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Retrieving Middle-Infrared Reflectance Using
Physical and Empirical Approaches: Implications

for Burned Area Monitoring
Renata Libonati, Carlos C. DaCamara, José Miguel C. Pereira, and Leonardo F. Peres

Abstract—A systematic comparison is carried out between re-
trieved values of middle-infrared (MIR) reflectance by means of
the complete radiative transfer equation (RTE) and the simplified
algorithm proposed by Kaufman and Remer in 1994 (KR94). The
added value to be expected when using RTE is assessed both within
and beyond the region where KR94 produces usable estimates
of MIR reflectance, paying special attention to their application
for discriminating burned areas (BAs) in tropical environments,
where KR94 is the most common approach. For large values of
land surface temperature (LST) and solar zenith angle (SZA), the
retrieval of MIR reflectance based either on RTE or KR94 is an
ill-posed problem, i.e., small perturbations due to sensor noise and
uncertainties in atmospheric profiles and LST may induce large
errors in the retrieved values. It is found that the RTE approach
leads to better estimates in virtually all cases, with the excep-
tion of high values of LST and SZA, where results from KR94
are also not usable. Impacts on BA discrimination were finally
evaluated using Moderate Resolution Imaging Spectroradiometer
imagery showing a large fire event in southern Brazil. Synthetic
values were generated, assuming a hot tropical environment,
and MIR reflectance was retrieved using the two approaches.
Whereas retrieved values of MIR reflectance via KR94 did not
allow an effective discrimination between burned and unburned
areas, those obtained via RTE have shown to be usable for BA
monitoring, opening good perspectives for successful applications
in hot tropical environments.

Index Terms—Burned-area (BA) monitoring, middle infrared,
Moderate Resolution Imaging Spectroradiometer (MODIS), re-
flectance, tropical regions.

I. INTRODUCTION

THE ABILITY of the reflectance of the middle-infrared
(MIR) spectral band (around 3.5–3.9 μm) to efficiently

detect burned areas (BAs) in a wide variety of ecosystems
has been widely recognized (e.g., [1]–[4]) due to a number

Manuscript received September 23, 2010; revised May 9, 2011; accepted
June 11, 2011. Date of publication July 25, 2011; date of current version
December 23, 2011. This work was supported in part by the Portuguese Science
Foundation (FCT) through Project FLAIR (PTDC/AAC-AMB/104702/2008)
and in part by the EU 7th Framework Program (FUME) under Contract
243888. The work of R. Libonati was supported in part by FCT under Grant
SFRH/BD/21650/2005.

R. Libonati and C. C. DaCamara are with the Instituto Dom Luiz, University
of Lisbon, 1749-016 Lisbon, Portugal.

J. M. C. Pereira is with the Forest Research Centre, School of Agriculture,
Technical University of Lisbon, 1349-017 Lisbon, Portugal.

L. F. Peres is with the Department of Meteorology, Federal University
of Rio de Janeiro, 21941-970 Rio de Janeiro, RJ, Brazil, and also with the
Instituto Dom Luiz, Centro de Geofísica, University of Lisbon, 1749-016
Lisbon, Portugal.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2011.2160186

of reasons that are worth being recalled. First, MIR is largely
unaffected by the presence of most aerosols [5], a feature that
makes it particularly adequate for monitoring the land surface
during fire episodes. Second, the MIR spectral region contains
the water absorption band and is therefore very sensitive to the
presence of liquid water. Burned surfaces, which are partially
or totally devoid of green vegetation and present very dry soil
surfaces (particularly shortly after the fire) will accordingly
appear quite bright in this spectral range, in strong contrast
with the very low reflectance that is displayed in the near
infrared (NIR) [6]. Third, when visible reflectances are replaced
by MIR ones, there is a considerable reduction of sensitivity
to the atmosphere, particularly (but not exclusively) due to
the effect of aerosols. It is therefore not surprising that the
MIR/NIR bispectral space has shown to be more appropriate
for BA discrimination than the traditional visible/NIR space
[1]–[3], particularly when the reflective part of MIR is used
instead of the normalized total radiance [7]. This issue was
recently readdressed by the authors [8] who have developed a
new coordinate system that allows an improved discrimination
between vegetation and BA using MIR/NIR reflectances.

Retrieval of MIR reflectance implies solving the problem of
separating MIR reflectance from the total signal, a difficult task
(e.g., [9]–[12]) that implies having an appropriate knowledge
of how measurements in the MIR band may be affected by
perturbing factors [13], namely, those associated to atmospheric
conditions (e.g., high moisture and smoke aerosols). A num-
ber of previous works (e.g., [1]–[3]), as well as the recent
one by [8], have relied on the approximate method proposed
by Kaufman and Remer [11], hereafter referred to as KR94,
which is fast and easy to implement but may be insufficiently
accurate under specific surface and atmospheric conditions. An
assessment was made by Kaufman and Remer [14] on the
limitations of retrieved MIR reflectance by means of KR94
when the method is applied to discriminate BA in the Amazon
and Cerrado regions of Brazil. Results demonstrate that the
quality of retrieved values may decrease significantly when the
relative contribution of the thermal emitted component to the
total signal exceeds a threshold of about 75%, a situation that is
more likely to happen in the case of surfaces characterized by
low values of MIR reflectance. Such is the case of vegetation,
where the relative contribution of the solar component to the
total MIR signal tends to be small, particularly when the surface
is hot (i.e., in case of relatively high values of land surface
temperature—LST) and when the solar signal is further weak-
ened due to low sun elevation angles (i.e., high values of solar
zenith angle—SZA). According to [14], in such conditions,
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the errors are at least on the same order of magnitude as the
reflectance to be retrieved and are considerably higher for large
values of LST and SZA.

