{5

W. Australia 505 728 9 16 3 0 0 0.12 0.33 0 0
Brazil 199 449 98 160 75 10 0 0.30 0.79 0 5.0610{5

CAR 111 936 318 419 177 0 0 0.24 0.56 0 0
China 186 412 0 2 0 0 0 0.00 – 0 0
Guatemala 111 194 5 3 5 0 0 0.62 1.00 0 0
Guinea 138 078 14 19 9 4 0 0.31 0.72 0 2.9610{5

N. India 182 177 0 0 0 0 0 – – 0 0
Mexico 169 245 5 2 5 0 0 0.71 1.00 0 0
Paraguay 156 693 3 8 3 0 0 0.27 1.00 0 0
South Africa 249 864 0 0 0 0 0 – – 0 0
South-east Asia 130 736 39 9 32 6 0 0.76 0.84 0 4.6610{5

USA, Alabama 436 637 1 5 1 0 0 0.17 1.00 0 0
USA, Georgia 239 510 0 0 0 0 0 – – 0 0
USA, Florida 124 964 0 0 0 0 0 – – 0 0
USA, Texas 508 037 11 8 11 2 0 0.65 1.0 0 3.9610{6

USA, California 239 849 4 2 4 0 0 0.67 1.0 0 0
Zambia 397 748 10 22 4 0 0 0.12 0.40 0 0

CAR~Central African Republic.
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6.2.2. Results

Tables 2 and 3 summarize the day and night-time performance of the VIRS

algorithm, in terms of fire detection and false alarm statistics, for each evaluation

site analysed using the visual inspection method. Table 4 shows a characterization

of the evaluation sites using the Hansen et al. (2000) 1 km land cover classification.

Overall, the results shown in table 2 indicate at least a moderate probability of

detection during the day (i.e. Pd values greater than 0.6 fall within the range

reported) for almost all sites examined. Generally, the higher daytime probabilities

of detection (Pd;minw0.6) were observed in sites with the primary land cover being

non-forest classes (e.g. wooded grassland and cropland) where a sizeable portion of

the fire activity (w30%) occurred in grassland or cropland pixels.

In contrast, the lower probabilities of fire detection (Pd;minf0.3) were almost

always observed in sites characterized as predominantly forest or woodland, where

the fire activity also occurred primarily (w80%) in forest or woodland pixels.

Included in this group are the sites in central Africa (Central African Republic,

Angola, Zambia) that demonstrated some of the highest fire activity observed. Of

the 22 evaluation sites examined, seven exhibited high levels of fire activity, with at

least 100 unambiguous fires counted by the expert. In all but one of the high fire

activity sites, the predominant land cover type was forest or woodland. The

exception is the Guinea site in West Africa which contains mixed grassland and

Table 4. Evaluation site summary. University of Maryland land cover classes are listed in
order of composition; first is primary.

Site location
Scene land cover
primary components

Algorithm-detected fire land cover
(where different from scene)

Algeria bare ground
Angola woodland
N. Argentina woodland, wooded grassland
E. Australia wooded grassland, woodland
N. Australia wooded grassland

W. Australia
cropland, woodland, broadleaf
evergreen forest woodland, broadleaf evergreen forest

Brazil broadleaf evergreen forest
CAR woodland
China grassland, wooded grassland cropland, grassland
Guatemala broadleaf deciduous forest
Guinea wooded grassland, woodland
N. India cropland grassland
Mexico woodland, wooded grassland
Paraguay broadleaf evergreen forest
South Africa cropland, woodland wooded grassland, closed shrubland

South-east Asia
woodland, broadleaf
evergreen forest woodland, wooded grassland

USA, Alabama woodland, cropland
USA, Georgia woodland, cropland
USA, Florida wooded grassland, cropland woodland, wooded grassland
USA, Texas woodland, wooded

grassland, cropland
needleleaf evergreen forest, woodland

USA, California cropland, wooded grassland grassland, closed shrubland, woodland
Zambia woodland

CAR~Central African Republic.
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woodland pixels, with 79% of the visually identified unambiguous fire pixels falling

in non-forest or woodland classes.

