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Abstract

Fire incidence has been linked to multiple factors such as climate conditions,

population density, agriculture, and lightning. Recently, fire frequency and

severity have induced health problems and contributed to increase atmo-

spheric greenhouse gases. Based on atmospheric susceptibility to fire, this

study evaluates the use of a Potential Fire Index (PFIv2) to identify regions

prone to fire development, as demonstrated by the satellite detected-fire in the

2001–2016 interval. It is demonstrated that PFIv2 delivers an efficiency by up

to 80% in matching the observed fires from Terra/MODIS satellite. The PFIv2

is also able to reproduce more accurately areas with fire activity with respect

to its previous version, the PFI. This better performance is linked to the imple-

mentation of parameterization of water pressure deficit and atmospheric sta-

bility in the lower troposphere, and a new term to represent the effect of

surface temperatures, particularly in mid-latitudes and extra-Tropics. To evalu-

ate the performance of the PFIv2 in more details, its comparison to MODIS

burned areas demonstrated correlations values higher than 0.6 over the most

susceptible regions such as Africa and South America, slightly lower correla-

tion is found where fire does not primary follows the climate annual cycle, and

is dominated by high frequency events. These findings indicate that the PFIv2

can be an important tool for decision makers in predicting the potential for

vegetation fires development and fire danger.
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1 | INTRODUCTION

Vegetation fires in consonance with climate conditions
play an important role as disturbance agents affecting the
structure and the global distribution of ecosystems
(Hollmann et al., 2013). In recent decades, government
bodies and social institutions have expressed concerns
about the indiscriminate use of fire, because wildfires
were prominent in modifying climate conditions in the
past, and very likely they will be in the future (Harrison

et al., 2007), in particular by inducing changes in the
atmospheric concentration of greenhouse gases (Langmann
et al., 2009; Leys et al., 2018). For instance, vegetation burn-
ings in Indonesia in 1997 and 1998 represent 25% of total
CO2 emissions associated with combustion of fossil fuels
(Page et al., 2002).

Currently, on a global perspective, the highest fire
occurrences are between July and October. In the Tro-
pics, this is primarily related to the conversion of natural
vegetation to pasture and others agriculture proposes
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(Silva et al., 2003; Justino et al., 2010a). Thus, meteorolog-
ical factors play a mandatory role in fire occurrences.
Nevertheless, there is a lively debate on the importance
of anthropogenic and climate forcing in contributing to
the ignition of wildfires (Huang et al., 2015).

Although the majority of vegetation fires has been
observed in the Tropics, the Arctic and the extra-Tropics
have, in recent decades, experienced an elevated number
of wildfires (Veraverbeke et al., 2017; Masrur et al., 2018).
These regions have been affected by higher temperature
and distinct pattern of precipitation, resulting in more
vulnerable conditions for wildfire development (Krause
et al., 2014; Veraverbeke et al., 2017). Despite a large
effort, questions still exist on climate variability and the
magnitude and length of the fire season, on a global per-
spective. Therefore, additional studies are necessary to
disentangle the influence of anthropogenic and natural
factors in promoting the fire activity. The understanding
and skill to predict wildfire occurrence is essential for
planning and implementing necessary measures to pre-
dict and mitigate the impacts of wildfire. Modelling the
vegetation susceptibility to fire activity is therefore vital.

The state-of-the-art fire modelling applies several
parameters that include complex interaction among soil
characteristics, carbon allocation, and the moisture con-
tent of soil litter (Catchpole, 2002; Archibald et al., 2009;
Bradstock, 2010). Despite the importance of including
these conditions in fire simulations, the large number of
factors embedded in this fire modelling approach,
increases the co-variability of variables and may hamper
a clear determination of the cause of fire and the ecosys-
tem dynamics responses (Scheiter and Higgins, 2009).
Although, physically consistent, these models also pre-
sent a level of uncertainty if applied over regions with
lower data coverage (Hickler et al., 2006; Warmink et al.,
2010; Finney et al., 2012; Skinner et al., 2014).

To alleviate these problems simplified models have
been proposed. Van Wagner (1987) proposed the Fire
Weather Index (FWI), which currently is a worldwide
index. It applies three moisture indices: Fine Fuel Mois-
ture Code (FFMC) representing the moisture content in
fine fuels. The Duff Moisture Code (DMC) to parameterize
organic material, and the Drought Code (DC) which is a
deep layer of compact organic material. The combination
of these moisture parameters with a Daily Severity Rating
(DSR) delivers the fire behaviour indexes (Williams, 1959;
Van Wagner, 1970).

