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A B S T R A C T

Knowledge about the current fire dynamics in the Brazilian Savannas (Cerrado) relies heavily on satellite-derived
burned area (BA) products applied at the biome level. Nevertheless, there is still a lack of studies analyzing the
consistency of available available satellite products concerning BA location and extension for the region.
Accordingly, we performed an accuracy assessment of the MODerate resolution Imaging Spectroradiometer
(MODIS) collection 6 BA product (MCD64 /C6) over 222,768,000 ha encompassing the Brazilian Cerrado. We
used reference data derived from Landsat-8 OLI to perform an intercomparison of MCD64/C6 with 1) the
previous collection 5.1 (C5.1); 2) independent active fires from the Visible Infrared Imaging Radiometer Suite
(VIIRS); and 3) recent land use patterns. The results of the comparison between C6 and C5.1 indicate that the
new collection decreases the omission error in 90% of the analyzed area and increases the burn hits, providing
improved BA estimates in 61% of the region. However, the MCD64 product increases the overall commission
errors in 74% of the area. The MCD64/C6 product showed a high coefficient of correlation with active fires
independently detected by VIIRS (τ=0.74). For both MCD64 collections 5.1 and 6, the different accuracy
assessment measures exhibited a marked performance deterioration from the north towards the south. The
largest burn scars and total affected areas occur mainly across the northern Cerrado, explaining the better
performance in that area. Conversely, greater inaccuracies were found in the southern Cerrado area, where
natural vegetation has been converted into pasture and cropland, leading to fragmented landscapes and small
fire patches. Finally, the BAs mapped by both collections were similar in location albeit divergent in the mag-
nitude, with C6 detecting 21% more area than C5.1 during the year 2015.

1. Introduction

The Brazilian Cerrado, the largest savanna ecosystem in the world,
isa very relevant biome due to its large geographic extent, high levels of

biodiversity, and influence on global biogeochemical cycles (Franco
et al., 2014). The species richness is greater than that of other biomes,
including the Amazon, due to the heterogeneous vegetation structure,
and it is thus considered a biodiversity hotspot for conservation
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priorities (Myers et al., 2000). The Cerrado presents fire-dependent
vegetation that evolved in the presence of recurrent natural fires, which
maintain its biodiversity (Hoffmann, 2002; Pivello, 2017). Many spe-
cies are adapted to this regime needing fire for seed germination and
colonization (Beerling and Osborne, 2006; Dantas et al., 2013; Miranda
et al., 2009). This biome has suffered from the loss of habitats and
ecosystem services, with 43% (88Mha) of its natural vegetation having
been converted into pasture and croplands in recent decades
(Strassburg et al., 2017). These anthropogenic activities still use fire as
a tool for land clearing, pasture renewal and expansion (Araújo et al.,
2012; Beuchle et al., 2015; Chen et al., 2013b; Durigan and Ratter,
2016; Gomes et al., 2018; Klink and Machado, 2005; Pivello, 2017).
Land cover changes in conjunction with climate variability have the
potential to induce vegetation burning, thereby impacting vast areas
(Song et al., 2018). Furthermore, positive feedbacks among land use,
climate variability, and ecosystem responses may increase biome de-
gradation through enhanced fire occurrence (Archibald and Lehmann,
2018; Santín and Doerr, 2016). The use of fire in the Cerrado requires
accurate characterization of the phenomenon in order to promote sus-
tainable land management practices that can maximize services without
compromising ecosystem resilience (Carranza et al., 2014; Durigan and
Ratter, 2016; Pivello, 2017; Santín and Doerr, 2016).

Accordingly, many satellite-derived burned area (BA) products have
been developed for fire monitoring, modeling, and risk assessments
(Mouillot et al., 2014). In the early 2000s, the MODerate resolution
Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua sa-
tellites from the National Atmospheric Space Agency (NASA) were the
first moderate-resolution (˜ 1 km) sensors to include dedicated channels
enabling routine global fire observations. The MODIS sensors have been
successfully used for active fire monitoring (Giglio et al., 2016b), BA
mapping (Boschetti et al., 2015; Chuvieco et al., 2008; Giglio et al.,
2009; Libonati et al., 2015; Panisset et al., 2017; Ramo and Chuvieco,
2017; Randerson et al., 2012; Roy et al., 2005), and fire model
benchmarking in many regions around the globe (Hantson et al., 2016;
Nogueira et al., 2017a). The MODIS burned area product (MCD64)
collection 5.1 released in 2012 has been widely used in numerous
studies examining fire regimes and biomass burning emissions (Andela
et al., 2017; Chen et al., 2013a; Chuvieco et al., 2014; Zhang et al.,
2016).

Different global and regional studies have evaluated satellite-de-
rived BA products, showing their strengths and weaknesses (Mouillot
et al., 2014). A global BA accuracy assessment identified MCD64 C5.1
as more accurate than the MODIS MCD45 C5.1 and the Envisat/MERIS-
based products, even if the MCD64 C5.1 exhibited substantial under-
estimation of the total BA in different vegetation types (Alonso-Canas
and Chuvieco, 2015; Padilla et al., 2015; Roy et al., 1999). In boreal
Eurasia, the MCD64 C5.1 product was demonstrated to be inadequate
for small fire detection (Zhu et al., 2017), in particular those associated
with cropland burning (Fornacca et al., 2017; Hall et al., 2016). Over
South Africa, the same drawbacks were found, but MCD64 C5.1 showed
higher detection probabilities relative to the MCD45 C5.1 product for
BA fractions> 50% within the MODIS pixel (Tsela et al., 2014, 2010).
In the northern Brazilian savannas, the MCD64 C5.1 BA estimates for
the 2005–2010 period were 70% lower than estimated by independent
reference data, while showing similar temporal variability (Libonati
et al., 2015). Omission errors were also reported in southern Brazilian
savannas, where small burns dominate the fire size distribution (Pereira
et al., 2017). In April 2018, the Land Processes Distributed Active Ar-
chive Center (LP DAAC) decommissioned MCD64 C5.1 and released
collection 6 (hereafter C6), which is a reprocessed version including
updated calibration and geolocation information in addition to algo-
rithm upgrades (Giglio et al., 2018). A comparison between the MCD64
C5.1 and C6 products for 2002–2016 (Giglio et al., 2018) showed im-
proved performance over small fires, especially in croplands, increasing
the average BA mapped worldwide by 26% (except in the Boreal region
where a 6% reduction was observed in the areas mapped). Compared to

previous versions, MCD64/C6 has an improved characterization of the
date of burning, lower omission error (37% vs. 40% for MCD64 C5.1,
and 45% for MCD45 C5.1), and lower relative bias of -17.9% compared
to MCD64 C5.1 (-22.7%) and MCD45 C5.1 (-27.9%). However, MCD64
C6 presented a higher commission error (24% vs. 22% and 23% for
MCD64 C5.1 and MCD45 C5.1, respectively) and an overall accuracy of
97%, similar to the old collections.

