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A transformation defined on the near-infrared (NIR) andmiddle-infrared (MIR) space is presented that allows
deriving a new coordinate system appropriate for vegetation and burned area discrimination. The
transformation is based on the difference between MIR and NIR in conjunction with the distance from a
convergence point in the MIR/NIR space, representative of a totally burnt surface. One of the derived
coordinates presents a small scatter for pixels associated to vegetated surfaces (strict scale) whereas the other
one covers a wide range of values (large scale) that suggest its use as a proxy of water content of vegetation.
The strict scale character of the first coordinate together with the large scale character of the second onemake
the coordinate system especially adequate to discriminate vegetated surfaces and rank them according to the
water content, from green and dry to burned vegetation. The performance of the new coordinate system is
then assessed against than traditional ratio or modified ratio indices (namely the Vegetation Index, the
Burned Area Index and the Global Environmental Monitoring Index, modified to the MIR/NIR space) and it is
shown that the new coordinate system provides better information than traditional indices, opening
interesting perspectives for burned area discrimination and other applications like drought monitoring.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Over the last decades, several studies have demonstrated the
effectiveness of the reflectance of middle-infrared (MIR) for discrim-
inating among different types of vegetation (Holben and Shimabu-
kuro, 1993; Shimabukuro et al., 1994; Kaufman and Remer, 1994;
Goita et al., 1997); estimating total and leaf biomass of several forest
ecosystems (Boyd et al., 1999; 2000); andmonitoring intra- and inter-
annual climate-induced changes in vegetation (Boyd and Duane,
2001; Boyd et al., 2002). MIR reflectance has also proven to be useful
when applied to burned area discrimination (e.g. Roy et al., 1999;
Barbosa et al., 1999; Pereira, 1999). It may be nevertheless noted that,
when used to identify vegetation and detect its changes, theMIR band
is commonly used together with the near-infrared (NIR), given the
strong contrast between the two bands, green vegetation displaying
high reflectance in the latter and low reflectance in the former. In fact,
vegetation reflectance in the NIR, around 0.8 μm, is affected primarily
by leaf structure (Slaton et al., 2001); green vegetation exhibits high
reflectance values but, after the leaf matures, the cells enlarge, crowd
together, reducing the intercellular space and leading to a decrease in

reflectance (Gates et al., 1965). On the other hand, MIR is often
employed as a surrogate of the traditional red (R) band (around
0.6 μm), based on the fact that MIR reflectance is well correlated to the
R one, but is not sensitive to most aerosols, namely to those associated
with smoke from biomass burning events (Libonati et al., 2010).
Kaufman and Remer (1994) showed that the correlation betweenMIR
and R is due to the simultaneous occurrence of processes that darken
the surface in these two bands. Whereas in the visible wavelengths,
the pigmentation of leaves, especially by active chlorophyll, absorbs
the solar radiation, reducing the reflectivity, in the MIR domain
(around 3.5 - 3.9 μm) the cellular water content, present in green
vegetation, causes a strong absorption, reducing the reflectance at
these wavelengths (Gates et al., 1965; Salisbury and D'Aria, 1994). As
green leaves become senescent due to the decrease of the levels of
chlorophyll and water content, the absorption of solar radiation drops
off in both R and MIR regions, increasing reflectance at the two bands.

Within the framework of the above described context, substantial
efforts have been spent by the research community in the develop-
ment of vegetation indices (Verstraete and Pinty, 1996). For instance,
the development of optimal vegetation indices in the R/NIR spectral
domain has greatly benefited from the so-called soil line concept
(Rondeaux et al., 1996). Introduced by Richardson and Wiegand
(1977), the soil line concept is a linear relationship between NIR and
R reflectances of bare soil, where changes in soil reflectance are
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associated to moisture and organic matter (Baret et al., 1993), and
departures from the soil line are in turn strongly related to biophysical
parameters such as the Fraction of Green Vegetation, FGV, or the
Fraction of Absorbed Photosynthetically Active Radiation, FAPAR
(Pinty and Verstraete, 1992). The soil line is therefore a constraint in
the R/NIR spectral space that greatly contributes to the design of new
vegetation indices that are insensitive to the soil background while
remaining responsive to vegetation (Pinty et al., 2008). Examples of
improved alternatives to the traditional Normalized Difference
Vegetation Index, NDVI (Rouse et al., 1973) are the Perpendicular
Vegetation Index, PVI (Richardson and Wiegand, 1977), the Soil-
Adjusted Vegetation Index, SAVI (Huete, 1988) and the Global
Environment Monitoring Index, GEMI (Pinty and Verstraete, 1992).

However, to the best of our knowledge, no similar constraint has
been found in the MIR/NIR space, a circumstance that may have
impaired the design of optimal vegetation indices, which have been
heuristically derived from indices already developed in the R/NIR
domain. This is the case of VI3 (Kaufman and Remer, 1994), a
modification of NDVI, as well as of GEMI3 (Pereira, 1999) that directly
resulted from GEMI. As pointed out by the developers of VI3 and
GEMI3, the derivation of the indices was primarily based on the fact
that MIR and R reflectance are strongly correlated. On the other hand,
as also stressed by the authors, the processes that govern reflectance
in R and MIR are not expected to lead to similar results and the
existence of other processes that may change reflectance in the two
channels cannot be ignored.

The aim of the present paper is to investigate the possibility of
defining a transformation in the MIR/NIR space that leads to an
enhancement of the spectral information about vegetation. For this
purpose, and taking into account the methodology suggested by
Verstraete and Pinty (1996) to design optimal indices, a new space is
proposed and an appropriate coordinate system is then defined that is
suitable to discriminate vegetation and is sensitive to its water
content. The rationale adopted may be viewed as comparable to that
followed to derive the tasseled cap transformation (Crist and Cicone,
1984; Kauth and Thomas, 1976; Cohen et al., 1995), where a new
coordinate system is introduced in order to optimize data for
vegetation studies. Using satellite imagery, it will be then shown
that the proposed coordinate system is particularly appropriate to

operationally monitor vegetation and to detect vegetation changes, in
particular those caused by droughts and fire events.