Similarly, the United States National Fire Danger Rat-
ing System (NFDRS) was revised with the addition of
Keetch-Byram Drought Index (KBDI), to account for
weather and climatic conditions in the eastern United
States (Burgan, 1988; Andrews and Bradshaw, 1997).

Currently, the lightning ignition efficiency algorithm has
been included by the United States Wild Land Fire
Assessment System (Sopko et al., 2016).

Justino et al. (2010a) formulated the Potential
Weather Fire Index (PFI), a simplified index based on
four parameters to predict the fire weather danger in Bra-
zil. The PFI is based on maximum temperature, mini-
mum relative humidity, a drought index and the
vegetation characteristics. In the last three decades
(1990–present), the PFI has shown efficiency in detecting
areas with high vulnerability to the occurrence of fire
(satellite detected – hot spots) in South America, Africa,
and Caribbean (Justino et al., 2010a, 2013).

However, limitations have been found in the PFI to
estimate the fire danger in extra-tropical latitudes, thus,
modifications on the PFI have been implemented and dis-
cussed in the present here. The goal of this study is to pro-
vide an evaluation of the global fire activity/distribution
between 2001–2016, and introduce and validate a modi-
fied version of the Potential Weather Fire Index pres-
ented by Justino et al. (2010a). It has to be stressed that
large regions of Africa, South America, and south Asia,
do not collect detailed weather information and fire
weather parameters, which should be implemented in
fire danger models with high level of complexity. In this
sense, the availability of more simplified models that can
still adequately reproduce fire susceptibility is desirable.

In our article, Section 2 describes the vegetation and
climate data utilised, the modelling formulation, and the
validation methods. Sections 3 and 4 discuss the capability
of the PFIv2 in reproducing more accurately areas with
fire activity with respect to its previous version, the PFI.
Concluding remarks and model limitation are described
in Section 5.

2 | DATA AND METHODOLOGY

2.1 | Study area

The PFIv2, a modified version of the Potential Weather
Fire Index (PFI) proposed by Justino et al. (2010a) is
applied globally over six sub-regions based on the World
Meteorological Organization (WMO) framework:
(a) Africa (45�S:36�N; 20�W:60�E); (b) Asia (0:66�N;
60:180�E); (c) South America (60�S:15�N; 90:30�W);
(d) Americas and Caribbean (15:66�N; 180:50�W);
(e) South-West Pacific (50�S:0; 90:180�E); and (f) Europe
(36:66�N; 20�W:60�E). The land cover characteristics as
delivered by the vegetation type is based on the Interna-
tional Geosphere-Biosphere Programme (IGBP), as
shown in Figure 1a.
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2.2 | Climate data

The second version of the Potential Fire Index (PFIv2) for
the 2001–2016 period, is based on the ERA Interim
Reanalysis (Dee et al., 2011), and the CPC Unified Precip-
itation Project that is underway at NOAA Climate Predic-
tion Center (Xie et al., 2010). The ERA Interim (ERAI) is
a global atmospheric reanalysis produced by the
European Centre for Medium-Range Weather Forecasts
(ECMWF). The ERAI data used in this study are surface
temperature, relative humidity and air temperature at
950, 850, 700, and 500 hPa. The spatial resolution of the
ERAI is the reduced Gaussian grid N128 (0.75 × 0.75
latitude × longitude degree). Since precipitation is the
dominant factor in the determining the fire danger in the
PFIv2, the application of CPC precipitation contributes to
the study because estimates of ERAI precipitation are
forecasted and not assimilated. Thus, a double

verification of precipitation is necessary because ERAI
underestimates precipitation in the Tropics, high- and
mid-latitudes, and shows much higher daily variability
with respect to the other datasets (Sun et al., 2018).

Several precipitation estimates have been available
but all of them exhibit regional limitations. Therefore,
we have chosen the CPC as an alternative to ERAI
dataset. The CPC includes satellite-rain gauge estimates
to reduce systematic error, related to evaporation and
aerodynamics effects (Huffman et al., 1997). The CPC
spatial resolution is 0.5� latitude and longitude over
global land areas. This gauge-based analysis of daily pre-
cipitation uses data from over 30,000 weather stations
that are collected from multiple agencies. Historical
records, independent information from measurements at
nearby stations, radar and satellite observations, as well
as numerical model forecasts are applied in the quality
control of CPC data.