Despite the large fire activity in the Cerrado, there is still a lack of
studies analyzing the consistency among currently available BA pro-
ducts for the region that take into account the BA location and exten-
sion and that include the most recent MCD64 C6 product. The majority
of studies based on MCD64 C5.1 data for the Brazilian Cerrado have
been performed on a few limited areas mainly composed of conserva-
tion units (Araújo and De Ferreira, 2015; Libonati et al., 2015; Nogueira
et al., 2017b; Pereira et al., 2017; Santos et al., 2018). Moreover, little is
known about errors in remotely sensed BA products as a function of
land use/cover in the Cerrado. Although some studies have focused on
the impact of land cover changes on the BA product uncertainties
(Araújo et al., 2012), only small areas were analysed. Accordingly, in
this work we performed a rigorous assessment of MCD64 C5.1 and the
new MCD64 C6 for the Brazilian Cerrado at the biome scale, using re-
ference burn scars based on United States Geological Survey Landsat
30m resolution data for the 2015 fire season, a year with extensive BA
in the Cerrado biome (Pereira et al., 2017). Complementing the ana-
lyses, we performed a comparison with active fires independently de-
tected by the Suomi-National Polar-orbiting Partnership Visible In-
frared Imaging Radiometer Suite (VIIRS) from 2013 to 2016, assuming
that they provides a reasonable, complementary and practical approx-
imation of the performance of MCD64 BA collections, allowing wall-to-
wall temporal and spatial coverage which is unfeasible with Landsat-
based validation practices. Finally, we analyzed land use patterns as an
explanatory source of uncertainties from MCD64 collections.

2. Data and methods

2.1. Study area

The Brazilian Cerrado (2°20′25″S to 24°41′5″S and 60°06′34″W to
41°31′18″W) covers 204,500,000 ha and dominates most of central
Brazil (Fig. 1). The predominant climate is tropical with a dry winter
(Aw type in Koppen's classification) (Alvares et al., 2014; Kottek et al.,
2006), and with high inter-annual variability in precipitation, ranging
from 800 to 2000mm per year (Ratter et al., 1997). The dry season
occurs from the end of June to mid-October, when fire incidence is
highest in this biome (Libonati et al., 2015; Nogueira et al., 2017b; Silva
et al., 2016). The typical vegetation communities range from closed and
open shrublands, to open savannas and natural grasslands, and in-
cluding open deciduous canopy forests (Fig. 1). This variation is de-
termined by a mosaic of different soil types, irregular water availability,
burn regimes, land use, and topographic variations (DaSilva and Bates,
2002). The Cerrado is also experiencing significant land use change,
with its native vegetation being replaced by exotic grasslands and
croplands for livestock and intensive agriculture in recent years (Fig. 1)
(Lapola et al., 2014; Sano et al., 2010; Song et al., 2018).

2.2. Datasets

In this study, we evaluate the MODIS BA MCD64 product, released
as Collection 5.1 and 6 (hereafter C5.1 and C6, respectively), using
burned scars from Landsat as our reference. The active fires and land
cover information are used as auxiliary data to discuss the results. All
datasets are described below.

2.2.1. An overview MODIS burned area products
The MCD45 product (Roy et al., 2005) was the first BA product

developed by NASA using data from the MODIS sensors onboard the
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Terra and Aqua satellites. The MCD45 algorithm is based on a model
that accounts for directional reflectance effects and temporal changes in
the land surface properties (Roy et al., 2008). The product provides the
burn date together with a quality control layer (hereafter quality flag -
QF), which indicates the confidence level of the burn detection. The
MCD45 and MCD64 C5.1 products were decommissioned in April 2018,
and subsequently replaced by MCD64 C6 in August 2018.

MCD64 maps BA on a daily basis globally at 500m spatial resolu-
tion by combining MODIS surface reflectance imagery, active fire data,
and ancillary vegetation cover information. The mapping algorithm
uses active fire observations to develop a statistical characterization of
burn-related and non-burn-related change during the mapping period,
and subsequently employs Bayes’ rule, supplemented with additional
probabilistic tests, to classify individual grid cells as either burned or
unburned. The algorithm has been applied to the full archive of MODIS
fire data, yielding a monthly global BA product spanning the period
from late 2000 through the present. Collections 5.1 and 6 from MCD64
are freely available from the LP DAAC (https://lpdaac.usgs.gov/) and
several public FTP servers (see http://modis-fire.umd.edu/ba.html).

Tiles for MCD64 over the study area (Fig. 1) were mosaicked and
remapped using the Modis Reprojection Tool (MRT) (https://lpdaac.
usgs.gov/tools/modis_reprojection_tool). The product in a global sinu-
soidal projection contains five data layers (Burn Date, Burn Date Un-
certainty, Quality Assessment, First Day, and Last Day), each stored as a
separate HDF4 Science DataSet (SDS) file format.

2.2.2. Landsat sensor-derived burned scars and the study samples
We used burned scars derived from Landsat images as reference

data in this study. The reference scars were mapped every 16 days at a
spatial resolution of 30m using multispectral images from the Thematic
Mapper (TM) and Operational Land Imager (OLI) sensors aboard the
Landsat-5 (L5) and 8 (L8) satellites, respectively. The thematic maps are

systematically generated by the National Institute for Space Research
(INPE) and are available at https://prodwww-queimadas.dgi.inpe.br/
aq30m/# (Melchiori et al., 2014). The BA classification method is
based on the Normalized Difference Vegetation Index (NDVI) and
Normalized Burn Ratio Long-shortwave infrared variation (NBRL) in-
dices, and on change detection between consecutive images of both
indices. The dataset includes burned scars for the entire Cerrado biome
from 2001 until the present. The burnt scars automatically generated by
INPE’s algorithm are further subject to an independent in situ analysis
and visual photo interpretation.