The aforementioned limitations of KR94 are particularly
relevant in tropical environments, where high values of LST
naturally dominate the scenes and where the presence of clouds
implies relying on data at pixels illuminated by low values of
SZA, a rather common situation when using data from sensors
onboard polar orbiters [14]. In the case of the Moderate Res-
olution Imaging Spectroradiometer (MODIS) onboard Aqua
and Terra, the authors [14] have shown that use of the KR94
algorithm in tropical environments may erroneously lead to
retrieved values of vegetation reflectance on the order of those
characteristic of charcoal, thus impairing the discrimination of
BA. In this context, retrieving MIR reflectance by means of
the complete radiative transfer equation (RTE) may offer a
means to circumvent the problem or, at least, to improve the
estimates provided by KR94 in the domain where this algorithm
is applicable.

The main purpose of the present study is to carry out an
in-depth study of retrieved MIR reflectance using the RTE
approach with the aim of assessing the advantages and disad-
vantages of this method compared with KR94 when applied
to MODIS imagery for BA discrimination. The physics of the
problem is first discussed by paying special attention to the
main sources of errors in the RTE approach, namely, those
associated to the following: 1) the radiometric noise; 2) the
uncertainty in the atmospheric profiles; and 3) the uncertainty
in LST, namely, the one associated to the MODIS LST prod-
uct (MOD11_L2). The accuracy of retrieved solutions is then
evaluated by comparing results from the so-called “error case,”
where input data are contaminated by errors from the aforemen-
tioned sources against the baseline defined by the “error-free
case” where deviations in retrieved values are entirely due to
the model uncertainty. Finally, a comparison of retrieval errors
in MIR reflectance using the RE approach versus KR94 is made
and an assessment is performed on the respective impacts when
using MIR reflectance for BA discrimination.

II. METHODS AND DATA

A. Physics of the Problem

The top of the atmosphere (TOA) radiance measured by a
sensor in the MIR region is a combination of reflective and ther-
mal emissive components. In the case of clear-sky conditions,
one may write the following energy balance equation:

LMIR = tMIRρMIR
E0MIR

π
μ0 + τMIRεMIRB(λMIR, TS)

+ Latm,MIR ↑ +τMIRρMIRL̄MIR ↓ +Ls (1)

where E0MIR is the solar irradiance incident on TOA,
B(λMIR, TS) is the emitted radiance given by Planck’s function
for the surface temperature TS and the central wavelength
λMIR, Latm,MIR ↑ is the atmospheric upward emission, LMIR ↓
is the hemispherically averaged downward radiance that in-
cludes both solar diffuse radiation and atmospheric emitted
radiation, LS is the scattered solar radiation, ρMIR is the surface
reflectance, εMIR is the surface emissivity, μ0 is the cosine of

the SZA, tMIR is the two-way atmospheric transmittance, and
τMIR is the one-way atmospheric transmittance. It may be noted
that, in (1), the transmittances corresponding to the surface
emittance, solar diffuse radiation, and atmospheric downward
emitted radiance are assumed to be equal and represented
by τMIR. This assumption is due to the fact that the set of
simulated radiances was produced using the Moderate Spectral
Resolution Atmospheric Transmittance and Radiance Code 4
(MODTRAN-4) [15], where the three transmission functions
are assumed to be equal at wavenumber intervals of 1 cm−1.
Moreover, the surface is considered to be Lambertian, i.e.,
the surface reflectance is assumed to be isotropic. Within the
3–14-μm range, the Lambertian surface approximation does not
introduce a significant error in the terms concerning the surface-
reflected diffuse solar and surface-reflected atmospheric down-
ward thermal irradiances, since atmospheric radiative transfer
simulations show that, in clear-sky conditions, the surface-
reflected diffuse solar irradiance term is much smaller than
the surface-reflected solar beam term and the surface-reflected
atmospheric downward thermal irradiance term is smaller than
the surface thermal emission [16].

Since the Earth’s surface is opaque and assuming that it
behaves as a Lambertian emitter–reflector, the reflectance and
emissivity at the surface may be related as ρ = 1− ε. Thus, by
neglecting the atmospheric scattering term LS , the solution of
(1) is given by

ρMIR =
LMIR − τMIRB(λMIR, TS)− Latm,MIR ↑

tMIR
E0MIR

π μ0 − τMIRB(λMIR, TS) + τMIRL̄MIR ↓
.

(2)

It is worth noting that the effects of atmospheric scatter-
ing were neglected in (2), an assumption that is justified by
comparing the contributions to the MIR signal due to sur-
face emission, surface reflection, atmospheric emission, and
atmospheric scattering. Fig. 1 shows box–whisker plots of
such contributions as derived from a set of more than 2700
MODTRAN-4 simulations of a tropical environment covering a
large number of viewing and solar geometries and a wide range
of boundary conditions. Details about the simulations are pro-
vided in Section II-B. The tropical atmospheric profile was also
progressively contaminated with smoke aerosol. The lower and
upper lines of each box refer to the 25th and 75th percentiles
of the sample, whereas the line inside the box is the sample
median. The top (bottom) of the upper (lower) whisker indicates
the maximum (minimum) value of the set of simulations. It
may be noted that the contribution of atmospheric scattering
for the total signal ranges from 0.001% (for an atmosphere
free from aerosol) to 1% (for an atmosphere contaminated with
heavy biomass burning aerosol) and is orders of magnitude
smaller than the other terms. Accordingly, even in the presence
of heavy smoke layers, the scattered radiance around 3.9 μm
is very small when compared with the other terms and may be
neglected without affecting the accuracy of (1).