FIGURE 1 (a) Study areas according to the WMO classification, and the vegetation distribution by IGBP (adapted from Friedl et al.,

2010). (b) Flowchart presenting the sequence of calculation for the PFIv2 (see text for details)
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2.3 | Formulation of the Potential
Weather Fire Index version 2

The Potential Fire Index version 2 (PFIv2) improves an
earlier version proposed by Justino et al. (2010a), in
which the main assumption is based on accumulated pre-
cipitation in distinct time intervals. The PFIv2 is highly
correlated with the duration of the dry periods, the type
and natural cycle of defoliation of the vegetation, vapour
pressure deficit and atmospheric stability at the lower
atmosphere.

The PFIv2 reference calculation is the ‘Days of Dry-
ness’ (DD), which is a hypothetical number of days with-
out precipitation during the last 120 days (Justino et al.,
2010a), as described below:

1. Determine for a given geographic area, the value of
precipitation, in millimetres (mm) accumulated for
the 11 immediately preceding periods of 1, 2, 3, 4,
5, 6–10, 11–15, 16–30, 31–60, 61–90 and 91–120 days.

2. Calculate the ‘precipitation factors’ (PF) with values
ranging from 0 to 1 for each of the 11 periods (see eqs.
(1)–(11) in Justino et al., 2010a), using an empirical
exponential function of the precipitation in millimetres
for each period. Afterwards, as shown by Equation (1)
the days of droughts (DD) is computed.

DD=105× PF1×PF2� � �×PF61 – 90×PF91 – 120ð Þ: ð1Þ

In fact, the 105 is included in the DD equation to
assure that in the situation of no precipitation in the
120 days interval, any kind of vegetation will be dry
enough to allow fire occurrence. The 105 has been
inferred based on the number of days that might be nec-
essary to evergreen broadleaf or tropical forests allow
combustion. The PFIv2 also takes into account the vege-
tation type and their vulnerability to atmospheric condi-
tions. This is important because savannas and grassland
are, for instance, more susceptible to erratic wildfires as
compared to evergreen forests. This is defined as the
basic risk (BR; Equation (2)):

BR=0:9× 1+sin A×DDð Þð Þ=2: ð2Þ

The ‘A’ reproduces fire susceptibility of those 17 origi-
nal vegetation classes adopted by the IGBP and shown
in Figure 1a. The ‘A’ index is determined based on a

combination between the presence of fires and the
BR/danger. Initially, is determined the number of DD in
the grid box, if the presence of fire is identified the
BR/danger should be maximum. Thus, as the variation in
the intensity and duration of sunlight throughout the
year is sinusoidal, the phenology of vegetation naturally
tends to follow the same rhythm. The A value must agree
with the relationship between DD and maximum
BR/danger, as shown in Justino et al. (2010a, 2013).
Based on Equation (2), low values of A indicate that the
vegetation requires a longer period without precipitation
to reach the maximum BR. For instance, regions covered
by non-forests experience high BR under 45 days of dry-
ness, whereas areas covered by evergreen forests need
105 days of low precipitation to deliver similar BR. Other
feature that must be included in the fire danger is the
effect of surface elevation (Tymstra et al., 2010).

The elevation affects the atmospheric characteristics
and through changes in surface pressure, due to tempera-
ture and humidity of the air, can increase the windward
flow, further modifying vegetation health and fuels avail-
ability resulting in fire potential. In this sense, a parame-
ter derived from Haines Index (HI) is also included to
compute the wildfire danger (see Table 1 in Justino et al.,
2010b). This is computed by the combination of the sta-
bility (s) and humidity of the air (q) at three atmospheric
layers, 900, 850, and 700 hPa (Haines, 1988; Winkler
et al., 2007; Potter, 2018). It has to be mentioned that in
PFIv2, the HI adds value to improve the fire danger, with
other parameters such as precipitation function, vegeta-
tion, and surface temperatures. As shown by Potter (2018)
the use of HI for a global assessment of fire danger is lim-
ited, and does not provide a real fire danger estimation.
However, the concept of Haines is very useful to the
PFIv2, in particular, by applying the stability and humid-
ity at different atmospheric layers. It is important to note
that the first version of the PFI does not take into account
the elevation of the surface. This limitation is alleviated
in the PFIv2 by including the vertical profile of the atmo-
sphere from surface to 700 hPa. A logistic function is
applied because the HI provides discrete values between
the atmospheric layers, whereas the PFIv2 follows a con-
tinuous function from 0 to 1.

