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Abstract: Mapping refined burned areas (BA) in the Brazilian Amazon is still a challenge. The main difficulty of BA 

detection in large areas is the presence of cloud cover and water bodies. The use of different data sources of medium 

spatial resolution satellite images can provide a higher availability of cloud-free images. Besides that, it may decrease 

the uncertainties associated with coarse spatial resolution data (>250m), which can under or overestimate BA and 

hinder the detection of small BA patches (<0.1km²). In this study, we propose an innovative methodology based on 

spectral indices and geographic object-based image analysis (GEOBIA), using medium spatial resolution images to 

improve BA detection in the Brazilian Amazon region. Firstly, we assessed the performance of nine spectral indices 

in two study areas, derived from Landsat-8 OLI and Sentinel-2A MSI data to identify the most suitable index for BA 

detection in this region. Then, we refined this data through the GEOBIA-based model. The results showed that the 

Burned Area Index (BAI) was the most suitable index for BA mapping (M index >1.5) for both sensors. Our model 

allowed detecting more than 80% of small BA and also presented high Dice coefficient values (~0.70) with low 

omission and commission errors (0.22 and 0.32, respectively). Such combined approach corresponds to a novel 

contribution to the BA detection in the Brazilian Amazon region and for enhancing the operational product generation. 

Keywords: Fires mapping. Tropical forest. Landsat-8 OLI. Sentinel-2A MSI.  
 

Resumo: O mapeamento refinado de áreas queimadas (AQ) na Amazônia brasileira ainda é um desafio. A principal 

dificuldade na detecção de AQ para grandes áreas é a presença de nuvens e corpos hídricos. A utilização de diferentes 

fontes de dados de imagens de sensoriamento remoto de média resolução espacial pode fornecer uma maior 

disponibilidade de imagens livres de nuvens, além de reduzir as incertezas associadas aos dados de resolução espacial 

grosseira (>250m), os quais podem subestimar ou superestimar AQ e dificultar a detecção de AQ pequenas (<0,1km²). 

Neste estudo, propomos uma metodologia inovadora baseada no uso de índices espectrais e análise de imagem baseada 

em objetos geográficos (GEOBIA), usando imagens de média resolução espacial para melhorar a detecção de AQ em 

áreas teste na Amazônia. Primeiramente, avaliamos o desempenho de nove índices espectrais em duas áreas de estudo 

obtidos a partir de cenas do Landsat-8 OLI e Sentinel-2A MSI para identificar o índice mais adequado para a detecção 

de AQ. Em seguida, refinamos esses dados através do modelo baseado em GEOBIA. Os resultados mostraram que o 

Índice de Área queimada (BAI) foi o mais adequado para o mapeamento de AQ (índice M>1,5) para ambos os 

sensores. Nosso modelo permitiu detectar mais de 80% das AQs pequenas (<1 km²) e também apresentou altos valores 

de coeficiente Dice (~0,70) com baixos erros de omissão e comissão (0,22 e 0,32, respectivamente). Essa abordagem 

integrada correspondeu a uma contribuição inédita para a detecção de AQs na região amazônica e para o 

aprimoramento da geração de produtos operacionais. 

Palavras-chave: Mapeamento de áreas queimadas. Floresta tropical. Landsat-8 OLI. Sentinel-2A MSI.   
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1 INTRODUCTION 
 

The Brazilian Amazon covers an area of 4.2 million km² or 49% of the Brazilian territory (IBGE, 

2004), and plays an important role to the global climate regulation (VAN DER WERF et al., 2010; ARAGÃO 

et al., 2018). Nonetheless, forest and understory fires (ALENCAR; NEPSTAD; DIAZ, 2006; MORTON et al., 

2011), deforestation-related fires (ARAGÃO; SHIMABUKURO, 2010; FANIN; VAN DER WERF, 2015) 

and fires for land management (LIMA et al., 2012; ANDERSON et al., 2015) are some of the human-induced 

typical phenomena in the Brazilian Amazon, challenging the reduction of the carbon emission as well as the 

preservation of the ecosystem services (ARAGÃO et al., 2014). In the Brazilian Amazon, the burning 

occurrence is mostly related to induced and uncontrolled fires for land management, aiming to prepare and 

transform the land for many economic purposes, such as agriculture and cattle ranching (FEARNSIDE, 2005; 

VAN DER WERF et al., 2010). Besides that, such activities, whenever associated with more intense and 

frequent droughts, have contributed to increase fires in the region (ARAGÃO et al., 2007; ALENCAR et al., 

2015). In this context, burned areas (BA) detection is essential in order to assess its extent, to quantify impacted 

areas, as well as and to monitor the vegetation regeneration (KATAGIS; GITAS; MITRI, 2014; MOUILLOT 

et al., 2014).  