Equation (1) defines the so-called forward (direct) problem,
i.e., the surface parameter ρMIR is known and the radiance is
then evaluated through the RTE, which describes the various
physical processes responsible for making the radiance reach
the sensor. In turn, the so-called inverse problem is defined by
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Fig. 1. Contribution to the MIR signal due to (SE) surface emission, (SR)
surface reflection, (AE) atmospheric emission, and (AS) atmospheric scattering
for a large set of viewing and solar geometries and boundary conditions and
considering a tropical atmospheric profile that is progressively contaminated
with smoke aerosol.

(2) and corresponds to the retrieval of the surface reflectance
from the measured radiance. This procedure involves the direct
evaluation of all components of the MIR signal by means of a
radiative transfer model. Aside from requiring substantial com-
putational means, the operational use of the RTE is limited by
the need of quantitative information on the following: 1) atmo-
spheric conditions, mainly humidity and temperature profiles,
which are required to perform the atmospheric corrections, and
2) LST, which is required as a boundary condition.

The aforementioned limitations led to the development of
simpler methods, like the one proposed by KR94, which re-
quire neither direct knowledge of atmospheric conditions nor
a radiative transfer model. The approach is based on [17] and
[18], which pointed out the existence of a mutual compensation
between attenuation and thermal emission terms, such that
both atmospheric transmittances (i.e., tMIR and τMIR) may be
assumed as equal to unity and both the atmospheric downward
and upward thermal emission terms may be neglected. As
shown in [14], the validity of these assumptions for surface
and atmospheric conditions associated to dense dark vegetation
areas in midlatitude environments may be justified both on
mathematical and physical grounds. This is first done by means
of algebraic manipulation followed by simplification of terms
of (2) and then by checking the performed simplifications
using typical values of the relevant terms of (2), leading to the
following simplified expression:

ρMIR =
LMIR −B(λMIR, TS)

E0MIR

π μ0 −B(λMIR, TS)
. (3)

B. Radiative Transfer Simulations

The estimation of the error associated with MIR reflectance
as retrieved by using either RTE, i.e., (2), or the KR94 method,
i.e., (3), will be performed based on a large number of simulated
TOA radiances, as generated by means of MODTRAN-4. In
order to cover MODIS channels 20 and 31, the simulations will
be performed in the spectral ranges of 3.62–3.97 and 10–12 μm.

The following cases will be considered, which encompass a
large set of observation conditions.

1) Atmospheric Temperature and Humidity Profiles: The
database relies upon standard profiles with respect to
three geographical–seasonal model atmospheres stored
in MODTRAN-4, namely, Midlatitude Winter (MLW),
Midlatitude Summer (MLS), and Tropical (TRO). The
three standard atmospheres are tabulated at 36 levels in
terms of temperature, humidity, and pressure and cover a
wide range of thermal and moisture conditions, the 2-m
air temperature ranging from 272.2 to 299.7 K and the
total water vapour ranging from 0.85 to 4.11 g · cm−2.

2) LST: The assigned LST values are defined as departures
from the 2-m air temperature of each profile, varying
from Tatm to Tatm + 30.0 K in steps of 1.0 K, totalizing
31 distinct boundary conditions.

3) LSE/reflectance: Two types of surface cover are consid-
ered, namely, burned and unburned. Following [14], both
surface types were assumed homogeneous and Lamber-
tian and were characterized based on available spectral
data for charcoal and vegetation. A value of 0.24 (0.03)
was accordingly prescribed for the MIR reflectance for
the burned (unburned) types of surface cover. These
values were obtained via the Band Equivalent Reflectance
for MODIS channel 20 [19], [20] which was applied
to a data set of four (25) considered types of charcoal
(vegetation) spectra. Details may be found in [14].

4) Sun-view geometry: The sun-view geometry consists of
31 values of SZA, from 0◦ to 60◦ in steps of 2◦ and three
values of view zenith angles (VZAs), i.e., 0◦, 30◦, and
60◦, respectively.

C. Sources of Errors in the Retrieval of MIR Reflectance

Aside from the errors inherent to the inversion procedure and
those introduced by the adopted approximations, the accuracy of
(2) will depend essentially on the following three sources of er-
ror, namely: 1) the error due to instrument performance, which
is quantified by the radiometric noise; 2) the uncertainties on the
atmospheric profile, which are usually due to the errors in tem-
perature and humidity profiles; and 3) the error due to uncer-
tainties in the retrieval of the LST. Contribution of each source
of error will be analyzed separately in the following sections.

1) Radiometric Noise: The radiance measured by a sensor
onboard a satellite is affected by an inherent uncertainty due
to electronic devices involved in the construction of the sensor
[21]. Levels of noise to be introduced into the MODIS channel
were based on the noise-equivalent temperature (NEΔT) at
300 K of channel 20 (0.05 K), which were converted to the
respective noise-equivalent radiance (NEΔL). The radiance
sensitivity of channel 20 to small changes in temperature is
shown in Fig. 2.

