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Abstract. Monitoring the large number of active fires and their conse-
quences in such an extensive area such as the Brazilian territory is an
important task. Machine Learning techniques are a promising approach
to contribute to this area, but the challenge is the building of rich ex-
ample datasets, whose previous examples are unavailable in many areas.
Our aim in this article is to move towards the development of an ap-
proach to detect burned areas in regions for which there is no previously
validated samples. We deal with that by presenting some experiments to
classify burned areas through Machine Learning techniques that combine
remote sensing data from nearby areas and it can distinguish between
burned and non burned polygons with good results.

Keywords: Remote Sensing · Burned Forest Classification keyword ·
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1 Introduction

Brazil recorded more than 197,000 active fires within its 851 million hectares of
are between January and December of 2019 [6]. This represents an increase of
around 48% compared to the number of active fires recorded throughout 2018.
Among the six biomes in the country, the Cerrado (savannas and scrub forests),
a biodiversity-rich region that occupies around 204 million hectares, was the
most affected biome – it recorded more than 63,000 active fires in this period.
It is estimated that it lost almost half of its original vegetation cover.

Monitoring this large number of active fires and their consequences in such an
extensive area such as the Brazilian territory is an important task, and requires
the involvement of policy makers, environmentalists and the scientific commu-
nity. Several studies cover the fire-related aspects and their economic, social,
and environmental impacts [3, 9, 18, 12]. They agree with the need for reliable
information about the extent and location (both in space and time) of the areas
affected by the fire.
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The National Institute for Spatial Research (INPE), part of the Brazilian
Ministry of Science, Technology, Innovation and Communications, is the offi-
cial institute responsible for monitoring forest fires and reporting information in
Brazil. INPE’s monitoring is done by remote sensing and it is developed in two
independent ways, using different satellite images’ resolutions. Low-resolution
images (with pixels larger than 300m) are used to generate daily data products.
The active fire monitoring, for example, is done this way for the whole coun-
try. Medium-resolution images (with pixel’ sizes around 30m) are used for less
frequent but more accurate studies. The burned areas’ estimation is done this
way, but only for the Cerrado biome. With these distinct views, it is possible to
offer products such as estimation of burned area and the prediction of the risk
of fire on vegetation. These products can be used to prevent, monitor, combat
and create actions to analyze the impacts of burning, to estimate the emission of
pollutants and to reduce the damage caused by fire. However, other biomes that
also had a high number of active fires, do not have this more accurate monitoring
of burned areas.

The general approach used by INPE’s estimation of burned area with medium-
resolution images is to compare consecutive images of the same regions, to detect
spectral changes and to determine the changes caused by fires. As part of the
official data, it is necessary to present the quality of indication at least 95% of
success. And, to ensure this quality, nowadays, it is necessary for manually verify
the data before the publication.

Recent studies [5, 12, 2] present challenges and new advances in fire moni-
toring. However, there is no generic automatic model for the problem of classi-
fying burned data in continuous monitoring on a global scale, as the Brazilian
whole territory. A consensus is that to develop and evaluate more automatic
approaches, it is important to have a rich knowledge database about previous
occurrences of burned areas. Unfortunately, many Brazilian regions, and even
biomes, have few validated burned area studies and datasets, such as Amazon
and Caatinga (a dry shrub-land biome). The major challenge of this approach
is the need for previously validated data from the same area – validated data is
data that was evaluated by a specialist, which is very time consuming. Thus, to
expand the analysis to the whole country, a new approach is essential.

Our aim in this article is to move towards the development of an approach
to detect burned areas in biomes or regions for which there is no previously vali-
dated data. We deal with that by presenting some experiments to classify burned
areas through Machine Learning techniques that combine remote sensing data
from nearby areas and it can distinguish between burned and non burned poly-
gons in areas without samples or with few previously validated remote sensing
data. The proposed approach is validated over a large study area in the Brazilian
Cerrado and Caatinga against reference data derived from classifications done
by experts by INPE. The good results of the experiments contribute to propose
using the approach to adapt data from nearby areas.

This paper is organized in the following sections: Section 2 shows related work
and how remote sensing is used to monitor burned areas. Section 3 presents the
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proposed approach and explains the dataset. Section 4 presents the experiments
for some classification models and discuss the results. Section 5 presents the
conclusions and future work.