BA mapping in the Brazilian Amazon is typically performed based on remote sensing (RS) methods 

using coarse spatial resolution (>250m) satellite data (MOUILLOT et al., 2014; SHIMABUKURO et al., 

2015), because they often operate with high temporal frequency. Nonetheless, coarse spatial resolution data 

may underestimate or overestimate the spatial distribution of small BA (<0.1km²) (LARIS, 2005; MIETTINEN 

et al., 2013; SHIMABUKURO et al., 2015).  

Despite presenting a longer revisiting time, medium spatial resolution satellite images, ranging from 

10 to 50 meters (EHLERS et al., 2002), provides more detailed information and are more suitable to analyze 

the extent, distribution, spectral and biophysical characteristics of BA with higher reliability. Moreover, they 

have the potential to increase the availability of suitable images through data fusion (LATORRE et al., 2007; 

ARAI et al., 2011), for instance, involving Landsat-8 OLI (WULDER et al., 2012) and Sentinel-2A MSI 

(DRUSCH et al., 2012) satellite data. 

A number of studies of BA mapping have achieved promising results using spectral indices 

(BASTARRIKA; CHUVIECO; MARTÍN, 2011; LIBONATI et al., 2012; BASTARRIKA et al., 2014; 

CARDOZO et al., 2014; PEREIRA et al., 2016). However, the detection of small BA (<0.1km²) is often 

overlooked by researches. Due to its relevance for the Brazilian Amazon and considering the lack of such 

studies, we developed a novel methodology to improve the BA mapping using medium spatial resolution 

images, spectral indices, and the approach known as geographic object-based image analysis (GEOBIA). 

GEOBIA usage enables: object-oriented image classification rather than pixel-per-analysis (HAY; 

CASTILLA, 2006; BLASCHKE, 2010); the insertion of knowledge about the region of interest in the 

classification model; and the extraction of both spectral and spatial features information (PINHO et al., 2012). 

Nevertheless, a segmentation algorithm is required in GEOBIA framework (CHUVIECO; MARTÍN; 

PALACIOS, 2002), which might refine the BA mapping.  

The present study was guided by the following main questions: (1) Which spectral index has the 

greatest ability to individualize BA from other targets in the Brazilian Amazon?; (2) What are the differences 

in the performance of such indices in different medium resolution images?; (3) Can the BA detection method 

based on GEOBIA refine BA mapping? To answer such questions, we first assessed the performance of nine 

spectral indices aiming to identify the most suitable index for BA mapping. Then, we refined this result 

applying a GEOBIA-based model. Four images, two from Landsat-8 OLI and two from Sentinel-2A MSI, in 

two different study areas were used.  

 

2 MATERIAL AND METHODS 
 

2.1 Study sites 
 

The regions of interest (ROI) are situated in the Brazilian states of Pará (ROI 1) and Acre (ROI 2), 
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north and northwest of the Amazon biome, respectively (Figure 1). These areas were selected according to the 

occurrence of burning events identified by NOAA VIIRS-NPP (375m) active fire product, and delimited by 

the overlapping of Landsat-8 OLI and Sentinel-2A MSI scenes.  

In our study areas, the main land-use and land-cover are composed by forest, pasture and small 

agriculture. According to TerraClass (ALMEIDA et al., 2016), for the year of 2014, the main land cover classes 

in ROI 1 were forest (68.65%) and pasture (24,98%), meanwhile, in ROI 2, it was forest (97,37%). Most of 

the burned area are related to pasture maintenance (ROI 1) and deforestation (ROI 2), often occurring in forest 

areas. 

Figure 1 – Study sites localization. 

 

Source: The authors (2020). 

 

2.2 Data acquisition 
 

Two cloud-free Landsat-8 OLI scenes (WRS 2 – Worldwide Reference System 2, path/row 002/67 

and path/row 224/66) were obtained on August 24th, 2016 (ROI 1) and August 27th, 2016 (ROI 2) from U.S. 

Geological Survey (freely available at <https://www.earthexplorer.usgs.gov/>) in surface reflectance (High-

Quality level) with radiometric and geometric correction in UTM/WGS84 projection and also corrected for 

atmospheric conditions (VERMOTE et al., 2016). 