A series of quality control procedures for removing data of reduced
accuracy were applied here to ensure consistency among all the burn
scar samples. Five burn scar selection criteria defined by the validation
protocol recommended by the Committee on Earth Observations
(CEOS) Land Product Validation Working Group (Boschetti et al., 2010)
were used here to filter reference burn scars in order to minimize errors,
namely:

I) Use of a temporal separation of 16 days between consecutive
images (the minimum possible time difference for Landsat) to avoid
spectral signal attenuation;

II) Exclude months outside the June-to-November period to reduce
cloud contamination and rainfall episodes;

III) Confine the analysis to scenes with cloud coverage equal to or less
than 10%;

IV) Perform a detailed analysis of cloud distribution in pre- and post-
fire images with associated scars to avoid commission errors;

V) Exclude scars smaller than 25 ha, corresponding to the minimum
area of one MCD64 pixel.

After applying the criteria above, the initial 113 path/row scenes
were reduced to 84 scenes, which were further visually inspected by an

Fig. 1. Land cover distribution in the study area in the year 2015 derived from the MCD12Q1 MODIS C6 product with 15 classes defined by the International
Geosphere-Biosphere Programme (IGBP) land cover classification scheme (Loveland and Belward, 1997).
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independent analyst to ensure quality of the reference maps (Fig. 2).
The initial and final validated period was further extended by two days
due to burn date uncertainty (Giglio et al., 2016a). Accordingly, the
accuracy assessment was performed for the 84 Landsat selected scenes
during 2015, a year with extensive BA in the Cerrado biome (Pereira
et al., 2017).

2.2.3. Auxiliary datasets
2.2.3.1. VIIRS active fires. We performed a temporal and spatial
comparison of MODIS BA products with the VIIRS 375-m active fire
product (VNP14IMG) (Schroeder et al., 2014) over the Cerrado biome
for the 2013–2016 period. We chose the VIIRS fire active product
because these data are independent of the MODIS fire active data used
in the MCD64 algorithm. Moreover, the VIIRS 375-m active fire product
provides the best possible compromise between spatial and temporal
resolution of currently available operational satellite fire data sets for
use in support of burned area identification. Its performance is proven
superior compared to other operational satellite active fire products,
while providing systematic 12 h observations of the entire globe. Other
active fire data sets may be available although limitations involving
their spatial/temporal information and/or operational status/
accessibility prevented their use here (e.g., GOES-East, AVHRR/Metop
series, Sentinel-3).

The VIIRS 375-m active fires data have been validated over distinct
fire-prone ecosystems, revealing a higher fire detection rate compared
to MODIS 1-km data (Csiszar et al., 2014; Oliva and Schroeder, 2015;
Schroeder et al., 2014). The results of the validation over tropical
grassland and savannas and over agricultural fires revealed that the
omission errors associated with fire affected area estimation decrease

with increased fire size, although high fire spread rates can reduce the
efficacy of fire perimeter delineation using VIIRS active fire detections
(Oliva and Schroeder, 2015). The statistical representativeness of the
VIIRS active fire detections in the Cerrado biome was assessed here by
comparing summary statistics over each one of the 84 Landsat scenes
during the 2015 dry season. The two datasets present very similar be-
havior as indicated by the value of 0.72 for the Kendall rank coefficient
(τ), statistically significant at the 0.05 level. The VNP14IMG product
has a resolution of 375m and is currently available from 2012 until
present; the data were downloaded in shapefile format from https://
firms.modaps.eosdis.nasa.gov/download/.

2.2.3.2. Land use data. We conducted a spatial regional-scale analysis
aiming to shed light on the relationships between BA characteristics
(main patterns and uncertainties) and land use. The approach was
performed using the updated collection 6 Land Cover Type Yearly
Global 500-m MCD12Q1 product (Friedl et al., 2010). The MCD12Q1
C6 product incorporates 13 data layers and five different classification
schemes derived through a Random Forest Classifier with a new legend
based on a nested set of classifications (Sulla-Menashe and Friedl,
2018). In this study, we used the layer following the International
Geosphere-Biosphere Programme (IGBP) land cover classification
scheme (Loveland and Belward, 1997) for 2015. The IGBP
classification has 17 land cover classes, of which 15 occur in the
Cerrado biome, as shown in Fig. 1. The tile grids corresponding to the
Cerrado region were downloaded from the Earthdata search from NASA
(https://search.earthdata.nasa.gov/) and projected to datum SIRGAS
2000 EPSG:4674, the geodetic reference system for South America.
MCD12Q1 C6 was used here at the original spatial resolution (500m) to
evaluate the influence of land use on BA in the Cerrado.

In order to assess these impacts on burnt area distribution, we ca-
tegorized each of the 84 Landsat scenes according to the degree of land
use using a conceptual clustering. Land use intensity (LUI) was char-
acterized by the presence of pixels belonging to the MCD12Q1-IGBP C6
Grasslands, Croplands and Cropland/Natural Vegetation Mosaic land
cover classes from the 2015 map. In accordance with the IGBP classi-
fication (Loveland and Belward, 1997), the Grasslands class is domi-
nated by annual herbaceous plants (< 2m), the Croplands class refers
to areas with at least 60% of cultivated cropland, and the Cropland/
Natural Vegetation Mosaic class are mosaics of small-scale cultivation
(40–60%) with natural trees, shrubs, or herbaceous vegetation. We
defined three different LUI levels for individual Landsat scenes, with the
following thresholds: 0–50% (low LUI), 51–75% (medium LUI), and
76–100% (high LUI).

2.3. Methodology

In contrast to previous BA accuracy assessments in the region, the
current work aims to perform an assessment and intercomparison over
the whole Cerrado biome at different geographical levels, namely, the
local, regional, and biome levels, taking into account land cover and
land use patterns in the region.