Accordingly, the three specific goals of the present study may be
stated as follows:

1. To study the possibility of defining a transformation in the MIR/NIR
space leading to an enhancement of the spectral information about
vegetation;

2. To define a new coordinate system representing an improved
combination of the MIR and NIR channels when the two spectral
bands are used to detect vegetation changes, in particular those
caused by droughts and fire events;

3. To assess the added value brought by the proposed coordinate
system when applied to real satellite data.

2. Data

The present study relies on data from remotely-sensed observa-
tions, as well as from laboratory measurements. Remotely-sensed
observations were gathered over two main Brazilian biomes, namely
the Amazon Forest and the Cerrado region (see Fig. 1 and Table 1) as
covered by 16 Landsat ETM+images. Data consist of top of the
atmosphere (TOA) values of MIR radiance, NIR reflectance and
thermal infrared (TIR) brightness temperature, acquired by the
Moderate Resolution Imaging Spectrometer (MODIS) instrument
on-board Terra satellite during the year of 2002, together with the
respective solar zenith angles. Data were obtained from the Terra/
MODIS Level 1B 1 km V5 product, MOD021 (MCST, 2006) and
correspond to channels 2 (centered at 0.858 μm), 20 (centered at
3.785 μm), and 31 (centered at 11.017 μm). Surface values of MIR
reflectance were then retrieved by applying the methodology
developed by Kaufman and Remer (1994), paying special attention
to the possible drawbacks previously pointed out by Libonati et al.
(2010).

Validation of results from the analysis performed onMODIS images
was mainly carried out based on ETM+imagery. Direct validation
of results in the MIR domain is, however, a difficult task because of
the lack of “in-situ” (direct) measurements of MIR reflectance. This
limitationmay be partially circumvented by laboratorymeasurements

Fig. 1. Map of Brazil showing IBAMA's classification of general biomes. Numbered frames provide the location of the 16 Landsat ETM+scenes (as listed in Table 1).
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of MIR reflectance. In this respect, spectral libraries are currently
available that may provide useful information about the spectral
features and ranges of the reflectance for natural and manmade
materials. Spectral libraries are, in fact, commonly used as reference
sources for the identification of surfaces in remote sensing imagery,
but the spectral range currently covered differs from library to library.
For instance, theMODIS University of California-Santa Barbara (UCSB)
spectral library provides information in TIR domain (from 3 to 14 μm),
whereas the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) spectral library (Baldridge et al., 2009) makes
available spectral reflectance data from the visible to the TIR domains
(from 0.4 to 15.4 μm). The analysis was restricted to materials
belonging to vegetation, water, and soil classes from the ASTER
spectral library because of data accessibility constraints in both NIR
andMIR regions. Spectral libraries like ASTER andMODIS/UCSB supply
reliable reflectance data for different types of materials, such as
vegetation, water, soil, rocks andmanmadematerials. However, to the
best of our knowledge, no reflectance measurements are currently
available for charcoal, ash or any burned plant material, in the spectral
region accounted for in this study (MIR region). Therefore, four fire
residue samples were collected at Alta Floresta, state of Mato Grosso,
Brazil. The samples were collected and kindly made available by the
Combustion Laboratory from INPE (LCP/INPE). Fire residues were also
collected by J.M.C.P. in Portugal from samples of burnedmaritime pine
trees. Charcoal samples (from both Brazil and Portugal) were sent to

the NASA Jet Propulsion Laboratory, where spectral signatures were
measured.

For each laboratory spectral data described above, the MODIS
channel equivalent reflectance was computed by convolving the
laboratory spectral reflectance signatures with the MODIS channels
normalized response function. Fig. 2 depicts the computed reflectance
values in MODIS channels 2 and 20 for different samples from the
ASTER spectral library, as well as from the burned material samples.

Finally, for the sake of simplicity, MODIS channels 1, 2 and 20 will
be hereafter referred to as R, NIR and MIR, respectively.

3. Methods

3.1. Rationale

The distribution, over the MIR/NIR space, of a variety of classes of
materials obtained from laboratory measurements are shown in Fig. 2
(left panel). It may be noted that the different materials tend to form
clusters on the MIR/NIR space and that there is an overall
displacement along the diagonal of the graph, from vegetation (top
left corner), down to burned materials (bottom right corner) across
the soil surfaces. The same behavior may be observed in Fig. 2 (right
panel), which presents segments connecting the locations of pre- and
post-fire mean values of MIR and NIR reflectance. These segments, the
so-called displacement vectors respect to 12 burned scars in MODIS

Table 1
List of 16 Landsat ETM+images, acquisition dates, locations and biomes covered.

TM scene number Path/row Date (mm/dd/yyyy) Location Biome

1 220/65 06/28/2002 Maranhão/Piauí Cerrado
2 221/70 06/05/2002 Goiás Cerrado
3 222/66 08/15/2002 Tocantins Cerrado
4 222/67 08/15/2002 Tocantins Cerrado
5 224/65 08/13/2002 Pará Amazon Forest
6 224/66 08/13/2002 Pará Amazon Forest
7 224/67 08/13/2002 Mato Grosso Cerrado/ Amazon Forest
8 224/69 08/29/2002 Mato Grosso Cerrado/ Deciduous Forest
9 225/64 08/20/2002 Pará Amazon Forest
10 225/67 08/04/2002 Mato Grosso Amazon Forest/ Deciduous Forest
11 226/64 08/11/2002 Mato Grosso Cerrado/ Deciduous Forest
12 227/65 08/18/2002 Pará Amazon Forest
13 228/65 08/09/2002 Pará Amazon Forest
14 228/69 10/28/2002 Pará Amazon Forest
15 231/67 06/11/2002 Rondonia Amazon Forest
16 232/65 08/05/2002 Amazonas Amazon Forest

Fig. 2. Left panel: Scatter plot in the MIR/NIR spectral domain for different classes of materials obtained from laboratory measurements. Right panel: Pre-fire (open symbols) and
post-fire (black symbols) mean values of MIR and NIR over 12 selected scars in the Amazon (circles) and Cerrado (squares). Displacement vectors in theMIR/NIR spectral domain are
represented by solid lines.
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images, six of them over the Amazon and the remaining six over
Cerrado. The identification of recent burned pixels in MODIS images
was based on burned area polygons, as derived from visual
classification of Landsat ETM+images (Table 1). Changes of reflec-
tance from pre- to post-fire are indicated by line segments. Results
obtained from both laboratory and imagery data provide an indication
that the radiative signatures of vegetation and burned surfaces may
be adequately discriminated in the MIR/NIR space by means of
appropriate spectral indices.