Randomly generated perturbations were then added to the
simulated TOA radiances which were assumed as normally dis-
tributed around zero mean and with standard deviations (SDs)
equal to the respective MODIS channel NEΔL. As shown in
Fig. 3, a set of 1000 random perturbations were generated in
order to ensure a statistically significant result.
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Fig. 2. Sensitivity of MODIS channel 20 to small changes in temperature. The
dashed line indicates the values of NEΔT and NEΔL.

Fig. 3. Frequency histogram of the satellite radiance perturbations for MODIS
channel 20.

2) Uncertainty in Atmospheric Profiles: The effects of un-
certainties on the humidity and temperature profiles may be
analyzed by comparing TOA radiation for a given perturbed
profile with the radiance for the reference profile. Because the
results will depend on the reference (nonperturbed) profile, the
experiment adopts the three standard atmospheres stored at
MODTRAN-4, namely, TRO, MLS, and MLW.

A possible way to take into account the errors in the atmo-
spheric profiles might consist in perturbing each atmospheric
profile level with values randomly taken from a normal distri-
bution of zero mean and an SD characteristic of the uncertainty.
In this case, perturbations on temperature and water vapor are
assumed to be independent from each other and values of both
quantities at a given level are also taken as independent from
those at the other levels. An extreme opposite procedure would
be considering the perturbations to be perfectly correlated, e.g.,
by using perturbed profiles that are offset by given amounts
[22]. Since, in our case, we intend to perform a sensitivity
study reflecting more realistic situations, we followed [23],
where the three standard profiles were perturbed with values
based on the background error covariance matrix used in the
assimilation schemes of the Global Circulation Model operated

Fig. 4. Comparison between the (black curves) perturbed profiles and (white
curves) respective reference profile of (upper panels) water-vapor mass mixing
ratio and (lower panels) temperature. Adapted from [24].

at the European Centre for Medium-Range Weather Forecasts
(ECMWF) [24]. The covariance coefficients were computed
statistically using the method developed by the National Cen-
ters for Environmental Prediction that is based on 24/48-h
forecast differences of the ECMWF model and the so-called
background. The background is a short-range forecast which
has been started from the analysis at the previous assimilation
cycle and is used, in conjunction with a set of observations, to
help in finding the new analysis state. Unlike the MODTRAN-4
standard profiles that are tabulated at 36 levels, the ECMWF
model prognostic values of temperature and specific humidity
are currently represented on a vertical grid with 60 levels (from
TOA to the surface). The MLS, MLW, and TRO profiles were
therefore interpolated to the 60 pressure-level grids and only
then were the perturbations imposed on the three standard
atmospheres. Fig. 4 allows a visual comparison between the
perturbed profiles and the respective reference profile of water-
vapor mass mixing ratio and the one of temperature.

Although it might seem obvious, at first sight, to adopt the
error associated with the MODIS Atmospheric Profile product
(since it is the main sensor considered in the present study),
the use of the ECWMF background error covariance matrix
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Fig. 5. SD of the MODIS and the three ECMWF (TRO, MLS, and MLW) SD profiles of (solid curves) mass mixing ratio and (dashed curves) temperature.

is preferable because it allows generating sets of perturbed
profiles of temperature and humidity based on the reference
TRO, MLS, and MLW profiles. The set of imposed errors due to
uncertainties on atmospheric information therefore corresponds
to a specific and predefined standard profile/atmospheric con-
dition. On the other hand, information about accuracy of the
MODIS product is based on the comparison between collocated
MODIS profile retrievals and the so-called best estimated pro-
files [25] at the Southern Great Plains Atmospheric Radiation
Measurement site for 80 clear-sky Aqua cases between October
2002 and August 2005. The best estimated profiles of the
atmospheric state are an ensemble of temperature and moisture
profiles generated from two radiosondes launched within 2 h
of the Aqua satellite overpass times. The use of the ECMWF
background error covariance matrix therefore provides uncer-
tainty information that is more realistic for each standard profile
than that from the MODIS product. Moreover, and as shown in
Fig. 5, the computed SDs of the mass mixing ratio (solid curves)
and temperature (dashed curve) errors using the ECMWF back-
ground error covariance matrix present lower values than the
SDs from the MODIS Atmospheric Profile product. Perturbing
the three standard profiles by using the former type of errors
may be viewed as adopting the most favorable conditions when
assessing the effect of the atmospheric profile source of error
on the retrieval of MIR reflectance.

The imposed perturbations on the atmospheric profiles trans-
late into uncertainties on the atmospheric parameters in (2),
namely, the one-way total atmospheric transmittance, the two-
way total atmospheric transmittance, the upward atmospheric
radiance, and the downward atmospheric radiance. Statistical
distributions of the perturbations on the atmospheric parameters
are shown in Figs. 6–8, respectively.

3) Uncertainty in Surface Temperature: In order to take into
account the sensitivity of the MIR reflectance retrieval to the
LST, radiative transfer calculations are first performed for the
standard profiles, and then, errors associated to inaccuracies in

Fig. 6. Distributions of the perturbed atmospheric parameters, namely, one-
way total atmospheric transmittance, two-way total atmospheric transmittance,
atmospheric upward radiance, and atmospheric downward radiance, with re-
spect to MODIS channel 20 for TRO standard atmosphere.

LST are introduced into (2). The errors are generated based
on the accuracy specification for MODIS LST (1 K) at 1-km
resolution under clear-sky conditions [26]. The generated errors
are normally distributed around zero mean and with SDs equal
to the respective accuracy specification for MODIS LST. A set
of 1000 random perturbations (Fig. 9) was again generated in
order to guarantee a statistically significant result.