2.3.1. Local accuracy assessment
The evaluation of non-probabilistic burned/unburned area detec-

tion is usually performed through a cross tabulation between the
burned and unburned classification and a reference data set and using
scalar attributes and skill scores describing the 2×2 contingency table
(Lillesand and Kiefer, 1994) (Table 1). The validation procedure as-
sumed here was, however, performed using a statistical technique
called the low-resolution bias concept. This technique takes into account
the fraction of area burned within the MODIS BA product pixel (500m)
quantified by the reference map (Landsat-derived), in accordance with
the methodology proposed by Boschetti et al. (2004) and already used
in other studies (Libonati et al., 2015; Padilla et al., 2014).

Four accuracy assessment measures, including the Threat Score

Fig. 2. Spatial distribution of the 84 Landsat reference scenes in the Cerrado
biome. The number in each scene corresponds to the path and row in the
Worldwide Reference System (WRS-2). The numbers below each path/row re-
present the number of images used to compose the validation period of each
Landsat scene.
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(TS), Bias (B) and Commission (CE) and Omission (OE) errors, were
derived from the contingency table. The threat score TS (Eq. (1)) is an
index used in the analysis of rare events, which considers only the oc-
currence of the event (in this case, burning). The bias B (Eq. (2)) shows
whether the product underestimates (B < 1) or overestimates (B > 1)
the total BA. The CE (Eq. (3)) is the fraction of pixels mistakenly clas-
sified as burned, unlike the OE (Eq. (4)), which is the fraction of burned
pixels not detected by the product. The CE and OE range between zero
and one, where values close to zero indicate the best measures.

=
+ +

a
a b c

TS (1)

= +
+

a b
a c

B (2)

=
+
b

a b
CE (3)

=
+
c

a c
OE (4)

2.3.2. Regional and temporal analysis with active fires
A regional approach with the support of active fire information is

used here to verify the spatial and temporal consistency of the BA
product variability, as commonly done in previous studies (Boschetti
et al., 2010; Giglio et al., 2010). Active fire information provides a
direct indication of fire occurrence, generally retrieved with low false-
alarms rates (Giglio et al., 2016b; Schroeder et al., 2008). This type of
comparison provides useful information about the performance the BA
product in large areas and periods in which no other reference data are
available to perform an accuracy assessment (Humber et al., 2018).
This is the case for the Landsat reference BA information from INPE,
which is restricted to the fire season. Active fires were also used here to
analyze the temporal consistency of the BA products at the biome level
in terms of the interannual variability.

To assess the spatial accuracy at the regional scale, we compared the
MCD64 C5.1 and C6 collections with the VIIRS active fires by com-
puting the total annual amount of BA and of active fire in each
25 x 25 km grid cell. The nonparametric Kendall rank coefficient (τ)
was used to assess the correlation between the MCD64 collections and
VIIRS active fires for each year of the period from 2013 to 2016, testing
the null hypothesis (H0) of no positive correlation between BA maps
and the active fire data. The alternative hypothesis (H1) indicates that
of a positive correlation between BA and active fires, at a significance
level of 0.05. This test is distribution-free and robust against noise, in
contrast to the traditional ordinary least squares-based methods (Wilks,
2011).

3. Results

In this section, we present the statistical analysis of the accuracy
assessment measures from the contingency table. Fig. 3 shows the
spatial patterns of all four measures for both MCD64 collections (C5.1
and C6), together with the respective differences between the collec-
tions. These spatial patterns clearly reveal a well-defined north-south
gradient for all three accuracy measures (i.e., TS, OE, and CE). The best
results for TS, OE, and CE are concentrated in the northern part of the
Cerrado (from latitude 2 °S to 15 °S or from Landsat row 062 to 070) for
both collections (Fig. 3, i and ii), where the largest scars were observed
(represented by the size of circles inside each scene). Conversely, a
well-defined spatial pattern was not observed for B.

Although the TS of both collections exhibited a similar distribution
and variability, C6 presents better (worse) results in 61% (28%) of the
scenes, whereas no meaningful differences between the collections
were observed in 11% of the scenes (Fig. 3a, iii). The overall im-
provement in TS is most likely related to the fact that OE decreased in
90% of the cases, increased in 5% and did not exhibit variation in the
other 5% of the scenes (Fig. 3b, iii). The maps of the difference between
the collections (Fig. 3, iii) indicate the predominance of positive (ne-
gative) changes for TS (OE), indicating improvements in C6 compared
to C5.1. However, positive values of ΔCE were still observed for a few
scenes, indicating an increase in CE in C6 (Fig. 3c, iii). Accordingly, the
C6 data exhibited higher CE values compared to C5.1 for 74% of the
scenes analyzed; only 14% of the scenes exhibited an improvement in
C6. Also, C6 produced a higher BA totals according to the ΔB results,
with 92% of the scenes exhibiting an increment, 5% exhibiting a de-
cline, and 3% remaining constant (Fig. 3d, iii). C5.1 underestimates the
BA in most scenes (B < 1), whereas C6 overestimates it (B > 1).

According to the analyses of CE and OE, the MCD64/C6 product
provides lower OE and higher CE than C5.1. For the 84 validated
scenes, our results indicate that on average the Cerrado biome presents
a reduction of 6.8% in the OE and an increase of 1.3% and 5% in the TS
and CE, respectively. To assess whether the observed difference be-
tween both collections is statistically significant, we performed a hy-
pothesis test considering for the null hypothesis that the mean values of
the accuracy assessment measures for the 84 analyzed scenes are the
same for both collections. For all four accuracy assessment measures,
the returned values rejected the null hypothesis at the 1% significance
level.

In 2015, the BA estimated by both MCD64 collections was similar in
location, albeit divergent in magnitude (Fig. 4). This is evident in the
values of the total BA detected by MCD64 C6 (15,070,850 ha) com-
pared to C5.1 (11,990,827 ha) (Fig. 4a and b), where the difference
between them (C6 - C5.1) totals 3,080,023 ha (Fig. 4c). Regarding the
spatial distribution, the highest BA for both the MCD64 C5.1 and C6
products was observed in the northern region of the Cerrado, similar to
VIIRS active fires (Fig. 4d), highlighting the substantial difference in the
north-south BA patterns. The observed agreement with active fires
confirmed the ability of the updated C6 product to track the spatial
patterns of BAs. Fig. 5 shows the BA values (C5.1 and C6) within a
25 x 25 km grid cell plotted against the corresponding VIIRS active fires
for the 2013–2016 period and the respective Kendall correlation index.
C6 exhibited a higher correlation with the VIIRS active fires data than
C5.1. For C6, the highest Kendall’s correlation index was found for 2014
(τ=0.78) and the lowest for 2016 (τ=0.71). The average value of
Kendall’s coefficient was 0.74, with a standard deviation of 0.033. For
C5.1, the best result was found for 2014 (τ=0.73) and the worst for
2013 and 2016 (τ=0.68). In this case, the average value of τ was 0.70,
with a standard deviation of 0.026. In all scatterplots, the regression
line passes nearly through the origin, and the slopes are almost the
same for both collections and all years.