2 Burned areas mapping by Remote Sensing Monitoring

The use of remote sensing images collected in different wavelengths is the most
efficient way to monitor fires in places with great territorial extension or ar-
eas of difficult access. The spectral data present different information for each
type of target and for the different regions of the electromagnetic spectrum
that are changed after vegetation burning. Furthermore, remote sensing images
frequently provides recent information. In Brazil, for example, it is the most
efficient fire monitoring means, with the lowest cost. In recent years, new gener-
ations of satellites (e.g. Landsat 8, Sentinel-2 and CBERS-4 – the China-Brazil
Earth Resources Satellite) were developed to provide better resolution images
and more precise georeferencing. Features and advances made possible by these
new satellites generation may be found in [11].

There are some projects that monitor fire events and related information
in many places around the world. The SERV-FORFIRE (Integrated Services
And Approaches For Assessing Effects Of Climate Change) [8] project is one of
them that presents collaborative efforts of the international community of remote
sensing to deal with forest fires. For specific burned areas estimation, they employ
and combine local information, such as soil, vegetation and risk management
database to detect burned areas in extreme events with high success.

Inside the automatic mapping of burned areas literature, Chuvieco et al. [5]
present a recent and complete burned area review with the main wavelengths,
sensors, and satellites used for it. They also explore the physical basis for de-
tecting burned areas from remote sensing data, describes the historical trends
and summarizes some recent approaches to map burned areas.

Studies are applying the new advances of medium resolution data. Liu et
al. [12] developed an algorithm for continuous monitoring of annually burned
areas using the harmonic model in Landsat time series rather than two image
comparisons, as we do. Pereira et al. [18] presents an approach for automatically
mapping of burned areas. Their study has good accuracy results in using a One-
Class Support Vector Machine (SVM) trained by Active Fire.

Andrade et al. [1] proposed a semiautomatic approach to classify burned areas
through the use of neural networks. Previous results decreased the number of
polygons wrongly classified and showed the viability of using Neural Networks in
the classification process. Mithal et al. [16] employ machine learning approaches
in the problem of burned areas mapping. They present a three-step approach to
map burned areas in tropical areas which compares data from two low resolution
(500m) successive images from Moderate Resolution Imaging Spectroradiometer
(MODIS), feeds it into a proprietary algorithm to classify these data and perform
a final processing step for detection of burned areas. According to the authors,
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although it has many errors in indicating correct burned areas, it is a promising
global approach that brings a more comprehensive assessment of tropical fires.

Bittencourt et al. [2] proposed a strategy to classify burned areas by using a
Machine Learning approach. They used a one-year knowledge dataset to classify
unknown data in the same region. Extending their work, we employ an approach
through the use of Machine Learning (ML) classification models to classify which
areas have changed in a comparison of two different acquisition moments. The
main difference is that our work is focused on providing to extend strategies to
INPE’s machine learning classification process to classify areas with few historic
datasets. Previous results show the difficulty of choosing one specific model to
answer our burn classification problem. To contribute to the understanding of
this problem, our work is related to the effort to develop automated approaches
to classify burned areas with few previously validated data.

3 Proposed Approach

We hypothesize that knowledge databases with lots of previously validated data
can characterize and classify regions in nearby areas. Our aim in this article is
to contribute to the development of an approach to detect burned areas with
no previously validated data. We treat this problem by proposing a strategy
that employs machine learning techniques based on a knowledge database from
classified regions to classify near regions. We defined the process to determine
relevant features and experimented with the approach on an applicable dataset.

Fig. 1. General view of Burned Areas Identification Process.

The general idea of the whole burned areas identification process, illustrated
in Figure 1, is based on remote sensing data evaluation and classification, and it
is composed by two steps: the first is to detect spectral changes in two consecutive
images of the same region in a limited period. This first step has high reliability
and it was developed and is being used at INPE.