III. ANALYSIS AND RESULTS

A. Error-Free Case

The accuracy of the solutions to the inverse problem was
assessed based on the evaluation of the retrieval errors, defined
as the absolute differences between retrieved values of MIR
reflectance by means of (2) and the corresponding values
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Fig. 7. Same as that in Fig. 6 but for MLS standard atmosphere.

Fig. 8. Same as that in Fig. 6 but for MLW standard atmosphere.

Fig. 9. Frequency histogram of the errors in LST.

prescribed as input to MODTRAN-4. Although actual retrieved
values of MIR reflectance are affected by measurement un-
certainties, the assessment was initially carried out under the

Fig. 10. Dependence on LST of the accuracy in the retrieval of MIR re-
flectance for (full lines) charcoal and (dashed lines) pine tree when using (2)
in the case of the TRO profile and with (top, middle, and bottom panels) three
prescribed values of VZA and (three pairs of curves in each panel) three values
of SZA.

assumption of error-free input data, implying that the errors in
the MIR reflectance are entirely due to the model uncertainty.
The reason for this first step is that it allows the identification of
the problems that are exclusively due to the inversion procedure
under the prescribed large set of observation conditions that
was described in the previous section. Such approach, usually
referred to in the literature as inverse method parameter sensi-
tivity [27], is particularly adequate in our study, not only be-
cause it allows the evaluation of the contribution to the retrieval
error due to the inverse method but also particularly because it
helps establishing a baseline that reveals pitfalls that are likely
to occur when retrieving MIR reflectance from real data.

Fig. 10 summarizes the accuracy of results in the case of
the TRO profile when using (2) to retrieve MIR reflectance
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Fig. 11. Dependence of the logarithm of retrieval error on LST and SZA for
TRO profile.

for charcoal (full lines) and pine tree (dashed lines). The three
panels respect three prescribed values of VZA, and the three
pairs of curves refer to three prescribed values of SZA. As ex-
pected, there is a slight degradation in MIR reflectance retrieval
with increasing VZA, indicating a weak dependence of the
MIR region on view angle variations, both for bright and dark
surfaces. These results are in agreement with [4] and [28]. The
deviation in MIR reflectance with SZA (from 0◦ to 45◦) is weak
for low values of LST, and as the LST increases, the angular
deviations with SZA become more prominent. Although not
shown, similar results were found for MLS and MLW profiles.

The dependence of retrieval errors in MIR reflectance on
both LST and SZA is shown in Fig. 11, where retrieval errors
are represented on a logarithmic scale in order to enhance the
error variation. Large and abrupt fluctuations in the retrieval
error may be observed for different combinations of SZA and
LST along a curved stripe at the upper right corner of Fig. 11.
For instance, the logarithm of the retrieval error reaches the
value of −0.74, which corresponds to the pair SZA = 46◦ and
LST = 337 K. This value of retrieval error is equivalent to a
relative error around 25%, and it may be observed that, for the
same value of LST but with SZA = 24◦, the relative error is
as low as 0.38%. The obtained pattern along the curved stripe
strongly suggests that the solution does not depend continu-
ously on the data and is typical of ill-conditioning [29].

Further evidence of ill-conditioning behavior is shown in
Fig. 12, which presents the dependence on surface temperature
of errors in the retrieval of charcoal MIR reflectance in the
case of the TRO (left panel), MLS (middle panel), and MLW
(right panel) profiles. Four values of SZA are considered (which
include the angle of 60◦), and the observations are assumed to
be performed at nadir, corresponding to the most favorable view
condition. It is worth noting that, in case of sufficiently high
values of LST, critical regions where the problem is ill-posed
occur for all considered types of atmospheres. Nevertheless,
for MLW, the critical region is located well beyond the range
of observed/physical LST values in temperate regions. In the
case of midlatitudes (MLW and MLS), and excluding the case

of very low sun elevations, large retrieval errors of reflectance
are also not to be expected.

The problem of MIR reflectance retrieval is therefore very
likely to be ill-conditioned for ranges of LST and SZA typically
observed over tropical regions. Fig. 13 shows the behavior of
each term of (2), with the exception of that concerning the total
radiance LMIR for four values of SZA, namely, 0◦, 20◦, 40◦, and
60◦. For instance, considering SZA between 40◦ and 60◦, the
curve corresponding to the term τMIRB(λMIR, TS) crosses that
corresponding to the term tMIR(E0MIR/π)μ0 around 325 K.
As temperature rises, the former term increases up to the
magnitude of the latter term (which decreases with the increase
of SZA) and the denominator of (2) tends to zero, inducing
large variations in the solution. However, the problem will also
be ill-conditioned for all regions where the curves are close
enough, and it will not restrict to the single point where the
curves cross each other. In addition (and as shown in Fig. 13
for SZA = 0◦, 20◦, 40◦, and 60◦), the curve representing the
term τMIRB(λMIR, TS) will cross an infinite number of curves
tMIR(E0MIR/π)μ0 resulting in peaks of error (positive and
negative), as those shown in Figs. 11 and 12.

At first sight, it may be argued that the obtained magnitude
of retrieval errors is not large enough to prevent discrimination
between charcoal and vegetation. However, the analysis per-
formed refers to the error-free input data case, and therefore,
the other sources of error were not taken into account. In
fact, when using real data, the inversion problem will certainly
become more difficult to solve because the errors related to
both sensor performance and the meteorological parameters are
usually much larger than the error due to model uncertainties.
This aspect will be dealt with in the next section.