At first glance, this result may appear to be somewhat contradictory to the

simulation results, i.e. that a lower Pd may be expected for fires in dry season

tropical savanna than in tropical forest biomes. However, contamination of the

background characterization by undetected fires, a scenario that is much more

likely as fire activity increases in a region, was shown to reduce significantly the

probability of detection for contextual algorithms (Giglio et al. 1999).

The poorest algorithm performance was exhibited at the Algeria site. Characterized

as bare ground in theHansen et al. (2000) classification, this site exhibited extremely low

Pd (range 0.07–0.08) during the day, but night-time values nore comparable to the

other sites. This result is expected as the fires observed in this region, always present

at the same locations, are gas flares—small intense fires that show very low contrast

to the background surface elements that are very bright and hot during the day.

Overall, the probability of false alarm was y10{5 for clear land pixels. It is

instructive to evaluate this quantity in terms of the total number of false alarms

which might be expected. Assuming a typical mean cloud fraction of #0.4, and that

half of the y1.96107 VIRS land pixels observed each day are made at night (for

which Pf~0), we obtain a rough estimate for the number of false fire pixels each

day of y60. This corresponds to less than 10% of the y700 fire pixels detected on

average each day. The surface features and observation conditions that cause false

alarms for this type of detection algorithm (e.g. land cover type boundaries, Sun

glint over land or a small inland waterbody, etc.) occur in all geographical regions.

As expected, no obvious geographical or land cover trend was found during the

evaluation. The false alarm rates observed were consistent across different regions,

with the lowest possible range of Pf found for sites in the more temperate regions

(US, India). The highest upper limit of Pf was observed for the Paraguay site.
The fire activity observed for most sites, both with the algorithm and by visual

inspection, was significantly lower at night. However, in four of the 22 evaluation

sites, there was no unambiguous night-time fire activity observed at all, making a

comparison between day and night algorithm performance impossible. In the 12

sites where the comparison can be made, the differences in performance observed

present no clear trends related to vegetation characterization or changes in fire

activity from day to night. Not surprisingly, the probability of a night-time false

alarm was effectively zero at all locations. This was expected as most false fire pixels

are caused by reflected mid-IR solar radiation.

The visual inspection evaluation technique suffers from two significant deficiencies.

First, there is a nontrivial degree of subjectivity in this type of analysis caused by

ambiguities within individual scenes. One example is small apparent fires not

accompanied by visible smoke plumes (such fires occur frequently in central and

southern Africa, for example). Such detections may in fact be false alarms, such as

sunlight reflected from a small inland waterbody (not identified in the 1 km water

mask), and different analysts may lump such pixels into either category. Secondly,

one has no knowledge of the instantaneous fire properties. Below a certain size and

temperature, an active fire will yield a satellite-based measurement too weak for

even an expert observer to identify. Smoke and clouds may sometimes render even

very large, intense fires ambiguous from space. With this technique, therefore, one

is limited to estimating an ‘average’ probability of detecting active fires that are
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sufficiently intense and unambiguous that they can be identified from the data

themselves by a human expert. Nevertheless, this technique yields at least some

measure of algorithm and product performance, and allows identification of

potential problems with automated detection algorithms.

7. Impact of the TRMM orbit boost

In August 2001 the TRMM satellite was boosted from its nominal altitude of

350 km to 402.5 km to extend the lifetime of the satellite. Consequences of this

change include: (1) an increase in the satellite orbital period by #1min; (2) an

increase in the VIRS swathe width from 720 km to 830 km; and (3) an increase in

the VIRS nadir pixel size from 2.1 km to 2.4 km. The first two changes were

accommodated by the correction contained in equations (12) and (13). The change

in pixel size, however, is more problematic in the context of maintaining a

continuous monthly fire product. The probability of detecting a fire is strongly

dependent upon the relative size of the fire within the pixel. An increase in pixel size

could therefore introduce discontinuities in the numbers of fires observed before

and after the increase, possibly preventing a valid temporal comparison of the

monthly fire product spanning the August 2001 orbit boost.