The Cerrado biome covers a large area with strong BA spatial
variability, and selection of groups or subsamples covering the regional
distribution of BA is essential to minimize the overall accuracy

Table 1
Contingency table for classified burned areas between the Landsat reference
map and the MCD64 BA products (C5.1 and C6).

Reference map (Landsat-derived)

Burned Unburned Total

Burned area product
evaluated (MCD64)

Burned a b a+ b
Unburned c d c+ d
Total a+ c b+d a+b +

c+d

a=pixels classified as burned in the reference map and in the BA product.
b=pixels classified as unburned in the reference map and as burned in the BA
product.
c=pixels classified as burned in the reference map and as unburned in the BA
product.
d=pixels classified as unburned in the reference map and in the BA product.
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Fig. 3. Percentage of Threat Score – TS (a), Omission Error – OE (b), Commission Error – CE (c) and Bias – B (d) measurements of MCD64 (i) C5.1, (ii) C6 and (iii) the
difference between the two collections (Δ = C6 - C5.1). The light circles represent the mean size of scars obtained by the ratio between total burned area (in ha) and
the number of scars validated, considering the dates selected in each scene.
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variance, thus guaranteeing reliability and representativeness of the
validation results (Boschetti et al., 2016; Padilla et al., 2017). Accord-
ingly, we stratified our study region into four groups according to the
number of active fires (Fig. 4d). These groups were defined as follows:
(a) Group 1 - 200–2000 VIIRS active fires, (b) Group 2 - 2001–10000
VIIRS active fires, (c) Group 3 - 10001–20000 VIIRS active fires and (d)
Group 4 - 20001–35000 VIIRS active fires. Small scars (25–100 ha) are
highly frequent (greater than 62%) in all VIIRS active fire groups and
mainly in group 1, with 75% (Fig. 6, i). In contrast, large scars
(100–1500 ha) are less frequent (between 25–35%), and mega scars
(> 1500 ha) are very uncommon (less than 3%) for all groups. How-
ever, mega scars are responsible for most of the burned areas in groups
2–4 (greater than 50%), whereas for group 1, small and large scars
contribute more (35% and 54%, respectively) than mega scars (11%)
(Fig. 6, ii).

Fig. 7 shows the stratified boxplots of the accuracy assessment
measures (TS, CE, OE and B) for both collections, considering the 84
validated scenes within Cerrado as depicted in Fig. 2, according to the

number of active fires (VIIRS Group 1, Group 2, Group 3, and Group 4).
As the accuracy assessment measures from the contingency table con-
sider each error in a generalized manner, we analyzed the overlaps
between Landsat and MCD64 scars by taking into account the burned
scars size per classes of 25–100 ha, 100–1500 ha, and>1500 ha. In this
manner, we can evaluate the ability of the algorithm to identify smaller
burned patches, and quantify the false alarms and scar omissions. In
general, the results from C6 not only exhibit a lower variability in terms
of the four accuracy assessment measures, but also an increase in TS
and decrease in OE and CE as the number of active fire increases (VIIRS
groups from 1 to 4) (Fig. 7a–d, i). For both collections, OE is approxi-
mately 60–80% (20–30%) higher (lower) in areas classified as group 1
(group 4), with the lowest (highest) density of active fires. The C6 ex-
hibits a slight improvement in TS and OE and a slight deterioration in
CE. The TS, OE, and CE of C6 have smaller amplitudes than for C5.1 in
all active fires groups, in groups 2 to 4, and only in group 1, respec-
tively. Regarding the bias measurements, the C5.1 (6) collection gen-
erally underestimates (overestimates), median< 1.0 (median> 1.0),

Fig. 4. Total burned area (BA, ha) in each Landsat path-row as detected by MCD64 C5.1 (a) and MCD64 C6 (b), the BA difference between C6 and C5.1 (c) and the
total VIIRS active fires (d) in the Cerrado for 2015.
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the total BA in the groups 1, 2 and 3 (Fig. 7a–c, ii, respectively).
However, both collections overestimate (bias median>1.0) the total
BA in group 4, the one with the most active fires (Fig. 7d, iv).

Here, we classified the CE into two types: a CE that occurs at the
edge of the reference burned scars (CEEDGE), to evaluate the over-
estimation of their area, and an isolated CE, which is considered a false
alarm (CEFA) (Libonati et al., 2015). The same procedure is applied to
the OE: it is classified as a partial omission (OEEDGE) when it refers to an
underestimation of reference scar size, or it is classified as a total scar
omission (OEso) when no portion of the burn is detected. As shown in
Fig. 8a, CEFA (Fig. 8a, i) and OEso (Fig. 8a, ii) are higher for lower levels
of burning (Group 1) and lower for higher levels of burning (Group 4).
The updated MCD64 algorithm provides reductions in the OEso of the
detections of lower to high levels of burning (Group 1–4) at the same
time that CEFA increases for groups 1 and 2. A better insight into the
characteristics of commission and omission errors is provided in Fig. 8b,
which shows the proportion of each type of comissions (CEEDGE and
CEFA) and omissions (OEEDGE and OEso) errors. Fig. 8b(i) shows that
CEFA represents about 50% of CE in group 1 for both collections, with a
successive decrease in the subsequent three groups (less than 22%).
Comparing CEFA between MCD64 collections, C6 presents a higher
frequency than C5.1 for groups 1 and 2 (a surplus of 7% and 3%, re-
spectively), the same frequency for group 3 and a lower frequency,

although minimal, of 1%, for group 4. On the other hand, the OESO are
reduced in the C6, and the group 1 had the worst performance among
the four groups (over 70%), with the following groups presenting OESO
between 49% and 31% (Fig. 8b, ii). By analyzing the difference be-
tween the total edge errors (CEEDGE and OEEDGE) and the total isolated
errors (CEFA and OESO), we conclude that the errors of both collections
are more associated with the underestimation/overestimation of the
scar size, except for the low levels of burning represented by group 1.