Two cloud-free Sentinel-2A MSI scenes were obtained on the same date as Landsat-8 OLI imageries, 

from Copernicus Scientific Data Hub (ESA – European Space Agency) (freely available at 

<http://www.scihub.copernicus.eu/>) as top-of-atmosphere (TOA) level-1C (L1C) product with radiometric 

and geometric corrections in UTM/WGS84 projection.  

 

2.3 Reference dataset 
 

A specialist produced the BA reference map for both ROI 1 and ROI 2 based on the method developed 

by Shimabukuro et al. (2009). Such method uses the shade fraction image, derived from the Linear Spectral 

Mixture Model (LSMM) (SHIMABUKURO; SMITH, 1991). Subsequently, the K-means unsupervised 

classification algorithm was applied followed by a manual post classification image edition. The post-

classification edition was carried out by a skilled human interpreter using natural color composites, aiming to 

minimize omission and commission errors produced by the automatic classification algorithms (ALMEIDA-

FILHO; SHIMABUKURO, 2002; PIROMAL et al., 2008; LIMA et al., 2012; CARDOZO et al., 2014; 

SHIMABUKURO et al., 2015; ANDERSON et al., 2015). The total of BA generated were: 188.69 km² (ROI 

1 – Landsat-8), 174.99 km² (ROI 1 – Sentinel-2A), 89.39 km² (ROI 2 – Landsat-8) and 82.39 km² (ROI2 – 
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Sentinel-2A). The dataset can be found at: <https://doi.org/10.6084/m9.figshare.8104736>. 

 

2.4 Preprocessing and data compatibilization 
 

First of all, we applied in all Sentinel-2A MSI bands an atmospheric correction performed by Sen2Cor 

processor (MAIN-KNORN et al., 2015; MÜLLER-WILM, 2017). A Level-2A bottom-of-atmosphere (BOA) 

reflectance product was created and resampled to 20m pixel size. We then co-registered Landsat-8 OLI and 

Sentinel-2A MSI images for both study areas (RMS = 0.21 for ROI 1 and RMS = 0.25 for ROI2) using feature-

based registration method (FONSECA; MANJUNATH, 1996; YAN et al., 2016). Six corresponding bands 

with similar wavelength from Landsat-8 OLI and Sentinel-2A MSI were selected (Blue, Green, Red, Near 

Infrared (NIR), SWIR 1, and SWIR 2).  In this study, Landsat-8 OLI and Sentinel-2A MSI dataset were used 

independently, that is, no bias correction was applied, since both sensors can be considered similar 

(MANDANICI; BITELLI, 2016). 

 

2.5 Spectral indices application 
 

We calculated four vegetation indices and five burn indices, for both study sites (Chart 1). The BAIM, 

CSI, and NBR burn indices were adapted as both Landsat-8 and Sentinel-2A satellites operate with two SWIR 

bands. The reference data were used to create the dataset of burned and unburned areas, enabling the 

identification of the indices with the highest performances. 

 

Chart 1 – Selected spectral índices. Legend: ρB = blue reflectance band; ρRed = red reflectance band; ρNIR = near-

infrared reflectance band; ρSWIR = short wavelength infrared band; ρLSWIR = long short wavelength infrared band. 

Spectral Indices Initials Formula Reference 

Simple Ratio SR 
ρNIR

ρRed
 Birth and McVey (1968) 

Normalized Difference Vegetation Index NDVI 
(ρNIR −  ρRed)

(ρNIR +  ρRed)
 Rouse et al. (1973) 

Soil Adjusted Vegetation Index SAVI 
(1 + 0.5)(ρNIR −  ρRed)

(ρNIR +  ρRed + 0.5)
 Huete (1988) 

Enhanced Vegetation Index EVI 
2.5 (ρNIR −  ρRed)

(1 + ρNIR +  6.0 ρRed − 7.5 ρB)
 Huete et al (2002) 

Burned Area Index BAI 
1

(0.1 − ρRed)2 + (0.06 − ρNIR)
 

Chuvieco, Martín and 

Palacios (2002) 

Burned Area Index Modified BAIM 
1

(ρNIR − 0.05)2 + (ρLSWIR − 0.2)²
 Martín et al. (2006) 

Normalized Burn Ratio NBR 
ρNIR −  ρSWIR

ρNIR +  ρSWIR
 Key and Benson (2006) 

Mid-Infrared Burn Index MIRBI 10 ρLSWIR − 9.8 ρSWIR + 2 Trigg and Flasse (2001) 

Char Soil Index CSI 
ρNIR

ρLSWIR
 Smith et al. (2007) 

Source: The authors (2020). 