The resulting database is composed of polygons extracted by the burned areas
mapping algorithm [15]. This process detects candidate burned polygons every
two weeks with high reliability for medium resolution images (30m). It compare
images from the same region to different dates, with the standard temporal
difference being a 16-day. The ones that present interference like noise or many



An approach to classify burned areas 5

clouds are discarded and an image before this one is used, with 32, 48 or at
most 64 days difference. At intervals greater than this, the vegetation starts the
recovering process and it is not possible to detect relevant changes.

However, some of these changed regions are deforestations, crops, and clouds,
and, to be officially considered as burned areas and reported, it needs to be
labeled in order to ensure the quality of at least 95% of success in the indication
of burned areas. This is done in a second step that defines if the detected change
is due to fire, based on a knowledge database of previously detected changes of
the same region.

The most recent INPE’s published official result of burned areas estimation
in the Cerrado employed a further evaluation process to separate the confirmed
burned areas dataset. The result of this process is a huge validated knowledge
database from the Cerrado biome that is composed of a set of changed areas
that can be caused by many factors, with some of them being burn occurrences.
The results are good and reliable but the manual evaluation is expensive and
time-consuming. Other strategies to create an automatic evaluation must ensure
the quality of results.

3.1 Data

The dataset used in this paper’s experiment was acquired through INPE’s Fire
Monitoring Program [7] that uses images from Landsat satellites. The data cover
part of the Cerrado biome, as shown in Figure 2.

Fig. 2. Fragment of Brazilian territory covering the Cerrado biome and highlighting
eight Landsat path/rows.

The Landsat Program [22] stands out among Earth observation satellites
that provide medium-resolution orbital images of the same area every 16 days
since the 1980s. It provides environmental data with all corrections processed,
such as spectral band values and spectral vegetation indices.
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Landsat imagery is separated by paths and rows. The red parallelogram in
Figure 2, the study area of this work, illustrates a fragment of an image position
with a set of eight path/rows illustrated in Figure 2. Light gray highlights in-
dicate the Cerrado delimitation and dark gray indicates protected areas. Every
single pixel in the image corresponds to a square cell of 30m x 30m on the terrain
and each complete image represents a coverage area of 18,500 x 18,500 ha. As
each original Landsat image contains the reflectance spectra for each pixel in a
digital image, the polygons are composed of a set of pixels.

The parallelograms in Figure 2 illustrates the eight path/rows and the poly-
gons detected as change between two consecutive images. The central parallelo-
gram corresponds to path 220 and row 065, named by 220/065 path/row, part
of the Cerrado biome in the states of Maranhão and Piaúı, in Brazilian territory.
The complete dataset is composed of positive and negative examples of burned
areas occurrences, in a total of 118881 polygons. Confirmed burned areas (posi-
tive examples) are represented in red and non burned areas (negative examples)
are represented in blue. These latter are polygons detected by the reference al-
gorithm and that were discarded by experts because they were not caused by
fires, such as clouds, crops, and deforestations.

The polygons’ set was developed by the evaluation of a set of 80 images of
the 2018 year. The data ranging is from April to October. Other months corre-
spond to the rainiest period in that region. This makes it difficult to compare
consecutive images without a huge portion of clouds and because that period is
less prone to the existence of active fires. There are 10 images of each path/row
on the following sets: 219/064, 219/065, 219/066, 220/064, 220/065, 220/066,
221/065 and 219/066. In this work, the area division is indicated by path/rows
because it is simple to simulate a real process and to facilitate data visualization
process.

(a) Polygon’s amount (b) Changed area (ha)

Fig. 3. Polygon’s amount and changed area by path/row

The study area contains 118881 polygons that cover around 1594211 ha
(around 14761155 soccer fields). From those, 75060 correspond to confirmed
burned polygons totaling 1133059 ha and 43821 are areas changed due to other
factors, which we call non burned polygons, and which total area is 461151
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ha. Figure 3 illustrates the total number of polygons and the area occupied by
changed areas by month in each year.

Fig. 4. General view of Classification Step.

Figure 4 illustrates the general Burned Classification Process. It starts with
the comparison of an image I on a time T with an image J on a previous time (T-
1). Adjacent pixels on the image I detected as change are grouped in a polygon.
For each polygon on the image I, it is computed the medians of each spectral
band. After that, it is computed the medians of each spectral band on the same
polygon’s area on the image J and the differences between values on time T
related to time T-1 are estimated.