Fig. 9 shows a local overview of the BA validation results for MCD64
C5.1 and C6 for four different regions over three Landsat path-rows
located in the Southern Cerrado, namely, 219_074, 220_075, and
225_073, and for one located in the northern portion, 221_067. Ac-
cording to a visual inspection of Fig. 9, scars with large extensions and
strong spectral signals are more easily identified, as expected. Smaller
and fragmented scars are more difficult to detect, even with an area
larger than the spatial resolution of the products. For instance, the
220_075 scene located in the southern Cerrado presents sugar cane
plantation farms (Rudorff et al., 2010), where small and fast spreading
fire fronts contribute to the BA omissions. On the other hand, in the
221_067 scene located in the northern Cerrado, which is characterized
by large scars, C6 presents a small number of omission errors than C5.1.
Overall, the updated algorithm captures more burned pixels, and the
consistency between the C6 results and the reference scars was higher
than for C5.1. The previous collection C5.1 is conservative, as a low
level of CE is achieved at the expense of a high occurrence of OE. C6, in
turn, has greater CE values with the majority of CEEDGE, thus re-
presenting an overestimation of the size of the real scars, due to the
low-resolution bias concept (Boschetti et al., 2004). In contrast, CEFA in
the strict sense represents the minority fraction of the CE. This draw-
back is common to other methods in the same region, as reported by
Libonati et al. (2015).

Finally, we assessed the effect of land use on the estimated varia-
bility of C6 and C5.1 errors and patterns over the study region.
Approximately 43% of the Cerrado biome belongs to some anthro-
pogenic land cover, based on the MCD12Q1-IGBP C6 land-cover clas-
sification for 2015 and considering the Grasslands, Croplands and
Cropland/Natural Vegetation Mosaic land cover classes. Fig. 10 shows
the categorization of the study region into three degrees of LUI and
reveals that low LUI, medium LUI, and high LUI occupy 56%, 26% and
18% of the study area analyzed, respectively. Regionally, 83% of the
northern region is characterized as low-LUI, whereas in the southern
region, medium- and high-LUI areas are predominant, accounting to-
gether for 76%.

A comparison between Figs. 3 and 10 reveals lower (higher) errors
(for both C5.1 and C6) in areas with low (high) land use rates, high-
lighting the north-south contrasting patterns observed in Fig. 3. It is

Fig. 5. Relationships between the total annual
burned area (km2) from MCD64 collections
C5.1 and C6 and total number of VIIRS active
fires counts within a 25× 25 km grid cell from
2013 to 2016. The regression line (in blue) and
Kendall’s coefficient are also displayed in each
subplot. (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article).

Fig. 6. Scar (%, i, dashed bars) and burned area (%, ii, solid bars) frequencies
according to scar size classes (25–100 ha, 100–1500 ha and> 1500 ha) for each
VIIRS Groups: Group 1 (200–2000 active fires, light yellow bars), Group 2
(2001–10000 active fires, dark yellow bars), Group 3 (10001–20000 active
fires, orange bars) and Group 4 (20001–35000 active fires, red bars). (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article).
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Fig. 7. Boxplots of the accuracy assessment measures (i) Threat Score – TS (green boxplots), Omission Error – OE (blue boxplots), Commission Error – CE (red
boxplots) and (ii) Bias – B (black boxplots) for MCD64 C5.1 (dashed boxes) and MCD64 C6 (solid boxes). The results were categorized according to the classes in
Fig. 4d: (a) Group 1 - 200–2000 VIIRS active fires, (b) Group 2 - 2001–10000 VIIRS active fires, (c) Group 3 - 10001–20000 VIIRS active fires and (d) Group 4 -
20001–35000 VIIRS active fires. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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worth noting that 95% of VIIRS group 1 – low amount of active fires
(Fig. 4d) are observed in the southern part of the Cerrado biome,
whereas groups 3 and 4 are observed only in the northern region. The
north-south contrasting patterns regarding the amount of burned area
and fire scar size and distribution are intrinsically related to land use
intensity patterns, as observed in Fig. 10.

In this context, to understand the relationship between LUI and the
occurrence of omission and commissions errors, we combined the ob-
servations from Figs. 3 and 10 into Table 2, which provides the total
number of scenes in each combination of the land use levels (low,
medium and high LUI) and OE and CE (intervals of 0–25%, 26–50%,
51–75% and 75–100%). Overall for C5.1, regions with low levels of LUI
are associated with the predominance (63%) of smaller OE (i.e., OE
< 50%). In contrast, for regions with high levels of LUI, the occurrence
of higher OE (i.e., OE > 50%) is much greater (80%). Similar results
were found in Russian croplands, where MCD64 C5.1 and MCD45 C5.1
missed the majority burned scars (Hall et al., 2016; Zhu et al., 2017)
and in mountainous areas of China characterized by small fires
(Fornacca et al., 2017). This limitation was reduced in C6, which ex-
hibits a smaller predominance (73%) than C5.1 of higher OE (i.e.,
OE > 50%) for regions with high levels of LUI. In these regions, where
fire scars typically are small and fragmented, C6 presents a reduction of
the number of scenes presenting OE between 76–100% and an increase
in the number of scenes presenting OE smaller than 25% compared to
C5.1. For regions with low levels of LUI, the new collection C6 also
exhibits improvements in the predominance (72%) of smaller OE (i.e.,
OE < 50%). Regarding the CE, the regions with low levels of LUI are
more associated (65% of the cases for C5.1 and 63% of the cases for C6)
with small CE (i.e., CE < 50%). In the regions with high levels of LUI,
the number of scenes exhibiting high CE (i.e., CE > 50%) drastically
increased in C6 (87% of the cases) compared to C5.1 (60% of the cases).

4. Discussion

The BA validation approach applied here is based on stratified
samples that vary from very low (group 1) to high (group 4) numbers of
active fire detections. In summary, our stratified analyses reveal that
the accuracy assessment results of BA products vary according to the
spatial configuration of the BA and the total amount, corroborating
previous local studies conducted over the same region (Alves et al.,
2018; Libonati et al., 2015). These results highlight how generalized
samples may strongly influence the patterns of classification errors of
BA products over a large coverage area (Boschetti et al., 2016; Padilla
et al., 2017). Accordingly, these findings reveal the importance of
taking into account the BA spatial variability for further global vali-
dation protocols, through the selection of stratified samples to guar-
anteeing the representativeness of the validation results.