 

2.6 Spectral indices statistical analysis and threshold test 
 

The statistical tests were performed to verify the statistic differences of burned/unburned areas, which 

were assessed by Wilcoxon-Mann-Whitney test (Mann-Whitney U-test) (DEPUY; BERGER; ZHOU, 2005). 

The ranking of the best spectral indices was based on the M separability index (Eq. 1) (KAUFMAN; REMER, 

1994; GARCÍA; CHUVIECO, 2004; LASAPONARA, 2006; PEREIRA et al., 2016). 

 

 
𝑀 =

|𝜇𝑏 − 𝜇𝑢|

𝜎𝑏 + 𝜎𝑢
 (1) 

where: μb and μu are the mean values for burned and unburned areas respectively, and σb and σu are the 

corresponding standard deviations. 
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The M separability index was used to measure if the mean (𝜇𝑏) and the standard deviation (σb) of BA 

were statistically significant distant from the unburned areas. M separability index larger than one (M>1) 

indicates good separation, while values smaller than one unit (M<1) reveals poor discriminatory power 

(KAUFMAN; REMER, 1994; LASAPONARA, 2006; PEREIRA et al., 2016).  

Next, the threshold tests were performed to identify the best spectral index for detecting ‘core’ pixels 

within BA (CHUVIECO; MARTÍN; PALACIOS, 2002; GARCÍA; CHUVIECO, 2004). In such a way, the 

histogram of the best spectral index for BA detection was divided in two regions of most and least accumulated 

pixels values, based on its statistical parameters of average (µ) and standard deviation (σ). The region between 

the distances of +1.0, +1.5, +2.0 and -1.0, -1.5, -2.0 standard deviations (+/- 1.0, 1.5, 2.0 σ) in relation to the 

average(µ) were used as threshold tests. After that, we generated an error matrix and a precision-recall curve 

to support the results. The precision-recall curve is described by two metrics derived from error matrix (Eq. 2 

and 3). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑁
 

(3) 

 

where: 𝑇𝑃 is the number of true positives, 𝐹𝑝 is the number of false positives and 𝐹𝑁 is the number of false 

negatives in the confusion matrix. 

 

2.7 GEOBIA-based burned areas detection model 
 

As a final step, a GEOBIA-based model was built for each ROI in order to refine the BA detection 

through a rule-decision tree method (Figure 2). The BA detection was refined by delineating each burned area 

with a shape refinement algorithm (CHUVIECO; MARTÍN; PALACIOS, 2002; HAY; CASTILLA, 2006; 

BLASCHKE, 2010; BASTARRIKA; CHUVIECO; MARTÍN, 2011; PINHO et al., 2012; BASTARRIKA et 

al., 2014). Firstly, water and cloud masks were applied to eliminate the errors related to the misdetection of 

targets with similar spectral behavior of BA, such as water bodies, cloud and cloud-shadow features. The water 

mask was extracted from Namikawa, Körting, and Castejon (2016) and the cloud and cloud-shadow masks 

were generated by Fmask (Function of Mask) algorithm (ZHU; WOODCOCK, 2012; ZHU, WANG; 

WOODCOCK, 2015). Secondly, a minimum area threshold of approximately 0.0036 km² (or four pixels) was 

defined in order to avoid false positive detection. Next, a multi-resolution algorithm was used in the 

segmentation process (BAATZ; SCHÄPE, 2000), for both sensors and study sites, with the following 

thresholds: scale: 10; shape: 0.1; and compactness: 0.5. The segmentation parameters were defined based on 

exhaustive empirical tests in order to maintain a standard to enable its replication in future studies. Segments 

with BA density higher than 0.01 were filtered.  

An intersection procedure was used as a second spectral index to ensure the BA in each segment. The 

selection of the second spectral index was based on the M separability index ranking, where the discrimination 

ability of BA was greater than one (M separability index > 1). We also tested empirically a plenty of thresholds 

before selecting the most suitable one, following the procedures of the GEOBIA’s attribute selection step. The 

MIRBI and NBR2 were selected for the ROI 1 and ROI 2, respectively. Finally, for ROI 2, we also selected 

the NDVI to eliminate false positives in forest cover because most of BA identified in this study presented 

post-fire charcoal signal response. Moreover, aiming to support the refined BA detection analysis, we 

evaluated the size of the BA, and quantified the number of fire occurrence one month before the imagery 

obtained (due to signal persistence of BA after burning) through the spatial agreement of NOAA VIIRS-NPP 

(375m) active fire products and BA mapping. The last analyze was proposed to verify if our BA-model and 

reference data were detecting occurred fires, indeed, or if they detected false positive targets. 
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Figure 2 – GEOBIA-based burned areas detection model applied in the best spectral index in order to refine the BA 

detection for ROI 1 (A) and ROI 2 (B). 