For instance, aiming at the identification of dark, dense vegetation,
Kaufman and Remer (1994) proposed a new vegetation index, the so-
called VI3, which is a modified version of the traditional NDVI, the R
reflectance being simply replaced by the reflective part of the MIR
signal (channel 3 from AVHRR sensor). VI3 was heuristically derived
from NDVI taking into account the fact that MIR reflectance tends
to correlate well with R reflectance. The insensitivity of MIR to
atmospheric effects, namely to aerosols associated to burning biomass,
together with the characteristics of MIR that make this spectral region
especially appropriate to distinguishing between burned and un-
burned surfaces led Pereira (1999) to suggest applying VI3 for
mapping burned scars according to the following formula:

VI3 =
ρNIR−ρMIRð Þ
ρNIR + ρMIRð Þ ; for ρNIR ≥ ρRED

0; for ρNIR b ρRED

8><
>: ð1Þ

where ρMIR and ρRED are the MIR and red reflectance, respectively. The
restriction ρNIR≥ρRED prevents the index from being erroneously
applied to water surfaces where it is ill defined (Kaufman and Remer,
1994).

Pereira (1999) also considered the possibility of adapting GEMI for
mapping fire-affected areas. Defined in the R/NIR space originally
proposed by Pinty and Verstraete (1992), GEMI is an optimized
vegetation index designed to minimize contamination of the
vegetation signal by extraneous factors, such as the atmosphere and
the soil background. GEMI was modified by replacing AVHRR channel
1 (R) by channel 3 (MIR) leading to the so-called GEMI3:

GEMI3 =
Θ 1−0:25Θð Þ− ρMIR−0:125ð Þ

1−ρMIR
ð2Þ

where:

Θ =
2 ρ2

NIR−ρ2
MIR

� �
+ 1:5ρNIR + 0:5ρMIR

ρNIR + ρMIR + 0:5
ð3Þ

A similar proceduremay be applied tomodify the so-called Burned
Area Index (BAI), which was specifically designed for burned area
discrimination in AVHRR R/NIR imagery over Mediterranean environ-
ments (Martín, 1998). BAI is defined as the inverse spectral distance
to a previously fixed convergence point, given by the minimum
(maximum) reflectance of burned vegetation in the NIR (R) bands.
The corresponding index in the AVHRR MIR/NIR space may be
heuristically defined as:

BAI3 =
1

ρNIR−ρCNIRð Þ2 + ρMIR−ρCMIRð Þ2 ð4Þ

where ρCNIR and ρCMIR are the coordinates of the above-mentioned
convergence point, given by the NIR minimum and MIR maximum
values of reflectance for burned vegetation (see Fig. 3 for an example
using MODIS). Although to the best of our knowledge BAI has never
been modified using the MIR channel, reasonable results were found
when replacing R by the shortwave infrared (SWIR) region, which
presents spectral response to fire scars similar to that observed in the
MIR region.

All three modified indices described above have proven to be
useful in burned area detection in many regions of the world.
However it is worth recalling that those indices were obtained in a
heuristic way from corresponding ones defined in the R/NIR space and
that the original indices were in turn affected by several short-
comings. For instance, as pointed out by Martín and Chuvieco (2001),
the original BAI index strongly depends on the soil background, the
atmospheric conditions, and geometry of illumination and observa-
tion. This is due to the non-ratioing concept behind BAI as opposed to
NDVI and GEMI where ratioing reduces many forms of noise (e.g.
illumination differences, cloud shadows, atmospheric attenuation)
that are present in multiple bands. In the case of GEMI it is its
nonlinear behaviour that makes the index an effective cloud detector
(Briggs and Mounsey, 1989) due to the high reflectance of clouds in R
and it is to be expected that GEMI3 may perform likewise for burns,
which are the most reflective surfaces in MIR channel after cloud-
screening of the study area. However the coefficients of GEMI were
kept unchanged in GEMI3 formulation, which may not reproduce the
desired sensitivity to burned events in some cases. The same can be
argued in the case of VI3 that keeps the same coefficients as NDVI.

Taking into account the above referred limitations, there is room
for improvement in the design of improved indices to discriminate
burned areas in the MIR/NIR spectral domain. Onemay start by noting
that besides the ratioing concept there is another structural feature
that distinguishes VI3 and GEMI3 from BAI3. Whereas the first two
indices involve differences between NIR and MIR channels, BAI3 is
based on distances in the MIR/NIR space from a pre-defined fixed
point. An assessment of the roles played by differences between MIR
and NIR channels and distances in the MIR/NIR space may be
performed by looking at the behavior of the following two indices
defined within the context of the MODIS MIR/NIR space:

η =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2

q
ð5aÞ

ξ = x−y ð5bÞ

where x and y are the reflectance of MODIS NIR andMIR channels, and
x0 and y0 are the respective reflectances of the convergence point. It is
worth noting that index ξ may be viewed as a modified Difference
Vegetation Index (Richardson andWiegand, 1977) where the slope of
the soil line is set to unity andwhere the R channel is replaced byMIR.
Taking into account the range of observed values of MIR (NIR)
reflectance in burned surfaces (Fig. 3) the value of 0.24 (0.05) was
prescribed to x0(y0) as the upper (lower) bound of MIR (NIR). Choice
of values for x0 and y0 is also supported by the fact that the set of

Fig. 3. MIR and NIR reflectance bi-spectral space showing the reflectance convergence
point of recently burned areas samples as extracted from 12 burned scars in MODIS
images covering the north, northwest and midwest of Brazil, six of them over the
Amazon and the remaining six over Cerrado. Dashed-dot lines delimit the upper and
lower bounds in MIR and NIR and their intersection is the convergence point.
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laboratory measurements of burned samples (Fig. 2) presents lower
MIR (higher NIR) values than x0 (y0).