B. Error Case

The performance of the RTE will be now evaluated based
on the solution to the inversion problem [27], as given by (2).
Simulations of TOA radiance at MODIS channel 20, as well as
the imposed perturbations (i.e., noise in the satellite radiances
and measurement errors in the atmospheric profiles as well as
in LST), were generated as described in the previous section.

Figs. 14–19 summarize the errors in MIR reflectance using
(2), as obtained from each set of imposed perturbations on
the considered atmospheric profiles. Figs. 14–16 (Figs. 17–19)
pertain to charcoal (vegetated) surfaces, respectively, for TRO,
MLS, and MLW profiles. Each figure refers to a prescribed
set of four values of SZA (0◦, 30◦, 45◦, and 60◦), and in
each panel, the contribution of noise and errors in profiles and
LST is shown for three values of VZA (0◦, 30◦, and 60◦).
For all atmospheres, the contribution of instrumental error is
not represented because it is negligible compared with the
other sources of error. The same happens with KR94, and
the negligible impact of instrumental noise (when using either
RTE or KR94) is understandable, taking into account the low
sensitivity of the MODIS channel 20 radiance to changes in
temperature (Fig. 2).

In the case of charcoal surfaces and for SZA between 0◦

and 45◦, the measurement errors in LST and the inaccuracies
in atmospheric profiles have impacts of comparable magnitude.
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Fig. 12. Dependence on LST of errors in the retrieval of charcoal MIR reflectance in the case of TRO, MLS, and MLW for nadir view and for four values of SZA.

Fig. 13. Dependence on LST of the different terms of (2). The term
τMIRB(λMIR, TS) is represented for four values of SZA.

In contrast to charcoal surfaces, inaccuracies in LST are the
most important source of error in the case of vegetation. The
impact of errors of all sources is also more pronounced for
the TRO profile than for MLS and MLW. For instance, in the
case of TRO, for charcoal, and for SZA between 0◦ and 45◦,
the maximum error due to measurement inaccuracies in the at-
mospheric profiles is around 0.04, whereas the maximum error
due to measurement inaccuracies in LST is around 0.035, with
mean values around 0.02. In the case of TRO and vegetation,
the maximum error due to measurement inaccuracies in the

Fig. 14. Retrieval error in charcoal MIR reflectance when using (2) as
obtained from each set of imposed perturbations on the TRO profile for four
prescribed values of SZA (0◦, 30◦, 45◦, and 60◦) and three prescribed values
of VZA (0◦, 30◦, and 60◦).

atmospheric profiles is around 0.035, while the maximum error
due to measurement inaccuracies in LST is around 0.05.

In the case of low sun elevations (SZA equal to 60◦), the ill-
conditioned behavior may be observed, again, to be in good
agreement with the results obtained in [14] for KR94, and
it may be further noted that the measurement errors in LST
become the most important source of error.
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Fig. 15. Same as that in Fig. 14 but for a vegetated surface.

Fig. 16. Same as that in Fig. 14 but for the MLS profile.

Fig. 17. Same as that in Fig. 15 but for the MLS profile.

Fig. 18. Same as that in Fig. 14 but for the MLW profile.

Fig. 19. Same as that in Fig. 15 but for the MLW profile.

Fig. 20 shows the obtained dependence of retrieval errors
on LST and SZA for an offset of +1 K in LST. The value
of the offset was chosen based on the goal that was set for
the accuracy of the MODIS LST algorithm [15]. The ill-
conditioning behavior that is present in Figs. 14–19 for SZA
equal to 60◦ may now be observed in a continuous way. As
expected, retrieval errors present similar fluctuations to those
previously obtained with the sensitivity experiment correspond-
ing to the error-free input data case (Fig. 11). When compared
with that in Fig. 11, the offset of +1 K in LST greatly amplifies
the retrieval errors (as indicated by the statistics derived from
results in Figs. 14–19), leading to unrealistic physical solutions
in some of the simulations. For instance, relative errors may
reach 7.0× 104% for SZA = 46◦ and LST = 336 K. It is also
worth stressing that Fig. 20 may be useful to defining a critical
region in the space SZA versus LST where the solution does
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Fig. 20. Same as that in Fig. 11 but for an offset of +1 K in LST.

Fig. 21. Same as that in Fig. 20 but for the MLW atmosphere.

not depend continuously on the data and, therefore, where the
retrieval of MIR reflectance is severely impaired.

Critical regions where the problem is ill-posed also occur for
other types of atmospheres in case of sufficiently high values
of LST. Nevertheless, and as already found in the error-free
case, for midlatitude winter atmospheres (Fig. 21), the critical
region is located well beyond the range of observed/physical
LST values in temperate regions and, except for very low sun
elevations, large retrieval errors of reflectance are not to be
expected.

C. Total MIR Reflectance Error

Assuming that the three retained sources of errors are inde-
pendent, the total error in MIR reflectance using the RTE (2) is
given by

δρ =
[
(δρa)

2 + (δρT )
2 + (δρn)

2
]1/2

(4)

where δρa, δρT , and δρn are the errors due to the atmo-
spheric correction, LST uncertainty, and radiometric noise,

Fig. 22. Comparison between the total errors when using KR94 and RTE in
the case of TRO and for vegetation.