In the PFIv2, the modified HI is represented by the
classical Verhulst logistic growth equation (see Equa-
tion (3)). The logistic function of the fire danger (LF),
which characterizes the (s) and (q) of the air is analyti-
cally given by:

TABLE 1 Fire risk (PFIv2) levels Levels Minimum Low Medium High Critical

(0–1) <0.15 0.15–0.4 0.4–0.7 0.7–0.95 ≥0.95
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LF=

ig 7×10−5×W 3−0:0035×W 2+0:072×W −0:26
� �

iig 1×10−4×W 3−0:0056×W 2+0:115×W −0:53
� �

iiif g 9×10−5×W 3−0:0067×W 2+0:196×W −1:89

ð3Þ

if g if e≤1,500m,

iif g if 1,500m<e<3,500m

iiif g if e≥3,500m,

,

where W is the sum of the stability and humidity parame-
ters from the Haines Index (�C) and, e stands for the local
elevation (m). From now on the LF term stands for the
logistic function on Haines Index. Limitations have been
noticed on the previous version of the PFI in particular
related to temperature threshold in the extra-tropical
regions. To reduce this drawback, a new term to charac-
terize the effect of the air temperature is included as
FT = RT × Forb, FT = (0.02 × Tx + 0.4) × (0.003 × |
Lat| + 1), where |Lat| is the latitude module and Tx is the
daily maximum temperature. Forb is an adjustment factor
for temperature at different latitudes. This is included in
the PFIv2 because it parameterizes the influence of tem-
perature in the fire danger as RT = 0.02Tx + 0.4. In the
PFI original version, RT has been shown to be little effi-
cient in the sub-Tropics and extra-Tropics for latitudes
larger than 30�, where surface temperatures are lower
with respect to the Tropics. In most cases, the RT reduces
the PFI and PFIv2 in the extra/sub-Tropics. Therefore, to
differentiate the effect of temperature in distinct regions
we have included the effect of latitude.

Finally, the PFIv2 is computed taking into account all
parameters as follow:

PFIv2=BR× a2×LF+bð Þ× FTð Þ, ð4Þ

where b = 1.3 and BR is the same as in the PFI (Justino
et al., 2010a, 2013). The a2 is equal to 0.006 and the term
(a2 × LF + b) takes into account the logistic function
(Equation (3)). The sequence of PFIv2 calculations is
shown in Figure 1b. It is important to mention that the
PFIv2 maintains the same PFI categories, with a scale
ranging from 0 (no danger) to 1 (maximum danger of fire
occurrence) (Table 1).

Active fires products from the sixth collection of the
Moderate Resolution Imaging Spectro-radiometer (MODIS,
https://earthdata.nasa.gov/earth-observation-data/near-real-
time/firms) are used to verify the capability of the PFIv2
for detecting the most susceptible region for wildfires devel-
opment, in the 2001–2016 interval.

The validation of the PFIv2 versus satellite-derived
hot spots is carried out by checking the percentage of

fires located in the high and critical classes of the PFIv2
grid. Evaluation of the wildfire danger based on PFIv2
may be validated with other satellite as well. For
instance, GOES and NOAA products can be utilised.
The limitation in satellite wildfires detection is mostly
related to the fact that these products are not available
prior 2000.

3 | RESULTS AND DISCUSSION

3.1 | Temporal variability of global fires

Fires (hot spots) detected by MODIS instruments on-board
NASA's Terra and Aqua satellites (Giglio et al., 2016), have
been classified seasonally during 2001–2016 period, in
three different intervals: November–December–January–
February (NDJF); March–April–May–June (MAMJ) and;
July–August–September–October (JASO). These intervals
show the periodic characteristics of minimum, medium
and maximum occurrences of fires interannual variability
(Figure 2).

Figure 2 shows that the JASO period experiences the
highest incidence of fires on a global perspective. In
Africa (Figure 2a–c) the highest fire occurrences are from
July to February with more than 1 million fires in some
years. MAMJ with about 300,000 fires/year represents the
low fire season. The highest fire activity in Africa
(Figure 2c) is related to burning practices in order to con-
vert natural vegetation into pasture and agricultural pur-
poses (Silva et al., 2003). Fire has also been used to
produce charcoal and for personal use and increase
income. As discussed by Justino et al. (2013), the majority
of fires occurs under dry conditions in response to the
meridional migration of the Intertropical Convergence
Zone (ITCZ). Indeed, fires are concentrated in the Sahel-
ian region from December to March, and in subtropical
Africa from July to October. Due to the short length of
the MODIS time-series may not be appropriated to
assume that in the last two decades the number of fires
has statistically increased, but regression analysis indi-
cates an upward trend.