We obtained the dataset available in early December to build our knowledge
base and run experiments from that release. However, as work is in operation and
with continuous development, as advances are made within the INPE’s research,
some advances are introduced into the system, for example, improvements in
the data collected by the satellites and also enhancements in clouds and smoke
masks. Besides, because the data is used by real users and there is input from
other information systems, some omission or detection errors are reported. In
this way, the data is reprocessed, re-evaluated and sometimes the official results
are updated in the official system and made available to the user.

3.2 Features’ understanding

The knowledge database is composed of features for the polygons, their spectral
bands values and spectral vegetation indices. The features can be subdivided
into four categories based on this source: original values of bands, original val-
ues of spectral indices, values computed of bands’ values differences and values
computed from spectral indices differences. In this study, b4 denotes data from
Landsat band 4, b5 corresponds to data from Landsat band 5 and so on. There
are two direct sets of features based on the value of bands. The first set is com-
posed of the median values of each pixel that make up the polygon. The features
indicated without suffixes correspond to the median value observed on the day
of the satellite’s passage.

Figure 5 shows the frequency distributions of original values of spectral bands
data from b2 to b7 for all 118881 evaluated polygons. The distributions, except
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Fig. 5. Histogram of spectral bands b2, b3, b4, b5, b6 and b7 original values, for
polygons labeled as burned and non burned.

for b5 and b6, are unimodal and similar for burned and non burned polygons.
The variability of data is within known specifications limits on the literature [5]
for each band. We highlight bands b5 and b6 to differentiate between burned
and non burned data because the curves and the mean of burns and non-burns
are different.

The differences that appear in the bands, in general, are small with the
highest concentrations around 0. The plots show some outliers that focused on
the positive part of most of the sets. They are common to the data and that will
be kept on to avoid tendency results. Except for the plots of bands 5 and 6, the
shape of the burning curve is similar to the format of the non burning graph.
This indicates the difficulty of performing linear separation of these sets using
these data.

Features indicated with the suffix ” dif” correspond to differences between
the median value of the pixels on each polygon in the passage and the medium
value of pixels of the region bounded by that polygon in the previous date used
in the comparison. Figure 6 shows an overview of the different values of spectral
bands data from b2 to b7.

All of these histograms are unimodal and, except for data from bands 2 and
3, the curves are asymmetric. The curves on burned and non burned sets are
more similar than original features and outliers are presented in bands b5, b6,
and b7. The mean values are concentrated around 0, which demonstrates small
differences between data on the previous date.

Another set of attributes of each polygon is composed of eight spectral veg-
etation indices already used in burned literature. They are: Burn Area Index
(BAI) [4], Char Soil Index (CSI) [13], Global Environment Monitoring Index
(GEMI) [19], Mid-Infrared Burn Index (MIRBI) [21], Normalized Burn Ratio
(NBR) [10], Normalized Difference Vegetation Index (NDVI) [20], and Normal-
ized Difference Water Index (NDWI) [14].
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Fig. 6. Histogram of difference between spectral bands b2, b3, b4, b5, b6 and b7
original values and spectral bands previous values, for polygons labeled as burned and
non burned.

A summary of the vegetation indices applied in this approach is described
above.

NDV I =
b5 − b4

b5 + b4
,

NBR =
b5 − b7

b5 + b7
,

MIRBI = 10 ∗ b7 − 9.8 ∗ b6 + 2,

NDWI =
b3 − b6

b3 + b6
,

BAI =
1

(0.1 − b4)2 + (0.06 − b5)2
,

CSI =
b2

b6
,

GEMI =
n ∗ (1 − 0.25 ∗ n) ∗ (b5 − 0.125)

1 − b5

with n =
2 ∗ b72 − b52 + 1.5 ∗ b7 + 0.5 ∗ b5

b7 + b5 + 0.5
,

GEMIL =
n ∗ (1 − 0.25 ∗ n) ∗ (b5 − 0.125)

1 − b5
,

with n =
2 ∗ b62 − b52 + 1.5 ∗ b6 + 0.5 ∗ b5

b6 + b5 + 0.5

They present good results in preliminary experiments, which are not pre-
sented in this article.
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Fig. 7. Histogram of area (ha) and spectral indices original values, for polygons labeled
as burned and non burned.