A quantitative assessment of the performance of η and ξ was
performed by evaluating the potential of the two indices to
discriminate between vegetation and burned scars. The assessment
is based on a discrimination index similar to the one proposed by
Kaufman and Remer (1994), i.e.

M =
μv−μb

�� ��
σv−σbð Þ ð6Þ

where μv (μb) is the mean value for vegetation (burned scars) and
σv (σb) is the standard deviation for the vegetation (burned scars). M
may be viewed as an estimator of signal-to-noise ratio, the absolute
difference between the mean values of the two classes representing
the signal (associated to between-group variability) and the sumof the
standard deviations representing noise (associated to within-group
variability). Values of M larger than one indicate good separability,
whereas values smaller than one represent large degrees of histogram
overlap between the two classes.

A set of 255 burned pixels was therefore selected from Landsat
ETM+scenes 3, 4 6 and 8 (Table 1), together with a set of 343 pixels
associated to vegetation and values of the discriminating index M
were computed for indices η and ξ.as well as for VI20, GEMI20 and
BAI20, respectively obtained from NDVI, GEMI and BAI by replacing
the R band (MODIS channel 1) by the MIR band (MODIS channel 20).
As shown in Table 2 indices η and ξ are very similar in what respects to
their ability to discriminate between vegetation and burned surfaces
and the performance of both indices is very similar to the ones of
VI20 and GEMI20 and significantly better than the performance of
BAI20. It may be therefore concluded that despite their formal
simplicity the proposed indices η and ξ are both appropriate to burned
area discrimination.

This may be further verified by superimposing the contour lines of
ξ and η (Fig. 4) over the displacement vectors associated to pre- and
post fire values of MIR and NIR reflectance. As pointed out by
Verstraete and Pinty (1996), the more perpendicular a displacement
vector is to the contour lines of a given index, the better the sensitivity
of the index to the observed change at the surface. Despite the small
sample size, it seems that η is especially sensitive to burning events in
the Amazon forest, whereas ξ is more appropriated in Cerrado.
Following Liang (2004), the two indices will be compared in a single
plot and an analysis will be made of the η/ξ space.

3.2. The η/ξ space

Let U be the unit square in the MIR/NIR space and let U’ be the
corresponding image in the η/ξ space by means of the transformation
defined by Eqs. (5a) and (5b). The domains U and U’ are shown in
Fig. 5, together with a set of selected points in U and the respective
images in U’. Because of its shape, the domain U’ will be hereafter
referred to as the kite domain.

Let A(x0,y0) be the convergence point so that A’(0, x0-y0) is the
corresponding image according to the transformation given by
Eqs. (5a) and (5b). The curve [A'B’C’] ([A'F’E’]) that defines the

upper (lower) limit of U’will be the set of points that, for each value of
ξ≥x0−y0 (ξ≤x0−y0), have the minimum value of η. The respective
equations of the curves may accordingly be obtained by replacing

Eq. (5b) into Eq. (5a) and then solving
∂η
∂x

� �
ξ
= 0, leading to:

2x− x0 + y0 + ξð Þ = 0: ð7Þ

Replacing Eq. (5b) into Eq. (7) leads in turn to:

y = −x + x0 + y0ð Þ: ð8Þ

Given the limits of U, the straight line defined by Eq. (8) will go
from point B(x0+y0, 0) to point F(0, x0+y0). The image of segment BF
may therefore be obtained by replacing Eq. (8) into Eq. (5b) leading to

η =
ξ− x0−y0ð Þj jffiffiffi

2
p ð9Þ

i.e., to:

η =
− ξ− x0−y0ð Þffiffiffi

2
p ; ξ∈ − x0 + y0ð Þ; x0−y0½ �

ξ− x0−y0ð Þffiffiffi
2

p ; ξ∈ x0−y0; x0 + y0½ �
:

8>>><
>>>:

ð10Þ

It may be noted that the straight line with positive slope goes from
A’(0, x0-y0) to B’(

ffiffiffi
2

p
y0, x0+y0), whereas the straight line with

negative slope goes from F’(
ffiffiffi
2

p
x0, -(x0+y0)) to A’(0, x0-y0). Beyond

point B (point F), the minimum distances to point A, for a given value
of ξ, will be located along segment BC (segment FE). Since
BC = x;0ð Þ; x∈ x0 + y0;1½ �f g, then ξ=x along the respective image
and, taking Eq. (5a) into account, η will be given by:

η =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ−x0ð Þ2 + y20

q
; ξ∈ x0 + y0;1½ � ð11Þ

In an analogous way, ξ=−y along the image of FE = 0; yð Þ;f
y∈ x0 + y0;1½ �g and therefore:

η =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 + ξ + y0ð Þ2

q
; ξ∈ −1;− x0 + y0ð Þ½ � ð12Þ

D(1,1) is the point in domain U with maximum value of ξ and its

image, D’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x0ð Þ2 + 1−y0ð Þ2

q
;0

� �
, is readily obtained by means of

Eqs. (5a) and (5b).
The right limits of the kite domain U’ are defined by the images of

segments ED = x;1ð Þ; x∈ 0;1½ �f g and CD = 1; yð Þ; y∈ 0;1½ �f g. Taking
into account that x=1+ξ along ED, the respective image will be
given by:

η =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ξ−x0ð Þ2 + 1−y0ð Þ2

q
; ξ∈ −1;0½ � ð13aÞ

Table 2
Discriminating ability between vegetation and burned surfaces (M index) respecting
to proposed indices η and ξas well as to VI20, GEMI20 and BAI20 for Landsat ETM+
scenes 3, 4, 6 and 8 (Table 1) over the Amazon and Cerrado regions.