Annual fire occurrences in Asia are shown in
Figure 2d,f. During NDJF atmospheric conditions in win-
ter reduce the fire occurrences (Figure 2d). Although, the
onset of spring fires is noted in eastern China and central
Russia (Figure 2e) related to increasing solar insolation,
higher temperatures, and likely associated to human
action to remove weeds and clear the pasture (Wolfson,
2012; Marlier et al., 2013). In southern Asia during the
Boreal summer, there is a reduction of fire occurrences
(Figure 2f) mostly due to the influence of the Asian mon-
soon. It is also very interesting that despite the massive
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amount of rain, the fire activity persists because the large
amount of precipitation occurs primarily in southern
Asia (Serreze and Barry, 2010), but conditions prone to
fires in central and northern Asia are still present.

Turning to the fire distribution in South America
(SA), Figure 2g–i show reduced inter-annual fire occur-
rences from November to June, with respect to the July–
October period, because from November to February, the
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FIGURE 2 Seasonality of fire occurrences detected by Terra/MODIS from 2001 to 2016 for all six study areas. The regression equations

are shown in the top right of each annual fire distribution. Note: The range values for Africa (a)–(c) and South America (g)–(i) are bigger
than that for other regions
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SA is characterized by higher precipitation induced by
the onset of the South American monsoon, the presence
of recurrent frontal system and the South Atlantic Con-
vergence Zone (SACZ). During the JASO period
(Figure 2i), the central part of Brazil and a large part of
the continent experiences very dry conditions. It should
also be highlighted that in September and October occur
the highest values of surface temperature, and fire activ-
ity is maximum.

The inter-annual variability of fires in JASO in SA
may be also related to atmospheric conditions induced by
the El Niño-Southern Oscillation phenomenon (ENSO).
Higher number of hot spots have been detected between
2002 and 2004, in 2007 and 2010. However, it is not clear
the direct influence of negative and positive phases of the
ENSO because the precipitation response in the conti-
nent varies widely (Pereira et al., 2014). It should be
noted that drought driven by the presence of ENSO can
substantially increase the litter/combustible material
magnifying the environmental vulnerability for fire
occurrence (Silva Junior et al., 2019).

According to Figure 2j–l, the incidence of fires in
Central, North America and Caribbean are lower from
November to February, when the number of hot spots
reaches up to 50,000 in the 2001–2016 period
(Figure 2k). Turning to the South-West Pacific region,
lowest number of fires in the region (Figure 2m–o) takes
place from November to June (Figure 2m,n). In opposite,
increased fire incidence is noticed in JASO (Figure 2o).
Mariani et al. (2016) argue that the highest number of
fires in Australia, which occurs during the winter–spring
season is well correlated to El Niño events. The El Niño
has also been claimed to enhance the vegetation suscep-
tibility to fire occurrence in Indonesia (Murdiyarso and
Adimingsih, 2007).

Although environmental conditions and vegetation
attributes are relatively similar between Europe and
North America (Wooster and Zhang, 2004), vegetation
burning shows differences in particular from March to
October, as shown in Figure 2j,l and p,r. Higher number
of hot spots are identified in Europe in October in agree-
ment with warmer and drier conditions.

It is noticed that in Africa, Asia, and North America/
Caribbean the number of fires has increased throughout
the study interval. However, there is no preferential sea-
son, in Africa, the largest increase has been found during
JASO, in Asia and North America/Caribbean positive
trends are dominant in NDJF. This characteristic is dif-
ferent in South America where negative trends are found.
In South-West Pacific and Australia, negative trends are
also found from June to February. It has to be stressed
that estimates for individual countries may reveal differ-
ent trends, and that estimates of the number of fires do

not reveal the size of burned areas because this issue is
related to the severity of the fires.

3.2 | Climatological conditions and the
fire danger

Following the evaluation of temporal and regional verifi-
cation of the hot spots (fires), a discussion on the perfor-
mance of the proposed fire danger (PFIv2) in
reproducing regions with higher fires occurrence is pro-
vided. Figure 3a shows the average BR for the JASO
interval, in the 2001–2016 period. As a function of precip-
itation, the BR contributes up to 60% to the final fire dan-
ger. It has to be noticed that the CPC precipitation
dataset has been used, whereas ERAI is applied for air
and dew point temperatures to characterize the atmo-
spheric stability and changes in the water vapour deficit.

Maximum values of BR are noticed in central Eurasia,
western North America, southern Africa, Australia, and
South America, as a result of dryer conditions related to
the lack of precipitation. Interestingly, is that the Haines
factor (LogHai, Figure 3b), which takes into account the
vertical profile of water vapour matches the BR distribu-
tion. This is a response to larger differences of the air and
dew-point temperatures in the lower troposphere, which
indicates over these regions conditions prone to fire
occurrence.