The overall annual agreement between the spatial configuration of
the total BA and the active fires was revealed to be high and stable
(τ > 0.7) in the studied area from 2013 to 2016, a period including
extremely dry, extremely wet, and normal precipitation years. Several
studies suggest that climate-fire relationships provide a general basis
for understanding the natural seasonality and frequency of fire over the
study region (Hoffmann et al., 2012; Nogueira et al., 2017a). Accord-
ingly, we believe that our 2015 pixel-based validation using the Landsat
images is representative of a diverse set of years, suggesting error-
pattern stability. Nevertheless, other factors may also influence fire
activity and may contribute to some variability, including political and
economic drivers (Durigan and Ratter, 2016; Lapola et al., 2014).

The well-defined north-south gradient among the different accuracy
measures is coincident with the largest scars and the largest amount of
BAs (represented by the size of circles inside each L8 scene from Fig. 3)
in the northern region. Greater inaccuracies from both collections are
found in the south, which is characterized by small burned scars. These
results are similar to previous studies showing that MCD64 C5.1 is
unable to detect small fires in many other regions of the globe (Hall
et al., 2016; Padilla et al., 2015; Wang et al., 2017; Zhu et al., 2017).
Those patterns of error variability are related to the substantial het-
erogeneity in the temporal and spatial distribution of land use/cover
and fire occurrence along the entire Cerrado biome, as already observed
in previous studies using in situ and satellite datasets (Beuchle et al.,
2015; Gomes et al., 2018).

These findings are in accordance with the predominance of less
humanized areas in the northern portion of the Cerrado and a well-
marked land conversion process in the southern region (Lapola et al.,
2014). In the southern part of the Cerrado, natural vegetation has been
converted into agriculture and cropland, both characterized by frag-
mented landscapes and small fires (Durigan and Ratter, 2016). In
contrast, the northern region of the Cerrado has a higher concentration
of conservation units and indigenous protected areas (Carranza et al.,
2014; Mistry et al., 2005).

The Action Plan for Prevention and Control Deforestation and Fire
in the Cerrado was recently implemented, recognizing the need for
better conservation of the Cerrado biome (Beuchle et al., 2015). How-
ever, despite political efforts, the southern region of the Cerrado ex-
hibited an increase of land conversion to pasture and agricultural areas
in the last few decades, especially in the transition regions with the
Pantanal and Atlantic Forest biomes. These transition areas may be
mainly associated with sugarcane and soybean plantations, pasture and
deforestation of secondary forest activities (Dias et al., 2016; Lapola
et al., 2014; Song et al., 2018). The relation between BA and defor-
estation is still quite common, since fire, despite policies prohibiting its
use, remains the primary tool for farmers to clean and open areas (Van
Der Werf et al., 2010; van Marle et al., 2017). A study on land expan-
sion for croplands and pasturelands throughout Latin America from
2001 to 2013 found that this practice led to deforestation in central
Mato Grosso state and that new croplands came from non-forestland in
the Cerrado (Graesser et al., 2015). The biome witnessed the most

Fig. 8. (a) Frequency of CEFA (%, i, dashed bars) and frequency of OESO (%, ii,
solid bars) per VIIRS group for MCD64 C5.1 (dark gray bars) and MCD64 C6
(light gray bars). (b) Proportions of CEEDGE (%, i, light-red bars) and CEFA (%, i,
red bars) and of OEEDGE (%, ii, light-blue bars) and OESO (%, ii, dark-blue bars)
per VIIRS group for MCD64 C5.1 (dashed bars) and MCD64 C6 (solid bars). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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significant inclusion of new areas of croplands and pasturelands, with
9.96Mha and 13Mha, respectively, with the majority in southern states
(Pivello, 2011).

Agricultural fires are still underestimated by satellite-derived pro-
ducts (Giglio et al., 2018), which are more accurate where spatial
burned area patterns are extensive. Although the authors of the updated
algorithm have observed in general more area burned with C6, there
still are CE involved in the burned area quantification. This case can
also be observed in this study, due to the high commission errors re-
gistered in the southern region of the Cerrado. The BAs resulting from
prescribed fires associated with agricultural practices are under-
estimated even by medium-spatial-resolution satellite imagery such as

Landsat (Nowell et al., 2018).
Our results demonstrated an improvement of MCD64 C6 compared

to C5.1 due to a decrease in OE values. These results are in accordance
with previous studies stating that among the improvements of C6, the
most substantial gain was in reducing the omission error by refining the
BA detection (Giglio et al., 2018, 2016b). The overall improvement in
BA detection from MCD64 C6 was also observed in recent studies
comparing different BA mapping algorithms in South America
(Chuvieco et al., 2018; Ramo et al., 2018), the Brazilian Amazon (Alves
et al., 2018) and other regions worldwide (Wang et al., 2017; Zhu et al.,
2017). For example, two recent studies have characterized the differ-
ences between C5.1 and C6 over a few areas of the Cerrado and found

Fig. 9. Example MCD64 products accuracy assessment relative to the reference scars: (i) false-color RGB 754 Landsat composites showing burned scars in four
Landsat scenes represented by the last date used for validation: (a) 219_074, (b) 220_075, (c) 221_067, and (d) 225_073. Comparison between the validation results
from MCD64 C5.1 (ii) and C6 (iii), highlighting hints (H, green), omission (O, blue) and commission (C, red) errors. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).
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that the updated collection is better correlated with reference data than
are the old collection and other global BA products (Alves et al., 2018;
Giglio et al., 2018). It is worth noting that the difference between total
BA from MCD64 C6 and C5.1 (C6-C5.1) is similar to the total BA de-
tected by MCD45 C5.1, using only highly reliable observations (QF=1;
5,900,040 ha). These results indicate that C6 is more effective in

detecting BA, in contrast to the MCD45 algorithm (Giglio et al., 2018).
A comparison between the above BA values and results obtained with
MCD45 C5.1 indicates that the latter only identified 48% of the total BA
(Padilla et al., 2014) and detects 70% less BA than the reference da-
tasets for the Cerrado (Libonati et al., 2015).