Index M

η 3.33
ξ 3.27
VI20 3.31
GEMI20 3.21
BAI20 1.11

Fig. 4. As in Fig. 2 (right panel) but with contours (dotted lines) of ξ (left panel) and η
(right panel) superimposed on displacement vectors (solid lines).
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The image of CD may be finally obtained in a similar way by noting
that y=1−ξ along the segment, leading to:

η =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x0ð Þ2 + 1−ξ−y0ð Þ2

q
; ξ∈ 0;1½ � ð13bÞ

Table 3 presents the coordinates (x,y) of all above considered
points as well as the coordinates (η,ξ) of the respective images.

For further reference, the inverse forms of Eqs (10)–(13) are given
below.

Top boundary [A'B’C’]

ξ =

ffiffiffi
2

p
η + x0−y0ð Þ; 0≤ η≤

ffiffiffi
2

p
y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2−y20
q

+ x0;
ffiffiffi
2

p
y0 ≤ η≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x0ð Þ2 + y20

q :

8<
: ð14Þ

Bottom boundary [A'F’E’]

ξ =
−

ffiffiffi
2

p
η + x0−y0ð Þ; 0≤ η≤

ffiffiffi
2

p
x0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2−x20

q
−y0;

ffiffiffi
2

p
x0 ≤ η≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 + 1−y0ð Þ2

q :

8<
: ð15Þ

Fig. 6 is a plot in space η/ξ of the points shown in Fig. 2. It may be
noted that the materials corresponding to vegetation and charcoal, as
well as part of the samples corresponding to soil tend to lie along the
bottom boundary line, as given by Eq. (15). On the other hand, three
samples of charcoal lie along the top boundary line, as defined by
Eq. (14). As shown in Fig. 7, a similar behavior may be observed with
the pixels of mean pre- and post-fire reflectance values from the 12

selected scars (Fig. 2, right panel), which all lie along the bottom
boundary line of the kite domain. This consistent behavior strongly
suggests defining an adequate coordinate system in space η/ξ.

3.3. The V-W coordinate system

The kite domain U’ being limited, and taking into account the fact
that vegetated surfaces (green or burned) tend to lie along the top and
bottom boundaries of U’, it is advantageous to define a system of
coordinates (V, W) such that the boundaries of the domain (Fig. 5,
right panel) are coordinate curves, e.g. V remaining constant along
[A'B’C’] as well as along [A'F’E’], and W being constant along [C'D’E’].
Fig. 8 presents such coordinate system whose analytical derivation
over the kite domain U’ may be found in the Appendix. As shown in
Fig. 9, the coordinate system (V, W) may be viewed as defining a
spider web over the original unit square U in the MIR/NIR space.

Fig. 10 (left panel) presents the coordinates V and W of the
laboratory measurements shown in Fig. 6, but with discrimination
among the different types of soil. It is worth noting that vegetation
samples and some soil types containing organic matter (e.g.
Inceptisol, Mollisol, Entisol and Alfisol) are in close alignment with
the coordinate curve V=1 On the other hand, dry vegetation, water,
charcoal and the remaining soil types, in particular Aridisol, do not lie

Fig. 5. The unit square U in the x-y space and the kite domain U’ in the η/ξ space, together with a set of selected points in U and the respective images in the kite domain U’.

Table 3
Coordinates (x,y) of the considered points in Fig. 5 (left panel) and coordinates (η,ξ) of
the respective images (right panel).

U domain U’ domain

x y η ξ

A x0 y0 A’ 0 x0−y0
B x0+y0 0 B’

ffiffiffi
2

p
y0 x0+y0

C 1 0 C’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x0ð Þ2 + y20

q
1

D 1 1 D’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x0ð Þ2 + 1−:y0ð Þ2

q
0

E 0 1 E’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 + 1−y0ð Þ2

q
-1

F 0 x0+y0 F’
ffiffiffi
2

p
x0 −(x0+y0)

G 0 0 G’
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q
0

Fig. 6. Location in space η/ξ of laboratory measurements respecting to five types of
materials.
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near V=1. In fact, Aridisols, which never fall close to V=1, are the
dominant soil types in deserts and xeric shrublands, and have a very
low concentration of organic matter. A less stable behavior may be
observed for the other soil types; for instance Mollisols, which tend to
have high organic matter content, fall close to V=1 in the case of the
Cryoboroll sub-class but the same does not happen with the other
sub-classes. This may be attributed to the fact that the overall soil
reflectance is controlled by carbonate and quartz rather than by
organic matter (Salisbury and D'Aria, 1994). It is also worth pointing
out that, besides tending to lie along the contour line V=1, surfaces of
green and burned vegetation as well as soils containing organic
matter tend to organize themselves according to water content, with
green vegetation, soils and burned vegetation being respectively
associated to large (~ 0.6),moderate ( ~ 0.2-0.4) and low values (~ 0)
of W. Fig. 10 (right panel) presents the V-W coordinate system in
themore familiarMIR/NIR space, which defines a “spider-web”whose
cells are associated to the different types of surfaces.

The above-described behavior of vegetated surfaces according
to water content is confirmed by the results shown in Fig. 11
corresponding to the V and W coordinates of the pre- and post-fire
samples shown in Figs. 4 and 7. All surfaces of green and burned
vegetation are accordingly located along coordinate curve V=1, pre-

fire (post-fire) pixels, with green, dry and burned vegetation being
associated to decreasing values of W.

Finally, it is worth emphasizing that V and W present very
different properties regarding the scatter of values; whereas coordi-
nate V has a very small scatter for pixels associated with green, dry
and burned vegetation, coordinate W covers a much wider range of
values. As pointed out by Verstraete and Pinty (1996), the comple-
mentary character of coordinates V and W is especially appropriate
for application purposes since the strict scale character of V makes it a
good classifier (of vegetation) whereas the large scale character
makes of W a good quantifier (of water content). This aspect will be
dealt with in a quantitative way in Section 4.3.