Fig. 23. Same as that in Fig. 22 but for charcoal.

respectively, as discussed in the previous section. Figs. 22–27
show the total error in MIR reflectance, for vegetation (MIR
reflectance around 0.03) and charcoal (MIR reflectance around
0.24), as obtained throughout RTE and KR94, for each angle
considered in this study and in the case of the TRO, MLS, and
MLW profiles.

As found in [14], MIR reflectance errors for charcoal are
generally lower than reflectance errors for vegetation, and the
same is valid for dry and moist atmospheres. When compar-
ing the MLW and the TRO, given the much lower values of
moisture of the former, together with colder temperatures, the
perturbation effects exerted by the MLW atmosphere on the
retrieval of MIR reflectance is much smaller when using either
KR94 or RTE. Restricting to results when the SZA lies between
0◦ and 45◦, the maximum values of the relative errors vary from
750% (KR94—vegetation) to 30% (KR94—charcoal) and from
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Fig. 24. Same as that in Fig. 22 but for MLS.

Fig. 25. Same as that in Fig. 24 but for charcoal.

250% (RTE—vegetation) to 18% (RTE—charcoal) in the case
of TRO atmosphere and from 38% (KR94—vegetation) to 16%
(KR94—charcoal) and from 38% (RTE—vegetation) to 5%
(RTE—charcoal) in the case of the MLW atmosphere. These
results provide a clear indication that, besides the important
role played by moisture (MLW versus TRO), the RTE approach
works better than KR94 for virtually all atmospheric conditions
and geometries. Nevertheless, an accurate characterization of
atmospheric conditions is crucial to ensure appropriate esti-
mates of MIR reflectance.

In the case of low sun elevations (SZA around 60◦), the
retrieval of MIR reflectance is severely contaminated by errors,
particularly for TRO and MLS, and it may be noted that the
impact of ill-conditioning is more severe in the case of RTE
than when KR94 is used. In fact, even if the retrieved values
using KR94 are still unusable for high values of SZA, it is
worth stressing that the errors in MIR reflectance are smaller

Fig. 26. Same as that in Fig. 22 but for MLW.

Fig. 27. Same as that in Fig. 26 but for charcoal.

than the corresponding errors when using RTE, which means
that the approximations made in the simplified algorithm (i.e.,
in KR94) tend to smooth the effects of ill-conditioning. This
feature may reveal to be useful when attempting to develop an
algorithm able to produce usable estimates of MIR reflectance
for high values of SZA.

D. Impacts on BA Discrimination

Assessing the impact of errors in retrieved MIR reflectance
on BA discrimination by applying RTE or KR94 to real im-
agery, no matter how attractive it might seem, is always im-
paired by the virtual absence of “in situ” (direct) measurements
[30]. A compromise with reality may however be achieved by
perturbing a given image where the atmospheric conditions are
particularly favorable, due to low values of the water vapor
column and a low amount of aerosols [14]. In such case, values
of MIR reflectance will be accurately retrieved by means of
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either RTE or KR94 and a realistic reference field of reflectance
may be generated. Other atmospheric conditions together with
other fields of LST may be prescribed and then MODTRAN-4
may be used to produce synthetic values of TOA MIR radiance.
Values of MIR reflectivity may be finally retrieved using either
KR94 or RTE, and the performance of the two retrieval algo-
rithms assessed by comparing the respective retrieved values
with those of the reference field.

Following [14], the selected set of MODIS images covers the
large fire event that took place from April 30 to May 12, 2006
and affected the entire area of the Ilha Grande National Park,
located between the states of Paraná and Mato Grosso do Sul,
Brazil. The reference field of MIR reflectance was generated
based on information as acquired/derived on May 12, 2006
by/from the MODIS instrument onboard Aqua. The genera-
tion of reference data of MIR reflectance was then achieved
via MODTRAN-4 using TOA values of MIR radiance, TIR
brightness temperature, atmospheric profiles of temperature
and humidity, LST, and SZA. Details about the entire procedure
may be found in [14].

A hot tropical environment was imposed on the scene by
assuming a TRO atmospheric profile and by adding 20 K to the
LST of May 12, 2006. MODTRAN-4 was then used to produce
synthetic values of TOA MIR radiance and TIR brightness
temperature. Following the steps described in Sections II-B and
II-C, values of MIR reflectance were retrieved using the RTE
and KR94.

The effectiveness of both algorithms to discriminate between
burned and unburned surfaces was finally assessed by studying
the statistical distribution of retrieved MIR reflectance when
RSE and KR94 are applied over two sets of selected pixels,
namely, a first set of 133 burned pixels, hereafter referred to as
the burned class, and a second set of 262 pixels that included
the remaining land-cover types (namely, green vegetation, crop
fields, and water bodies), hereafter referred to as the unburned
class. Details about the selection of pixels are given in [14].
Computed statistics include the mean and the SD for the burned
and unburned classes, as well as a discrimination index M
derived from the previous statistics according to

M =
|μb − μu|
σb + σu

(5)

where μu (μb) is the mean value and σu (σb) is the SD of
the unburned (burned) class. As proposed by [11], the dis-
crimination index may be viewed as an estimator of signal-to-
noise ratio, the absolute difference between the mean values of
the two classes representing the signal (associated to between-
group variability) and the sum of the SDs representing noise
(associated to within group variability). Values of M larger
than one indicate good separability, whereas values smaller
than one represent a large degree of overlap between the values
associated to the two classes.