 

 

Source: The authors (2020). 

 

2.8 Accuracy assessment 
 

The accuracy assessment was applied for both threshold tests and after the refined BA maps generated 

by GEOBIA-based model according to the methodologies proposed by Oliva and Schroeder (2015) and Padilla 

et al. (2015). The method consisted of spatial intersection of the reference data with the BA mapped result. We 

generated standard confusion matrices and calculated omission error (Oe), commission error (Ce), overall 

accuracy (OA), Dice coefficient (DC) and relative bias (RelB) (PADILLA et al., 2015; PADILLA et al., 2017; 

RAMO; CHUVIECO, 2017; MITHAL et al., 2018). The DC (DICE, 1945) combines both Oe and Ce errors 

in a single metric, which is useful to verify product accuracies as well as to summarize measures of accuracy 

of the category “burned areas” (PADILLA et al., 2015; PADILLA et al., 2017) (Eq. 4). 

 

𝐷𝐶 =
2 𝑇𝑃

2(𝑇𝑃 + 𝐹𝑝 + 𝐹𝑁) 
 (4) 

 

where: 𝑇𝑃 is the number of true positives, 𝐹𝑝 is the number of false positives and 𝐹𝑁 is the number of false 

negatives in the confusion matrix.  

The RelB (Eq. 5) is a measure of bias relative to the reference BA and express to end-users the relative 

BA product error balance (MOUILLOT et al., 2014; PADILLA et al., 2015; PADILLA et al., 2017). 

 

𝑅𝑒𝑙𝐵 =
𝐹𝑝 − 𝐹𝑁

N 
 (5) 

 

where: 𝐹𝑝 is the number of false positives, 𝐹𝑁 is the number of false negatives in the confusion matrix and N 

is the total number of elements in reference data. The RelB values indicate whether a product overestimates 

(positive sign) or underestimates (negative sign) the extent of BA (RAMO; CHUVIECO, 2017). 
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3 RESULTS 
 

3.1 Spectral indices analysis 
 

The results of the comparison between spectral indices BA detection and reference data for each study 

area are presented in boxplots (Figure 3). The histogram of each index for each ROI is available on 

Supplementary Material A (Available at: <https://doi.org/10.6084/m9.figshare.8104808>). For ROI 1 (Figure 

3.A, 3.B), we observed that most of the spectral indices presented burned and unburned values overlapped as 

well as outliers that increase the misdetection for both sensors. However, for ROI 2 (Figure 3.C, 3.D) the 

boxplots patterns are reversed once most of the indices present good separability and they are able to 

discriminate these classes. Besides that, they present lower overlaps, which indicate greater ability to 

distinguish burned and unburned areas. Nonetheless, the number of outliers is considerable. The differences 

observed in the boxplots of Landsat-8 OLI and Sentinel-2A MSI in ROI 2 may be attributed to the relative 

spectral reflectance of vegetation types in terms of density and spatial heterogeneity characteristics. For both 

study areas, the Landsat-8 OLI images presented less scattering, evidencing the difficulty to determine the BA 

or to define an appropriate threshold. 

 

Figure 3 – Normalized spectral indices boxplots for ROI 1: (A) Boxplots for Landsat-8 OLI; (B) Boxplots for Sentinel-

2A MSI. Normalized spectral indices boxplots for ROI 2: (C) Boxplots for Landsat-8 OLI; (D) Boxplots for Sentinel-

2A MSI. All the boxplots were normalized in the range [0, 1]. 

 
(A) (B) 

 

(C) (D) 

 
 

Source: The authors (2020). 
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3.2 Spectral indices ranking 
 

The spectral indices ranking is presented in Figure 4. The Mann-Whitney U-test (p < 0.05) identified 

the differences between burned and unburned areas for the 12 indices tested (p = 2.2e-16). It was observed for 

ROI 1 that only BAI and MIRBI indices presented a significant separation (M > 1) for both sensors, while the 

other indices were considered poor (M < 1). For the ROI 2, seven indices from Landsat-8 OLI and ten indices 

from Sentinel-2A MSI were considered appropriate (M > 1). The large M values differ between ROI 1 and 

ROI 2, which can be explained by the presence of different land covers and low-reflectance targets in the 

images. For ROI 1, the presence of pasture and bare soil areas, which present low spectral signals, possibly 

affected the majority of the indices, generating misdetection. On the other hand, in ROI 2, the main land cover 

is forest, which explains the better separability and low misdetection. 