Figure 7 presents the histograms of the spectral vegetation indices and the
area of each polygon. Some features present outliers and attributes, GEMIL,
NBR and NDVI present differentiation between burned and non burned set but
it is still not simple to do a linear cut between the sets. These curves present
larger ranges between data. Features AREA and BAI present larger ranges.
Curves on these histograms present mean values with more distinction between
burn and non burned sets. No feature is alone sufficient to characterize the burn
set but it can contribute to correctly distinguish the two sets.

The last set of features is based on the difference between the current indices
and the values of indices on the previous images. After this set we have the
following set of 29 features: AREA, b2, b3, b4, b5, b6, b7, b2 dif, b3 dif, b4 dif,
b5 dif, b6 dif, b7 dif, BAI, CSI, GEMI, GEMIL, MIRBI, NBR, NDVI, NDWI,
BAI dif, CSI dif, GEMI dif, GEMIL dif, MIRBI dif, NBR dif, NDVI dif, and
NDWI dif.

3.3 Data Processing

The strategy in the data processing is to have a smaller set of relevant attributes
to reduce the volume of analyzed data and the processing time while maintaining
a low error rate improving the prediction performance of the classifiers.

The first step is the normalization of the set of features to have different
features on the same scale. That will accelerate the learning process.

After that, the second step is the evaluation of the correlation between each
pair of features. We consider correlations are greater than 97,5% represents a
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strong value where both features point out about the same knowledge, a mul-
ticollinearity situation. In this case, we remove the redundant feature. The rest
were maintained in our analysis since the relationships found may not be trivial.
Thus, they remain in our analysis, along with the other bands.

At the end of this process, the complete database on this experiment is
composed by the following 28 features: AREA, b2, b3, b4, b5, b6, b7, b2 dif,
b3 dif, b4 dif, b5 dif, b6 dif, b7 dif, BAI, CSI, GEMI, MIRBI, NBR, NDVI,
NDWI, BAI dif, CSI dif, GEMI dif, GEMIL dif, MIRBI dif, NBR dif, NDVI dif,
and NDWI dif.

Processed data preserves the original distribution characteristics, decreases
the effect of the outliers and allows a better interpretation of the set.

4 Classification Experiments

To explore the effectiveness of the approach we created validation tests that
simulates a real process of using a recent knowledge dataset to predict the clas-
sification to a nearest regions dataset. Our approach is a classification problem
solved through a supervised learning class of problems, where a model is trained
with a labeled dataset. We explored our approach in five experiments that al-
ternate training and testing datasets. The features of the training dataset are
used to create a model. In the testing set, the features excluding the labeled
class, are used to predict the class based on the created model. We employed all
polygons from some path/rows to test all polygons from other path/rows. No
data is repeated in the training and the testing dataset.

Fig. 8. Complete path/rows positions and each experiment training and testing sets

Figure 8 illustrates the complete path/rows positions and detaches the train-
ing and testing sets in each experiment. Experiments 1 and 2 show a global view
of the set and they are done with all adjacent path/rows. In experiments 3 and
4, the idea is to test if more distant data than adjacent path/rows would affect
the results. Experiment 5 simulates the more distant path/rows available in this
dataset.
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– Experiment 1: Three central path/rows on the same row compose the train-
ing set. Other rows compose the testing set.
• Training: 219/065, 220/065, 221/065.
• Testing: 219/064, 219/066, 220/064, 220/066, 221/064.

– Experiment 2: Three central path/rows on the same path compose the train-
ing set. Other paths compose the testing set.
• Training: 220/064, 220/065, 220/066.
• Testing: 219/064, 219/065, 219/066, 221/064, 221/065.

– Experiment 3: The 066 row is the training and the 064 row is the testing.
• Training: 219/066, 220/066.
• Testing: 219/064, 220/064, 221/064.

– Experiment 4: The 221 path is the training and the 219 path is the testing.
• Training: 221/064, 221/065.
• Testing: 219/064, 219/065, 219/066.

– Experiment 5: The 219/066 path/row is the training data and the 221/064
path/row is the testing set.
• Training: 219/066.
• Testing: 221/064.