Turning to the temperature factor (FT, Figure 3c), it is
demonstrated that the most susceptible regions for fire
occurrence are located in the Tropics between 30�S and
30�N. In South America, this might be expected because
the Atlantic Subtropical High (ASH) extends towards to
the continent, which causes the subsidence of the air and
consequently absence of clouds, lack of precipitation, and
higher temperatures (Reboita et al., 2010; Fetter et al.,
2018). The combination of these three functions (BR,
LogHai, and the FT) associated to the vegetation pattern
(Figure 1) deliver the PFIv2 index.

The PFIv2 reproduces the role of climatic conditions
implicit in the method (Figure 3d). For example, the trop-
ical region between 30�N and 30�S is dominated by the
contribution of the LogHai factor (atmospheric instability
and relative humidity, Figure 3b), in contrasts to lower
BR values in response to increased tropical precipitation
in particular over the equatorial region in South America
and Africa. Even during reduced precipitation intervals
these regions may show low values of PFIv2 because the
presence of the tropical forest can remove water from
subsurface layer, which keep the canopy with consider-
able level of moisture.

Figure 3d can be used to characterize the influence of
vegetation in areas dominated by savannas, pastures,
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grassland, open and closed shrublands. These biomes are
associated with increased susceptibility for burning due
to the vulnerability of the vegetation to drought condi-
tions and thermal stresses (Anjos and de Toledo, 2018).
The effect of vegetation type is also noticed in the eastern
part of North America showing low fire danger. Since
this region is dominated by deciduous forests, and their
dense canopy blocks sunlight to reach the soil, there
exists a low amount of combustible material. However,
over the west and southwest of the United States the dry
atmosphere dominates the fire danger (Figure 3b,d). It
has to be mentioned that these regions experience high
concentration of cloud-to-ground dry lightning which
can induce fires (https://www.wfas.net).

Evaluation to southern Africa revealed that during
JASO, the four PFIv2 parameters are in favour of fire
occurrence due to low precipitation, dry atmospheric
conditions and prone vegetation pattern (savannas and
woody savannas). Analyses for Eurasia show that the

dominant forcing factor in inducing fire conditions is pri-
mary related to the excessive number of days with low
precipitation (Figure 3a).

Figure 3e,f shows the JASO annual trends and the SD
based on global PFIv2 for the 2001–2016 period. It should
be noted that the fire danger delivers an upward trend
over most parts of South America, Canada, southeast and
northeast United States, central Eurasia, and northern
Russia, with potential implications to the Arctic environ-
ment. Less significant trends are seen in Australia and
southern Africa. Negative trends indicating reduction in
vegetation fire vulnerability are noticed over large parts
of Asia and central Africa (e.g., Mali, Nigeria, Sudan, and
Ethiopia) (Figure 3e). Turning to the SD analyses
(Figure 3f), it is revealed that the PFIv2 variability is
higher over central Africa and northern South America,
which are regions with the highest intra-seasonal and
interannual precipitation variability. Interestingly is that
the extra-tropical region including the Artic, and the east

FIGURE 3 Averaged individual PFIv2 factors in July–August–September and October (JASO). (a) Basic risk of fire, (b) fire danger

related to the logistic function (LogHai), (c) temperature factor, (d) PFv2, (e) shows the PFIv2 trend in JASO, and (f) shows the PFIv2 SD.

See Figure 1 for details
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coast of North America (Figure 3f) show large SD. In
eastern Australia, our results support the findings deliv-
ered by Mariani et al. (2016), insofar as fire danger vari-
ability is concerned.

In order to verify whether the PFIv2 reproduces the
regions with higher concentration of satellite-derived hot
spots, Figure 4 shows the capability of the PFIv2 model
in locating the daily fires of the Terra/MODIS, coincident
with the highest PFIv2 levels between 0.7 and 1. To verify
if the use of ERAI precipitation can compromise the
PFIv2 performance, we also show the PFIv2 calculation
based on this dataset (Figure 4).

Africa is the continent with the highest fire occur-
rences on Earth. Figure 4a shows that 89% of the occur-
rence of fires fall within the PFIv2 highest classes (high
and critical fire danger). Asia was the sub-region with
lowest predominance of fires within those classes, 64%
(Figure 4b). This may reveal that other drivers related to
fire ignition/conditions play an important role in Asian
fire activity, such as agricultural expansion and/or light-
ning. South America is characterized by a good match
between fires and areas with the highest PFIv2
(Figure 4c), with values by about 72%. However, this is

the region that presented the highest rate of fire occur-
rences in the minimum PFIv2 class. It should be noted
that in case of fires located in low danger area is very
unlike that these fires will evolve to erratic and intense
wildfires.