To investigate the impact of the orbit boost on the fire product, we employed

the simulation described in §6.1.1 to model post-boost VIRS scenes. As expected,

the increase in pixel size increased both the minimum and maximum sizes and

temperatures of detectable fires, effectively shifting the detection envelopes toward

hotter and larger fires. Figure 4 shows results for four of the biomes considered. In

general, both the minimum and maximum detectable fire size increased by roughly

20%. In addition, for many fires the probability of detection in the dry season

tropical savanna increased slightly (#10%) due to less-frequent saturation. Overall,

the difference in pre- and post-boost detection envelopes is small, and the impact of

the orbit boost is confined to the edges of the original, pre-boost detection

Figure 4. Post-boost daytime (top row) and night-time (bottom row) detection matrices for
various biomes under the same viewing conditions used in figure 2: (a) tropical
rainforest; (b) dry-season tropical deciduous; (c) summer temperate grassland; and
(d ) dry-season tropical savanna.
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envelopes. Although a strict assessment requires a priori knowledge of the

distribution of instantaneous fire temperatures and areas in each biome—

information currently unavailable and impossible to estimate with sufficient

accuracy for this application using existing space-borne sensors (Giglio and Kendall

2001)—operationally this should translate into a very small number of affected

fires. We therefore expect the impact on the monthly fire product to be negligible. A

long-term investigation that includes a time series analysis and comparison with fire

products derived from other sensors is underway to confirm this expectation.

8. Conclusion

Results from evaluation of the algorithm presented in this paper indicate that a

reasonable active fire product can be systematically generated using observations by

the VIRS instrument. As such, efforts to apply the algorithm to the complete

current VIRS archive will continue, enabling the generation and distribution of a

more than five-year pan-tropical fire product before the end of the TRMM mission

in 2004 (or later). As of July 2002, half-degree gridded monthly fire data products

for January 1998 through June 2002 have been prepared.

Since the tropical regions present some of the greatest uncertainties in estimates

of biomass burning emissions, the new VIRS dataset offers an excellent opportunity

to jump start the development of fire data assimilation methodology appropriate

for global models prior to the availability of continuous multi-year global fire data

from the MODIS instrument on EOS-Terra and EOS-Aqua. For example, this

dataset is currently being used to support the atmospheric chemistry modelling

activities of the NASA Interdisciplinary Science (IDS) Team working on

‘Continued Development and Application of Data Assimilation Techniques for

Tropospheric Chemistry Studies’. The VIRS-derived information on location and

timing of actual biomass burning will be incorporated into the models being

developed in this study to better characterize temporal and spatial variations in

tropospheric CO emissions. Even after the availability of global fire data from

MODIS, products derived from VIRS will remain useful because of its sampling of

the fire diurnal cycle. As described by Eva and Lambin (1998), estimates of regional

fire activity based solely on observations made at a specific time each day (as is the

case with MODIS and any other instruments residing on Sun-synchronous

spacecraft) may be highly biased. It may be feasible to calibrate such products with

diurnal observations from VIRS.

Efforts to validate the current VIRS fire product and to develop additional data

layers are underway. Alternative approaches to product evaluation are being

explored. One such approach is comparison to coincident, high-resolution imagery

collected from aircraft and/or satellite-based sensors. The goal of this approach is

to gain improved characterization of the fires and fire scenarios that the VIRS

instrument (and a particular algorithm applied to VIRS) can ‘see’. High spatial

resolution observations may provide some details about the instantaneous fire

conditions at the surface, potentially allowing estimates of instantaneous fire size

and a distinction between flaming and smouldering components (within the fire

pixel) to be made. The retrieval of instantaneous fire properties from high-

resolution sensors has been previously attempted (Riggin et al. 1993, Green 1996).

However, this was not done in the context of validating fire products derived from

coarser resolution imagery. In practice, such a comparison is greatly complicated by
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stringent image coregistration requirements, a need to compensate for sensor

differences, and the difficulty in obtaining coincident imagery.

Opportunities for comparing the VIRS product with high-resolution observations

of fire from the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER), the MODIS Airborne Simulator (MAS), and the Airborne Visible/

Infrared Imaging Spectrometer (AVIRIS) exist, but the technical and practical

feasibility of these comparisons has not yet been determined. Acquiring and

processing these data is a costly proposition, and in many regions they are only

available for a limited number of fires. Therefore, improved modelling may be a

more practical alternative for continued VIRS product evaluation. Currently,

improved model surfaces are being developed to broaden the regime in which the

simulation can more realistically predict false alarm rates, including non-vegetated

surfaces (urban or natural) and interfaces between different land-cover types.
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