4. Results and discussion

An assessment on the potential of coordinates V and W to
discriminate vegetated surfaces and to be used as a proxy of their
water content will be performed by analyzing the set of 16 images
that was described in Section 2 (see Table 1). For that purpose a
supervised validation of results will be first undertaken by choosing
several types of surfaces and by then comparing the respective
representations in the η/ξ space with those in the traditional MIR/NIR
and R/NIR spaces. This study is then followed by an unsupervised
validation that will help evaluating the discriminating ability of V and
the sensitivity of W, i.e. the usefulness of V as a classifier and of W as a
quantifier. Finally, a quality assessment of the two proposed indices
will be undertaken by comparing, for a set of surface types, intra-class
and inter-class variability of V and W against the corresponding
variability of VI20, BAI20 and GEMI20.

4.1. Supervised validation

As shown in Figs. 12–15 corresponding to scenes 3, 4, 6 and 8,
respectively (see Table 1), different classes of surfaces (namely dense
vegetation, sparse vegetation, soil, burned vegetation, water, clouds
and cloud shadows) were selected by visual inspection of the
respective high resolution Landsat ETM+images. The corresponding
MODIS data were then used to represent the chosen surfaces in the R/
NIR, MIR/NIR and η/ξ spaces. As expected, the representation of the
different surfaces in the three spaces are topologically equivalent in
the sense that each representation may be continuously transformed
into the other by means of translations, rotations and deformations.

Fig. 7. Images in space η/ξ of the points shown in Fig. 2 (right panel).

Fig. 8. Coordinate lines V=const (from −1 to 1 with intervals of 0.2) and W=const
(from 0 to 1 with intervals of 0.2) over the kite domain U’. Coordinate lines were
obtained by applying Eqs. (A5) and (A7) over the kite domain U’ (see Appendix).

Fig. 9. The spider web system of coordinates (V, W) in the unit square U of the original
MIR/NIR space. Contour lines of V from−1 to 1 (with intervals of 0.2) and contour lines
of W from 0 to 1 (with intervals of 0.1). The spider web system of coordinates was
obtained by successively applying Eqs. (5a) and (5b) to the original unit square U in the
MIR/NIR space and then by applying Eqs. (A5) and (A7).
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The advantages of the η/ξ space together with the associated system
of coordinates (V, W) are nevertheless conspicuous. Whereas
vegetation, soil and burned pixels tend to lie along the coordinate
curve V=1, the position of the remaining pixels is always displaced
off the curve. In fact, the trend for surfaces with (without) organic
matter to lie close to (away from) V=1 was found in all 16 scenes
analyzed, with no exception for any surface. On the other hand, the
two extreme values of W are associated with opposite characteristics
of vegetated surfaces; whereas burned surfaces tend to have values
of W close to zero, especially shortly after the fire event; green
vegetation tends to be characterized by high values of W. Interme-
diate values of W generally correspond to a decreased density of
vegetation and/or to the emergence of the soil background.

It may be finally noted that the alignment of vegetated surfaces
with the coordinate curve V=1 is mainly due to the already
mentioned strict scale character of that coordinate, whereas the
large scale character of W allows its usage as a proxy of the water
content of vegetated surfaces. It is therefore to be expected that such
characteristics will enable the use of coordinates (V, W) to dis-
criminate vegetated surfaces and to grade their water content. This
will be investigated in the next subsection.

4.2. Unsupervised validation

The performance of coordinates V andW respectively as a classifier
of vegetated surfaces and as a proxy of water content may be assessed

Fig. 10. As in Fig. 6 (left panel) and in Fig. 2 (right panel) but with representation of coordinate curves of V (thin lines) and ofW (thick lines) on spaces η/ξ andMIR/NIR, respectively.
Laboratory measurements include discrimination among soil types.

Fig. 11. As in Fig. 10 but respecting to pre- and post-fire pixels as shown in Fig. 7 (left panel) and in Fig. 4 (right panel).
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by means of an unsupervised technique that allows distinguishing
among classes such that the between-group variance of the specified
number of classes is maximized. A commonly used unsupervised
technique is the one know as K-means or C-means (MacQueen, 1967)
which essentially consists in prescribing an initial cluster centre for
each of the sought-after clusters and then assigning each pixel of the
set to the class nearest to the pixel. A new cluster centre is calculated
and pixels are reassigned accordingly. The procedure is repeated until
no significant changes in pixel assignments occur from a given
iteration to the next.

Taking into account the different characteristics of V and W that
make of them respectively a good classifier and a good quantifier, the
K-means algorithm was successively applied to coordinates V and W
of several MODIS images; i) two cluster centers were estimated from
the V sample (respectively associated to vegetated surfaces and to
other types) and ii) four clusters were then derived from the W
sample restricted to those pixels belonging to the cluster associated to
vegetated surfaces (i.e. the one with centre of higher V). Results
obtained from the unsupervised classification of each image were
finally compared against Landsat ETM+high resolution image taken
on the same day (see Table 1).

Figs. 16 and 17 present the results obtained after applying K-
means to scenes 3 and 4, respectively. Regarding to the η/ξ space (left
panel), gray points correspond to the first of the two clusters obtained
by applying K-means to V whereas colored points represent the
second cluster. This second cluster was then used as input to a second

K-means procedure which was applied to coordinate W. Thus each
colored cluster denotes the clusters derived from the K-means from
W, as suggested by the drawn contour lines indicating the limits
between these clusters. It is worth noting that colors in the left and
central panels correspond to the same clusters. Taking for reference
the RGB (543) of the high resolution images (Figs. 16 and 17, right
panels), it may be visually confirmed that, when applied to the V
samples, the K-means algorithm is able to discriminate between
pixels associated to vegetated surfaces (green vegetation, stressed
vegetation, and burned surfaces), on the one hand and to the other
non-vegetated types (e.g. water bodies and clouds), on the other. The
two clusters, whose centres respectively present a high and a low
value of V, will be hereafter referred to as vegetated and “other” types.
“Other” pixels correspond therefore to the gray points in the left
panels of Figs. 16 and 17, whereas the remaining colors identify the
pixels belonging to the vegetated type. When K-means is further
applied to vegetated pixels, the obtained four clusters in W appear to
be related respectively to one class of green vegetation (represented
in green), two classes of soil or dry vegetation or sparsely vegetated
areas (represented in dark green and dark brown) and one class of
burned surfaces (represented in black). A close agreement may be
visually identified between the spatial patterns of the above-referred
five classes (central panels) and the spatial distribution of RGB (543)
pixels (right panels). For instance, the “other” types cluster corre-
sponds to clouds in case of scene number 3 (Fig. 16) and to water in
case of scene 4 (Fig. 17); the green vegetation class corresponds to the

Fig. 12. Scatter plot (light gray dots) ofMODIS pixels corresponding to scene 3 in the R/NIR space (left panel), in theMIR/NIR space (middle panel) and in the η/ξ space and respective
coordinate lines of V andW (right panel). Selected pixels corresponding to burned surfaces, soil, vegetation and clouds are respectively represented by black, brown, green and gray
circles.