 

Figure 4 – Spectral index ranking for ROI 1(A) and ROI 2 (B). 

 
(A) (B) 

Source: The authors (2020). 

 

3.3 Threshold tests results 
 

The threshold tests were applied only for BAI (M separability index >1.5) since it presented the best 

statistical results (Figure 4). Regarding only the best threshold for each study area and sensor, we selected the 

two standard deviations (+/- 2.0 σ) around the mean as the threshold to better represent the indexes variation 

inside the burned areas. Besides, this threshold is the most suitable that comprehended most of the BA sizes, 

including small BA (< 1km²) (Figure 5). This value was selected since it presented the best relation between 

information and false positive error. The precision-recall curves for ROI 1 and ROI 2 (Figure 5) show the 

relation between the increasing of threshold value and the commission error (1 – precision) and omission error 

(1 – recall). The error matrix of this step is available in Supplementary Material B (available online at: < 

https://doi.org/10.6084/m9.figshare.8104808>). Although Figures 5A and 5B show high values to recall and 

low values to precision for the two standard deviations, we considered such threshold because it included most 

of the BA, especially the small BA (<1km²), and it did not omit a relevant amount of information (low omission 

errors). Despite the low precision value, we assumed that it would be more suitable to refine the BA detection 

by a GEOBIA model, minimizing the commission errors and, consequently, increasing the precision 

afterwards. 

 

 

 

 

 

 

 



Rev. Bras. Cartogr, vol. 72, n. 2, 2020                            DOI: http://dx.doi.org/10.14393/rbcv72n2-48726 

   

 261 

Figure 5 – Precision-recall curves of the tested thresholds (+/- 1,0 σ; +/- 1,5 σ; +/- 2,0 σ) and GEOBIA-based BA 

detection model for ROI 1 (A) and ROI 2 (B). 

 
(A)  (B) 

Source: The Authors (2020). 

 

3.4 GEOBIA-based burned areas detection results and accuracy assessment 
 

We observed the commission error reduction of approximately 51% in relation to the mean of best 

BAI threshold, and a DC increase of about 58% (Table 1). There was also a gain of overall accuracy (all refined 

BA map ~99%). However, there was an increase of about 11% in omission error in relation to the mean of best 

BAI threshold. Besides, RelB also presented a significantly decrease of about 85% considering the RelB mean 

of best BAI threshold. The refined BA maps and the accuracy assessment results for the GEOBIA-based BA 

mapping are presented in Supplementary Material C and D, respectively (Available online at: 

<https://doi.org/10.6084/m9.figshare.8104808>). 

 

Table 1 – Commission error (Ce), omission error (Oe), Dice coefficient (DC) and relative bias (RelB) for refined BA 

map. 

 
ROI 1 ROI 2  

Landsat-8 OLI Sentinel-2A MSI Landsat-8 OLI Sentinel-2A MSI Mean 

Oe 0.28 0.18 0.34 0.10 0.22 

Ce 0.22 0.26 0.34 0.47 0.32 

DC 0.75 0.78 0.66 0.67 0.71 

RelB 38.82 49.82 30.66 65.90 46.3 

Source: The authors (2020). 

 

The GEOBIA-based BA mapping analysis was evaluated by the size of BA mapped (Table 2), as well 

as the number of fire occurrence one month before the imagery acquisition (Table 3). The size of most of the 

reference polygons was lower than 0.1 km², values between 82% and 89% (Table 2). For both ROIs, the 

percentage of total number of BA mapped was considered very similar to the reference, while ROI 1 presents 

about 3% of large BA (> 0.1 km²), in ROI 2 less of 0.7% of large BA were identified. In such a way, regarding 

the small sizes, the proposed methodology was suitable. However, some of the large BA were not detected. 

That could be explained by the segmentation method configuration adopted, which prioritizes small objects. 

In addition, if we consider the total area mapped by refined BA model, we observe in ROI 1 a BA 

underestimation in the order of 7% for Landsat-8 OLI image and an overestimation of around 10% for Sentinel-

2A MSI image. For ROI 2, a burned area overestimation was observed in both sensors data of the order of 2% 

for Landsat-8 OLI image and about of 64% for Sentinel-2A MSI image. 
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Table 2 – Frequency distribution of burned areas in both study areas and sensors. Four intervals (from small burned 

areas to large burned areas) were defined. L8 = Landsat-8 and S2A = Sentinel-2A. 