Results obtained for M are shown in Table I, together with
the mean and SD of unburned and burned samples. As pointed
out in [14], the performance of KR94 is very poor in the
case of tropical environments due to the increase in systematic
and random errors, namely, for the unburned class. There is

TABLE I
MEAN VALUE μu (μb) AND STANDARD DEVIATION σu (σb) OF

UNBURNED (BURNED) CLASSES AND DISCRIMINATION INDEX M
FOR REFERENCE AND RETRIEVED VALUES OF SURFACE

REFLECTANCE WHEN USING RTE AND KR94 IN THE

CASE OF A TROPICAL HOT ATMOSPHERE

a shift of μu (μb) from the reference value of 0.02 (0.11) to
0.17 (0.18), leading to an almost indistinguishability of the two
classes in terms of the mean. Such shift is accompanied by an
increase in σu (σb) from the reference value of 0.020 (0.032)
to 0.046 (0.033), contributing to a further decrease in M from
the reference value of 1.82 to 0.53 that indicates a very poor
effective discrimination. In the case of RTE, both increases in
μu (μb) from 0.02 (0.11) to 0.06 (0.15) and in σu from 0.020 to
0.032 are much smaller, leading to a decrease in M from 1.82
to 1.30, an indication that discrimination between burned and
unburned classes is still possible based on retrieved values of
MIR reflectance via RSE.

IV. DISCUSSION AND CONCLUSION

The purpose of this work was twofold: 1) to investigate
the problem of retrieving MIR reflectance in MODIS channel
20, namely, when using the full RTE approach, as given by
(2) or using the algorithm proposed by Kaufman and Remer
[11] (KR94 approach), as given by (3); and 2) to assess the
implications of using both methods to retrieve values of MIR
reflectance from MODIS imagery in order to discriminate BAs
in tropical environments. This second aspect is particularly
relevant since major efforts are being devoted to the design
of optimal spectral indexes for BA mapping at the regional
or global scale [31] and because improvements have been
achieved when incorporating in the index the reflective part of
MIR [1]–[3], [8].

The measurement errors that may affect the accuracy of the
estimated MIR reflectance were first characterized, namely,
those associated to the following: 1) the noise in MODIS
channels; 2) the errors in the atmospheric profile; and 3) the
uncertainties in LST. A sensitivity study was then performed
based on a set of conditions closely reflecting those of an
operational environment. The effect of errors in the atmospheric
profile source was assessed by perturbing three reference pro-
files (MLW, MLS, and TRO) with values based on the current
ECWMF background error covariance matrix. Realistically
perturbed values of LST were, in turn, generated based on the
errors from the MODIS LST product (MOD11_L2).

For given atmospheric conditions, namely, those that are
likely to be encountered in tropical environments, and for
certain geometric conditions, namely, high values of SZA,
the retrieval of MIR reflectance from radiance measurements
based on RTE is an ill-posed problem. The solution does not
depend continuously on the data, i.e., small perturbations in
measurements (due to, e.g., sensor noise and uncertainties in
atmospheric profiles and LST) may induce large errors in the
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solution. It is further shown that this problem occurs for the
same combinations of pairs of LST and SZA where KR94 does
not lead to a proper retrieval of MIR reflectance, as described
in [14].

Although in the case of dry and cold atmospheres (e.g.,
MLW), the increase in performance when using the RTE in-
stead of KR94 is not significant, deviations in favor of RTE
are more pronounced for moist and hot atmospheres, like TRO.
However, the estimated values of the total error when using
RTE point out the need of having accurate atmospheric and
LST data, the total error being almost completely driven by the
uncertainty on these two parameters.

Results from this work, together with those from [14], allow
one to conclude that the RTE approach leads to better estimates
of MIR reflectance than those provided by KR94 in virtually
all cases, the exception consisting of low sun elevations and
high LST, where results from KR94 are also not usable. Results
further suggest that there are no advantages in using RTE
as a surrogate for KR94 when geometric and atmospheric
conditions turn the inversion into an ill-posed problem.

Based on results obtained, an assessment of the impacts when
retrieving MIR reflectance for BA discrimination via RTE or
KR94 was performed. For this purpose, reference values of
MIR reflectance were first derived from MODIS imagery show-
ing a large fire event in southern Brazil. Synthetic values were
then generated, assuming a hot tropical environment and MIR
reflectance was retrieved via the RTE and KR94 approaches.
Whereas the latter approach led to retrieved values of MIR
reflectance that do not allow an effective discrimination be-
tween burned and unburned areas in hot tropical environments,
estimated values obtained via RTE have shown to be usable for
BA monitoring.

Despite the better performance of RTE when compared with
KR94, particularly in the case of tropical environments, the
atmospheric correction and the LST estimation are time con-
suming and there is the additional problem related to the need of
atmospheric and LST data which are not always operationally
available and/or accurate. The method developed by Kaufman
and Remer [11] presents the advantage of neither requiring
any auxiliary data sets (e.g., atmospheric profiles) nor major
computational means (e.g., radiative transfer computations). As
shown in [14], with the exception of low sun elevations and
high LST values, the discrimination between burned and un-
burned surfaces may be achieved on reasonably good grounds
when using estimated values of MIR reflectance via the KR94
approach.

The RTE alternative offers, in turn, good perspectives for
BA discrimination in hot tropical environments as well as in
all problems (e.g., LST and surface emissivity retrieval) that
require precise quantitative values of MIR reflectance.
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