Fig. 13. As in Fig. 12 but respecting to scene 4. Selected pixels representative of burned surfaces, soil, vegetation and water are respectively represented by black, brown, green and
blue circles.
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greener patches in both scenes, the soil-stressed/sparse vegetation
may be identified as the pinkish and purple areas; finally, the burned
surfaces are readily identifiable as the very dark or black pixels of the
ETM+images. As expected, in the η/ξ space, the grey pixels (i.e. those
belonging to the “other” types cluster do not stand close to coordinate
curve V=1, as opposed to the “vegetated” type cluster, whose pixels
lie along that coordinate curve.

A summary of results of K-means for all 16 scenes is presented in
Table 4 and the obtained overall consistency is worth being noted. In
all 16 scenes analyzed the V cluster with centroid around 0.97 to 0.99
is associated with vegetated surfaces containing. As expected, the
other V cluster is less stable, since it considerably depends upon the
“other” types of surface (e.g. clouds or water bodies) that is present in
the image. The centres of the W clusters also depend on the types of
landcover in each scene and, for this reason; results have to be
compared against the high resolution image taken on the same day.
Accordingly, scenes 1, 2, 3, 4, 5, 6, 7, 10 and 14, that contain burned
areas always have the cluster with centre of lowest value (close to
0.1). On the other hand, scenes mostly covered by vegetation, usually

have the cluster with centre of highest value (about 0.23). Finally, soil
and sparsely vegetated areas are associated to clusters with centre
values between 0.15 and 0.22.

4.3. Quality assessment

Even if obtained on visual grounds, results of the preceding two
sections provide evidence about the usefulness of coordinates V and
W to discriminate vegetated surfaces and rank them according to the
water content (e.g. as green, dry and burned vegetation). The
discriminating ability of V and the capacity of W to rank vegetated
surfaces in terms of the water contents will now be compared, on a
quantitative basis, with those of other currently used indices, such as
VI20, BAI20 and GEMI20, which are also based on NIR and MIR
information.

Intra-class variability of each index was assessed by means of
the corresponding coefficients of variation of each class which are
defined as the ratio of the standard deviation to the mean of the
respective class. The coefficient of variation is a normalized measure

Fig. 14. As in Fig. 12 but respecting to scene 6. Selected pixels corresponding to burned surfaces, soil, vegetation, sparse vegetation and cloud shadows are respectively represented by
black, brown, green, olive green and pink circles.

Fig. 15. As in Fig. 12 but corresponding to scene 8. Selected pixels representative of burned surfaces, soil and vegetation are respectively represented by black, brown and green
circles.
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of dispersion of a given sample and results (Table 5) were obtained for
a set of five classes of pixels that were extracted from the above-
considered scenes 3, 4, 6 and 8 (see Table 1).

The strict scale character of coordinate V, that was already pointed
out, translates into the small values of the coefficients of variance that
are the lowest for each type with the exception of clouds where W
ranks first. The quite large differences in the values of the coefficient of
variation that separate V (for classes where it ranks first) from the
corresponding values of the remaining indices (namely VI20 and
BAI20) are worth being noted since they provide evidence of the
usefulness of V as qualifier, in particular as a discriminator of
vegetation, either green or burned, from other types of surface.

Inter-class variability of each index was assessed by means of the
discrimination index M as defined in Eq. (6). Coordinate W presents
the best discriminating ability respecting to burned vegetation vs.
either green vegetation or soil, closely followed by GEMI20 and VI20.

Nevertheless, the result obtained forW is especially relevant since the
information provided may be used in conjunction with information
from coordinate V that was found to be the best qualifier of vegetated
surfaces. The superiority of coordinate V as a qualifier further reflects
in the exceptionally high values of M in the case of water vs. green
vegetation, burned vegetation and soil.

The potential of using together coordinates V and W may be
assessed by noting that, in the case of the coefficient of variation
(Table 5) the pair (V, W) leads in all five considered classes (4 for V
and 1 for W) and, in the case of the case of the discriminating index M
(Table 6) the pair (V,W) leads in seven classes (five for V and 2 forW)
out of 10, the remaining three being evenly distributed by GEMI20,
BAI20 and VI20. An overview of the performance of all indices in what
respects to the intra-class and inter-class variability is provided by the
diagrams presented in Fig. 18.

The strict scale character of coordinate V that makes of it a good
classifier of vegetated surfaces (either green or burned) translates into
the fact that the corresponding quadrilateral is very close to the origin
(Fig. 18, left panel) as a result of the very low values of the coefficient
of variance for the four considered types of surface. The large scale
character of W that allow its usage as a proxy of water content of
vegetated surfaces (from green to burned vegetation) is supported by
the large area enclosed by the corresponding hexagonal shape which
is closely followed by GEMI20. Finally, the complementary character
of coordinates V and W reflects in the large differences of the areas

Fig. 16. Comparison of results of K-means corresponding to scene 3 in the η/ξ (left panel) and the geographical (central panel) spaces with the RGB (543) of the corresponding high
resolution ETM+image (right panel). See main text for color codes of clusters.

Fig. 17. As in Fig. 16, but corresponding to scene 4.

Table 4
Centres of clusters as obtained from applying K-means to coordinates V andW of the 16
scenes described in Table 1.