Reference 

Polygon 

Burned Area 

Size (a) [km²] 

Percentage of Total 

Number of Burned 

Areas (Reference ROI 1) 

[%] 

Percentage of Total 

Number of Burned 

Areas Detected ROI 1 

[%] 

Percentage of Total 

Number of Burned 

Areas (Reference ROI 2) 

[%] 

Percentage of Total 

Number of Burned 

Areas Detected ROI 2 

[%] 

L8 OLI  S2A MSI L8 OLI S2A MSI L8 OLI S2A MSI L8 OLI S2A MSI 

a < 0.1 85.40 82.10 84.45 82.27 86.95 87.93 89.35 89.77 

0.1 < a < 0.3 7.25 8.90 7.63 9.15 9.62 8.89 9.44 8.98 

0.3 < a < 0.9 4.30 5.35 4.60 5.05 2.72 2.51 1.11 1.25 

a > 0.9 3.05 3.65 3.33 3.53 0.71 0.77 0.10 - 

Source: The authors (2020). 

 
Table 3 – NOAA VIIRS-NPP (375m) active fire product for 1 month before imagery acquisition. 

 Study Areas 
Active fire product (Reference data) 

[observed / total occurrence] 

Active fire product (Refined map) 

[observed / total occurrence] 

R
O

I 
1
 Landsat-8 OLI 907 / 1158 (78.32%) 909 / 1158 (78.50%) 

Sentinel-2A MSI 893 / 1158 (77.12%) 888 / 1158 (76.68%) 

R
O

I 
2
 Landsat-8 OLI 556 / 620 (89.68%) 560 / 620 (90.32%) 

Sentinel-2A MSI 590 / 620 (95.16%) 586 / 620 (94.52%) 

Source: The authors (2020). 

 

4 DISCUSSION 
 

For BA detection, its comprehensive BA spectral behavior is required. According to Pereira and Setzer 

(1993), BA in Landsat-5 TM images in the Brazilian Amazon region, are characterized by a reflectance 

decrease in the visible and NIR bands, and an increase in the SWIR bands. Such bands were also considered 

the most relevant channels in our study for BA detection, as reported by other authors (PEREIRA, 1999; 

BASTARRIKA; CHUVIECO; MARTÍN, 2011; LIBONATI et al., 2012; PEREIRA et al., 2016; HUANG et 

al., 2016; MALLINIS et al., 2017).  

Efforts for BA mapping using Landsat-8 OLI and Sentinel-2A MSI imageries include the study 

conducted by Mallinis et al. (2017), who evaluated several spectral indices in those sensors for discriminating 

fire severity in a Mediterranean region. The results confirmed that NIR and SWIR bands of both sensors are 

more efficient for distinguishing burned from unburned areas. Huang et al. (2016) also assessed spectral indices 

in Sentinel-2A images for BA mapping in a bi-temporal approach and indicated such bands as the most suitable 

for BA studies in five different regions worldwide.  

Vedovato et al. (2015) compared NBR and LSMM in a Brazilian Amazon region and reported that 

NBR was consistently able to distinguish BA in most cases. Nevertheless, some misdetections with bare soil 

and water bodies were observed due to the similar spectral responses. These authors also observed that the size 

of the BA affects the detection. The more fragmented and the smaller the BA, the more border errors appears.  

According to the boxplots analysis and the M separability index ranking (Figure 4), BAI was 

considered the most suitable spectral index in both sensors and study areas. This result was probably obtained 

considering that BAI was designed to emphasize charcoal in post-fire images, which may present potential 

confusion with low-reflectance targets, such as water bodies and cloud shadows (CHUVIECO; MARTÍN; 

PALACIOS, 2002). Besides BAI, MIRBI also presented good performance in both ROIs and sensors (M 

separability index > 1) because of the single-temporal approach, which favors spectral indices that are more 

sensitive to recent BA. On the other hand, BAIM and CSI presented the lowest discrimination capacity, as 

observed by Melchiori et al. (2015). Differences of spectral indices performance for BA discrimination may 

occur due to several factors, such as the period between data acquisition and occurrence of fires, and the 

specific biophysical characteristics of the study areas, interfering in the burned spectral properties (PEREIRA, 

1999). Another possibility is due to the heterogeneity of the unburned areas, which is reported in literature as 

a category that includes clouds and cloud shadows and numerous land covers, producing potential confusions 

with BA, such as borders of lakes, topographic shadows and mixed urban-vegetated areas (CHUVIECO; 
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CONGALTON, 1988; BASTARRIKA; CHUVIECO; MARTÍN, 2011).  