Table 1. Number of polygons in each experiment divided by training and testing sets.

Experiment
Training Testing

Burned Non Burned Total Burned Non Burned Total

1 21327 8870 30197 22494 66190 88684

2 24473 24079 48452 17348 50981 68329

3 13342 45144 58486 4006 5837 9843

4 12021 45114 57135 10473 21076 31549

5 1566 3501 5067 5409 2690 8099

Table 1 illustrates the number of polygons in each experiment. All of them
have distinct amounts of data and some of them are more balanced than others.
However, it is possible to see on previous histograms the different sets, on the
majority of plots, do not present large variations within the same class.

4.1 Random Forest Model Classifier

This model consists of an ensemble of simple tree decision classifiers used to
determine the outcome. Each simple tree employs a set of decision rules to
separate the classes and, the ensemble votes for the most popular class. Random
Forest is a robust algorithm that minimizes the errors in specific trees.

We chose this classifier because it showed good results in previous works and
it has simple interpretability. We performed experiments using the Scikit-learn
environment[17]. The main parameters used on the model are a set of 64 trees
in the forest, 5 as the minimum number of instances in leaves and the indication
to the classifier to balance the number of examples in each class.
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Table 2. General overview of each experimental result

Experiment Accuracy Precision Recall F1 score

1 98 99 94 97

2 98 99 94 97

3 97 93 99 96

4 99 97 98 98

5 97 96 98 97

To evaluate the performance of the classifier in the problem of predicting
unlabeled data, we analyze the following metrics: the accuracy (the proportion
of true results among the total number of cases examined), the precision (the
proportion of predicted positives related to real positive), the recall (the pro-
portion of actual positives correctly classified) and the F1 score (the harmonic
mean between precision and recall).

Table 2 shows a general overview of the results. All analyzed metrics’ values
are higher than 93%. This indicates that it is possible to predict the class of the
polygon with high accuracy, near to reaching our initial aim of 95% of success
in each metric.

The training dataset has a different distribution than the test/validation
dataset and population. As a real problem, we consider wide margins between
training and test, but the results outperform previous experiments. In addition
to this challenge, our database is not error-free. Some areas are ambiguous and
even experts have doubts in certain places. In such cases, if the experts have not
sure in certain areas, they are classified as non burned, further increasing the
variability within the class.

These results indicate that for these sets, the approach was able to recover
most of the burned areas and to indicate that areas identified as burned had
few false positives. It is possible to note that, in these experiments, adjacent
path/rows show results close to the results of the most distant orbits. New ex-
periments with more orbits and more distant sets will be necessary to better
analyze this result.

5 Conclusions and Results

This work aims to show directions and to add value for the construction of an
automated high-performance environment to be able of dealing with the exten-
sive Brazilian territory and the complexity of generating data to build knowledge
bases for the classification of fire data and non burned.

We know it is a challenging task to perform this kind of test for large scale
areas. Besides, there is the complexity, and, in some cases, the impossibility to
generate train datasets. Then, we must advance in creating a fast and accu-
rate automated classifier with little manual interference that can detect fires by
combining data from more than one biome. It may treat and classify areas with
sparse data. And with each new set of data generated by a satellite image can be
autofitted to classify new data from nearby path/rows with the same accuracy.
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In this article, we presented the approach, applied it in nearby regions and
obtained accuracy close to 95%. Our results show that it is feasible to use the
strategy of the near set to help characterize the sets in places with poor data or
missing data. We believe that this can be improved with more tests in different
areas to propose the minimum values of path/rows and polygons that validate
the approach.

To the next steps, it is important to continue investigating whether data
closer has a better answer and how far it is possible to apply the strategy with
high accuracy. So, to this approach to be incorporated into the standard proce-
dure to test new areas is needed.

We know that different types of vegetation, soil, seasonal effects, and other
local characteristics may enrich the evaluation. For future work, we suggest incor-
porating other data products related to the fire risk, soil models and vegetation
to generate a more precise characterization of fires. However, we show that the
available data on LandSat is able of taking a step towards evaluating data in
regions with little validated data using readily available data. Work continues
to be improved. We are testing the most appropriate strategy to treat doubtful
cases and working on the model’s adaptability to all other Brazilian biomes.
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