The adjustment of PFIv2 to reproduce the fire suscep-
tibility on extra-tropical latitudes, in particular over
North America and Europe, demonstrates the efficiency
of the method in detecting the potential for fire occur-
rences (Figure 4d,f). More than 65% of detected fires by
MODIS occur in areas of PFIv2 higher than 0.7. It has to
be stressed that analyses for Europe (Figure 4f) show that
around 15% of the fire occurred in areas where atmo-
spheric conditions are less susceptible to fires.

Regarding the Southwest Pacific region, which experi-
ences an average of 150,000 fire occurrences during
2001–2016 period (Figure 2m,o), the PFIv2 shows an effi-
ciency by up 75% in locating fires in the high and critical
classes (Figure 4e). Local fires are highly dependent on
the ignition material and litter that in some cases are not
fully reproduced by the IGBP vegetation dataset used in
our method. The vegetation file in the present study is
static and does not take into account the temporal

FIGURE 4 Percentage of daily accumulated fire at each PFIv2 class based on ERAI, and CPC precipitation dataset for the 2001–2016
period. (a) Africa, (b) Asia, (c) South America, (d) Americas and Caribbean, (e) South-West Pacific, and (f) Europe
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variation of the land cover (seasonal or daily). For
instance, the IGBP does not take into account increases in
bushes/grasses underneath forests and savannas. Other
aspect that should be mentioned is related to the fact that
the IGBP grid does not include more than one vegetation
type. This may reduce the fire danger by considering pri-
mary a larger area of green and well-watered vegetation.

Figure 5 provides the comparison between PFI and
PFIv2 in representing the number of fires which falls

within the fire danger classes. It is clear that most of fires
are placed in the extreme (high and critical) fire danger,
in particular from July to December. It is important to
mention that the higher number of hot spots, by about
80%, occurs in the maximum levels of the PFIv2. In Asia,
where fires do not occur predominantly in a specific
period, detected fires fall in the high and critical catego-
ries covering up to 70% of the incidence. Large improve-
ment is although noticed in Europe, for all season. Other

FIGURE 5 Distribution of seasonally satellite detected fires in the PFI, and PFIv2 fire danger classes for the 2001–2016 period. (a–c)
Africa, (d–f) Asia, (g–i) South America, (j–l) Americas and Caribbean, (m–o) South-West Pacific, and (p–r) Europe. Note: Extreme level

shows the sum of the high and critical fire danger classes
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important aspect that should be highlighted is that the
number of fires identified in the medium class in the PFI
previous version is reduced in the PFIv2, in particular
over Asia, and Europe.

As shown in Table 2, when all months are included
the PFIv2 shows a better performance with respect to the
PFI original version, in particular for Asia, Americas and
Caribbean, and Europe. It might be highlighted that the
modification in the temperature function and especially
the inclusion of the LogHai parameterization has been
responsible for improved performance.

Additional evaluation of the PFIv2 is conducted to
verify its capability to reproduce burned areas (Figure 6).
We have computed the spatial correlation between the
fire danger index and burned area (BA) as delivered by
the MODIS product available at University of Maryland
ftp://fuoco.geog.umd.edu/MCD64CMQ/C6/. The dataset
has been downloaded in 0.25� × 0.25� (latitude × longi-
tude) grid covering the 2001–2016 interval. The BA is
measured in hectares and high correlation indicates that
large burned area fits properly with PFIv2 higher values.
On the other hand, where correlation assumes lower
values may indicate that small burned areas occurs
within high PFIv2 and vice versa.

According to the global correlation pattern (Figure 6),
correlation higher than 0.6 is observed in the fire activity
preferential regions, namely South America and Africa.
Reasonable match between the PFIv2 and BA is also
noted in the Pacific islands and northern Australia, south-
ern Asia and central Eurasia. The size of burned area is
dependent primarily on the fire intensity and the amount
of combustible material. Thus, in some areas despite high
fire danger the severity of burning is limited. This is very
usual in periods followed by intense fire activity in the
previous year. Another aspect that interferes in the corre-
lations values is related to the grid size of the PFIv2.
Because it contains only the dominant vegetation class,
whereas in reality the same grid may be covered by mixed
vegetation which can include grassland and shrubs,
which in case of fires would favour an increase in the
burned area.