However, the reduction in OE is achieved at the expense of the CE
enhancement since the concomitant reduction of both errors is viewed
as conflicting due to the low-resolution bias concept (Boschetti et al.,
2004). The CE associated with cloud masking in the reference images
were reduced by using images with 10% or less cloud cover. Further-
more, the persistence time of the burned patches may be a limiting
factor in the detection accuracy of the global-scale mapping (Pereira
et al., 2017). However, the persistence time was taken into account in
the 16-day period between the pairs of Landsat images. The median
value of the persistence time for the predominant land cover classes in
our study area (Fig. 1), – namely, savanna, woody savanna, and
grassland – varies between 16 and 48 days, with little variability
(Melchiorre and Boschetti, 2018).

The spatial gradient between the north and south regions observed
in all results is not only due to the latitudinal variation leading to
considerably different climatic regimes, but mainly due to the irregular
and complex distribution of land cover and land use. Regions with
greater native vegetation cover and lower land use intensity, such as the
northern Cerrado, are vulnerable to fire propagation due to dry fuel
accumulation in the dry season, with fires spreading into the neigh-
boring native-vegetation areas. Therefore, the burned scars in these
regions have larger areas and contiguous patterns, which favor remote
sensing detection and consequently OE reduction. The fragmented
pattern of burning in agriculture and pasture, in addition to soil man-
agement to clear land, hampers the good accuracy of low-spatial-re-
solution products for those areas (Laurent et al., 2018), as observed in
the southern Cerrado.

The improvement of the C6 collection in detecting burned area is
due to the use of more refined input data and the inclusion/modifica-
tion of different parameters in the algorithm, combined with the em-
pirical knowledge of the developers (Giglio et al., 2018). Briefly, the
algorithm was adjusted in a manner that allowed: i) a reduction in grid
cells that were unmapped due to lack of information, correction of
cloud commissions and a shortened temporal window; ii) higher de-
tection confidence in estimating the burn date, due to the shortened
temporal window; iii) imposition of less-stringent thresholds to classify
a pixel as burned; iv) reduction of the minimum likelihood threshold of
the provisional classification to reduce the OE frequency; and v) ap-
plication of a filter technique to reconsider the preliminary burn clas-
sification.

In this way, we can conclude that in the Cerrado biome, the general
results for MCD64 C6 corroborate the a) considerable increase in the
total burned area mapped, b) better performance in detecting small
burnings, and c) OE (CE) reduction (increase) reported in the updated
algorithm global validation disclosure (Giglio et al., 2018).

5. Conclusions and perspectives

Quantification of uncertainties from BA maps derived from orbital
sensors, particularly the MCD64 product for the Brazilian Cerrado, such
as that presented herein, have never been performed for the entire
biome in a consistent manner. Our results indicate that uncertainties in
BA retrieval using MCD64 in the Cerrado are most significant over the
souther portion, consistent with previous studies that have found large
uncertainties for BA products over specific areas located within this
region (Giglio et al., 2018; Pereira et al., 2017). This limited accuracy of
both versions of MCD64 in the southern Cerrado may be related to land-
use dynamics associated with pasture and croplands, which use fire for
land clearing, crop residue burning, and pasture renewal. In compar-
ison, uncertainties in less human-disturbed regions are generally small,
such as in the northern portion of Cerrado. We demonstrate that the

Fig. 10. Land use intensity distribution for 2015 in each path/row scene vali-
dated in the Brazilian Savannas (Cerrado). The dataset used for the land use
intensity was derived from the MCD12Q1 C6 at a spatial resolution of 500m.
The colors represent the land use intensity occupying from 0 to 50% (low,
yellow), 51–75% (medium, light brown) and 76–100% (high, dark brown) of
each area belonging to the MCD12Q1 C6 land cover classes of Grasslands,
Croplands, and Cropland/Natural Vegetation Mosaic from the IGBP classifica-
tion. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).

Table 2
Number of scenes in each level of land use (low, 0–50%; medium, 51–75%. and
high, 76–100% of land use intensity (LUI) occupation from Fig. 10) and the
omissions (OE) and commissions (CE) errors intervals (from 0 to 100% as in
Fig. 3) for MCD64 C5.1 and MCD64 C6.

Number of scenes in each class
of OE and LUI for C5.1 / C6

0-25% 26-50% OE
51-75%

76-100% Total

LUI Low 13 / 15 16 / 18 12 / 11 5 /2 46
LUI Medium 1 / 2 7 / 10 9 / 7 6 / 4 23
LUI High 1 / 3 2 / 1 5 / 6 7 / 5 15
Total 15 / 20 25 / 29 26 / 24 18 / 11 84

Number of scenes in each class
of CE and LUI for C5.1 / C6

0-25% 26-50% CE
51-75%

76-100% Total

LUI Low 11 / 8 19 / 21 11 / 12 5 / 5 46
LUI Medium 4 /3 7 / 7 9 / 7 3 / 6 23
LUI High 3 / 0 3 / 2 7 / 7 2 / 6 15
Total 18 / 11 29 / 30 27 / 26 10 / 17 84
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spatial pattern and extent of the burned patches are relatively easier to
map and to quantify over the northern part of the Cerrado. Importantly,
we note that changes in the development of the MCD64 algorithm,
namely the updated MCD64 C6, contributed to detection improvements
in small burn scar patches, although this enhancement tends to increase
commission error. Thus, a comprehensive daily representation of fire
regime in regions characterized by small and sparse burned scars, such
the Brazilian southern Cerrado, remains imperfect and may require
higher image resolution, such as that provided by VIIRS I-band ima-
gery.

The biome-level validation approach applied here can provide
crucial insights into the regional understanding of fire regime un-
certainties when remote sensing products are used, can supply model
developers data and may be useful to reduce algorithm constraints or
refining thresholds for mapping fire scars. Our results may also inform
alternative approaches to BA mapping of small and fragmented scars
from space. By successfully providing a quantification of the limitations
of cutting-edge BA products over the entire Cerrado biome, this study
motivates further research into the reliability of estimates of emissions
from cropland burning applied in policy-making decisions.
Understanding errors in the quantification of BAs may also ultimately
lead to more robust regional future projections of fire regimes, which
are crucial for adaptation and mitigation actions.
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