Regarding the use of medium spatial resolution images, both Landsat-8 and Sentinel-2A datasets 

reached similar accuracies in most of the experiments. Presenting higher M separability values, the spectral 

indices derived from Sentinel-2A MSI images were more suitable for BA detection in ROI 2 (Figure 4), once 

they mostly presented higher M separability index values.   The same tendency was not observed in ROI 1, 

remaining non-conclusive.  Although the results indicate the differences of BA detection, they may be 

explained by factors such as: the inherent characteristics of the OLI and MSI sensors, residual effects of spatial 

heterogeneity generated by the resampling procedure, residual co-registration errors, acquisition methods of 

the sensors and by techniques used for geometric and atmospheric correction (MANDANICI; BITELLI, 2016). 

In some applications, this task may be overcome by the GEOBIA approach, as recommended by Novelli et al. 

(2016). 

The selection of a fixed thresholds for BA detection might be under or overestimating such detections, 

once potential confusion targets are included, such as: the clouds, borders of lakes, bare soils, and topographic 

shadows (PEREIRA, 1999; BASTARRIKA; CHUVIECO; MARTÍN, 2011). For burned land mapping, 

Chuvieco, Martín and Palacios (2002) emphasized that the thresholds selection for BAI should be very strict, 

since this index shows a high variability within charcoal areas. In this sense, the GEOBIA-based BA detection 

model, as suggested by Chuvieco, Martín and Palacios (2002), was applied to minimize the omission and 

commission errors. Such errors were low in the proposed methodology, about 0.22 and 0.32, respectively. In 

addition, Table 2 and Table 3 showed that the proposed methodology allowed the inclusion of small BA (more 

than 80%) and presented high agreement with the reference map. Therefore, it represents an improvement for 

the Brazilian Amazon region mapping that might be well performed by medium spatial resolution data, as 

reported by Anderson et al. (2015) and Shimabukuro et al. (2015). Besides, we noted a substantial decrease of 

the burned area overestimation in relation to the best BAI fixed threshold mapping, which still can be improved 

by reviewing the fixed segmentation configuration adopted or testing other filtering elements. 

 

5 CONCLUSIONS 
 

We developed a methodology based on spectral indices and GEOBIA to refine the BA detection in 

two regions of the Brazilian Amazon, using Landsat-8 OLI and Sentinel-2A MSI sensors. This study indicated 

that BAI (M index>1.5) was the best spectral index for BA mapping in our study sites and for both Landsat-8 

OLI and Sentinel-2A MSI sensors, considering a single-temporal date approach. These indices were not 

previously studied for BA mapping, especially in medium spatial resolution images, which represents a novelty 

itself. However, different indices, such as MIRBI and NBR2 also presented elevated M index values and good 

distinguishing ability between burned and unburned areas in our sites, demonstrating that NIR and SWIR 

spectral regions are crucial for BA detection. In contrast, BAIM and CSI presented poor results and therefore 

lower separability. In such a way, they are less indicated for the Brazilian Amazon region studies.     

This work also demonstrated that for refined BA mapping only the threshold method is not sufficient, 

once it detects burned ‘core’ areas, but presents higher omission and commission errors. A second phase, which 

included a refined BA detection model based on GEOBIA, allowed a better delineation of burned areas and a 

decrease in the misdetection. Nonetheless, the proposed methodology applied in medium spatial resolution 

imagery presents a better balancing of omission and commission errors (mean of 0.22 and 0.32, respectively) 

for BA mapping, as well as a high DC (about 0.70) and a low RelB (about 46.3). Moreover, our methodology 

allowed including small BA (more than 80%) which is an improvement for the Brazilian Amazon region 

mapping and BA overall estimation. Such approach is a novel contribution to the BA detection in the Brazilian 

Amazon and can be enhanced for an operational product generation. However, the fixed segmentation 

configuration and thresholds definition in the GEOBIA may not be suitable for the whole Amazon region. 

For further researches, the methodology should be tested in other study areas (due to Amazon’s 

heterogeneity) and medium resolution images, such as CBERS-4 MUX and Resourcesat-2 LISS. In this 

manner, these studies would contribute to increase the data coverage and availability for the Brazilian Amazon 

and to support the generation of refined BA products. 
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