4 | SEASONALITY OF THE PFIV2

To evaluate the fire danger in a single seasonal interval
over the entire globe for some regions does not show a par-
ticular characteristic, and may overlook important features.
For example, in the ‘south-west pacific region’, northern
and southern Australia have very different peak fire sea-
sons (June–July peak in the north, December–January
peak in the south). Similarly occurs in South America,
whereas the Northern Hemisphere part shows more fires
from January to March. To provide an evaluation of the
PFIv2 annual cycle, it is calculated the first harmonic of
Fourier transform which can provide spatial information
on the amplitude of the annual cycle, the month with the
highest fire danger and the explained variance. Harmonic
analysis characterizes dominant features in the time–space
domain (Justino et al., 2011). The first order harmonics of
meteorological parameters deliver long-term effects
(annual cycle), while higher order harmonics are related to
short-term fluctuations (intra-seasonal). The phase angle
can be used to determine the time when the maximum or
minimum of a given harmonic occurs. Thus, the phase
angle is very useful to identifying the month with the max-
imum occurrence of the fire danger.

TABLE 2 Percentage of daily

detected hot spots/fires found within

the PFI and PFIv2 high and critical

classes (≥0.7) for the 2001–2016 period

Region (WMO) PFI_Max (%) PFIv2_Max (%) PFIv2 – PFI (%)

Africa 87.9 88.4 +0.5

Asia 52.8 63 +10.2

South America 70.4 71.4 +1.0

Americas and Caribbean 60.8 64.8 +4.0

South-West Pacific 71.7 74.3 +2.6

Europe 55.1 66.6 +11.5

FIGURE 6 Correlation between the PFIv2 and burned areas

(MODIS product) in the 2001–2016 interval

E88 DA SILVA ET AL.

http://ftp://fuoco.geog.umd.edu/MCD64CMQ/C6/


As shown in Figure 7a, Africa and South America
experience a dominant season also shown in northern
Australia and southern Asia. In Africa two regions of
maxima amplitude are identified, which are related
with the annual migration of the Intertropical Conver-
gence Zone, and associated semi-annual dry season.
Larger amplitude is also noted in the Arctic region of
east Asia and Canada corroborating with the fire sea-
son peak in July. Based on Figure 7b is clear that
higher fire danger in the Southern Hemisphere is

concentrated between July and October, whereas in
the Northern Hemisphere due to climate diversity, fire
danger shows regional patterns. By analysing, the vari-
ance (Figure 7c) is clear that in some regions the sea-
sonal cycle is not dominant (e.g., central Europe,
Australia and Africa, Mexico and southern North
America). This indicates that the fire danger and hot
spots can occur throughout the year, with perhaps
peaks dominated by the semi-annual component or
higher order harmonics.

(a)

(b)

(c)

FIGURE 7 Harmonic analyses of

PFIv2. (a) Amplitude of the annual cycle

or first harmonic, (b) the phase of the

first harmonic (month), and (c) shows

the explained variance of the first

harmonic (%)
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5 | CONCLUDING REMARKS

Based on the second version of the Potential Fire Index
(PFIv2), this study evaluates the interannual variability of
vegetation fires and the global susceptibility to the fire
occurrences. It is demonstrated that proposed modifica-
tion in the PFIv2 properly reproduces the regions with
the highest incidence of fires in Asia, North America and
Europe. The PFIv2 was also compared to burned areas
based on MODIS product between 2001 and 2016.

Although the adjustment prioritizes the extra-tropical
regions, the model was also efficient in reproducing high
susceptibility to fire occurrences over other regions. Mod-
ification of the air temperature factor from a latitudinal
adjustment and the Haines logarithmic function, to take
into account the surface elevation, demonstrated that the
PFIv2 locates fires which are located in vulnerable and
higher danger zones in 88.4% of the cases. The efficiency
of the PFIv2 in reproducing regions with fire susceptibil-
ity was also demonstrated in Asia. Only the high and crit-
ical classes of the model accounted for more than half of
the incident fires (63%), based on CPC precipitation data.
The PFIv2 also matches the MODIS burned areas with
correlations higher than 0.6 over the most susceptible
regions such as Africa and South America, slightly lower
correlation are found where fire does not primary follows
the climate annual cycle, and is dominated by high fre-
quency events.

The PFIv2 shows some caveats due to the high depen-
dence of the days of dryness, which is computed from the
precipitation data. Currently, estimates of precipitation
are still a very complex task in a global domain due to
the lack of observations, and also presents divergences
among the atmospheric models and reanalyses data.
However, it was demonstrated that the CPC data is more
reasonable than the ERAI dataset, which tends to over-
estimate the daily precipitation. Future improvements of
the PFIv2 are still needed and should incorporate a better
representation of vegetational changes, the inclusion of
lightning and density population function, for instance.
Although the results presented here are based solely on
atmospheric vulnerability, it may be argued that regard-
less of the source of ignition climatic factors are primor-
dial for the fire occurrences.
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