Scene
number

V Cluster
centre 1

V Cluster
centre 2

W Cluster
centre 1

W Cluster
centre 2

W Cluster
centre 3

W Cluster
centre 4

1 0.99 0.77 0.11 0.15 0.17 0.19
2 0.99 0.72 0.14 0.17 0.19 0.20
3 0.99 0.87 0.12 0.16 0.18 0.20
4 0.99 0.66 0.12 0.16 0.18 0.20
5 0.98 0.66 0.14 0.21 0.22 0.24
6 0.99 0.42 0.13 0.20 0.23 0.27
7 0.99 0.49 0.10 0.16 0.20 0.24
8 0.99 0.90 0.16 0.20 0.23 0.27
9 0.99 0.57 0.22 0.25 0.28 0.30
10 0.99 0.51 0.13 0.20 0.24 0.28
11 0.97 0.87 0.23 0.27 0.29 0.31
12 0.99 0.98 0.23 0.28 0.30 0.31
13 0.99 0.97 0.25 0.28 0.31 0.32
14 0.99 0.93 0.14 0.18 0.22 0.26
15 0.99 0.89 0.22 0.24 0.26 0.28
16 0.99 0.84 0.21 0.26 0.29 0.46

Table 5
Coefficients of variation for five types of surfaces for coordinates V and W as well as for
VI20, BAI20 and GEMI20. Lowest values of coefficient of variation for each class are
highlighted in bold.

Surface types Number of pixels V W VI20 BAI20 GEMI20

Green vegetation 343 0.002 0.10 0.19 0.23 0.09
Burned vegetation 255 0.07 0.29 0.64 1.05 0.40
Soil 391 0.02 0.11 0.43 0.26 0.12
Cloud 70 1.50 0.21 0.48 1.06 0.31
Water 56 0.01 0.02 0.32 0.04 0.03
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enclosed by the respective quadrilaterals (Fig. 18, left panel) and
hexagonal shapes (Fig. 18, right panel).

5. Concluding remarks

A transformation was defined on the MIR/NIR space of reflectances
with the aim of enhancing the spectral information in such a way that
vegetated surfaces may be effectively discriminated and then ranked
according to the water content of vegetation, leading to the distinction
among green vegetation and burned surfaces. The transformation
consisted of 1) the distance η of each point in MIR/NIR to a pre-defined
convergence point, representative of a given target (e.g. a totally
burned surface), and 2) the difference ξ between the respective MIR
and NIR reflectance of each point. The transformation was in fact
designed to make a synergic use of advantages of indices, like BAI, that
rely on the concept of distances to a fixed point and of indices, like NDVI
and VI, which incorporate differences between channels.

When the defined transformation was applied to the unit square
of reflectance in the MIR/NIR space, the resulting “kite” domain
revealed the property that laboratory materials and land surfaces
corresponding to green, dry and burned vegetation tended to lie along
the bottom boundary line. A coordinate system was therefore defined
in the “kite” domain in such a way that the boundaries of the domain
were coordinate curves. The proposed coordinate system presented
the two following properties; 1) one of the coordinates, the so-called V
coordinate, had a very small dispersion for pixels associated to
vegetated surfaces (e.g. green vegetation, sparse vegetation, some
types of organic soil and incompletely burned surfaces), whereas
2) the other coordinate, the so-called W coordinate, covered a wide
range of values allowing its use as a proxy of the water content of

vegetated surfaces. These two properties are extremely convenient for
application purposes since, as pointed out by Verstraete and Pinty
(1996), the strict scale character of V makes it a good classifier (of
vegetated surfaces) whereas the large scale character of W makes it a
good quantifier (a proxy of water content). The new coordinate
revealed therefore the ability to provide more information than ratio
ormodified ratio indices (likemost vegetation indices),which also rely
on a pair of spectral bands.

A validation exercise was performed with the aim of assessing the
potential of coordinate V to discriminate vegetated surfaces and of
coordinate W to be used as a proxy of their water content. For that
purpose a set of 16 scenes were used covering the two main Brazilian
biomes, namely the Amazon Forest and the Cerrado region during the
year of 2002. Data consisted of information from Landsat ETM+and
of MIR radiance, NIR reflectance and TIR brightness temperature as
acquired by MODIS instrument.

A supervised validation was first carried out by selecting, in the
scenes, different classes of surfaces (namely vegetation, sparse
vegetation, soil, burned vegetation, water, clouds and cloud shadows).
Results obtained allowed a deeper understanding of the relevant
properties of the (V,W) coordinate system. In fact, the representation of
the surfaces in the space η/ξ may be viewed as resulting from the MIR/
NIR space by means of translations, rotations and deformations leading
to a compression in V and a dilation in W that determine the above-
mentioned strict scale character of V and large character ofW.Vegetated
surfaces tended to lie close to and along the coordinate line V=1,
whereas the remaining ones, such as clouds, water bodies, mineral soil
and completely burned surfaces (i.e. charcoal only)weremainly located
away from that contour line. Nevertheless, burned surfaces in MODIS
imagery always fell close to V=1 because it is virtually impossible to
find a MODIS pixel completely covered by charcoal and without any
trace of biomass. On the other hand, values ofW from low tohigh values
were associated with different levels of water content, from full
coverage of green vegetation, going across sparsely or senescent
vegetation up to burned areas, which are very dry.

The robustness of the coordinate system was then tested by using
an unsupervised validation approach, where no a priori knowledge
was assumed about V andW data. It was shown that even when using
a simple unsupervised clustering algorithm, such as K-means,
appropriate and consistent clusters could be found in all the 16
scenes in what regards to the biomass/non-biomass character of the
surfaces and their water content. It seems therefore reasonable to
conclude that the (V, W) coordinate system is especially adequate to
discriminate vegetated surfaces and rank them according to the water
content (e.g. as green, dry and burned vegetation).

Table 6
Values of M index for coordinates V and W, and for VI20, BAI20 and GEMI20. Highest
values for each pair of classes are highlighted in bold.

Surface pairs V W VI20 BAI20 GEMI20

Burned / Green vegetation 0.80 3.32 3.31 1.11 3.21
Burned vegetation / Soil 0.35 2.08 1.86 0.98 1.83
Burned vegetation / Water 5.41 3.81 0.65 1.06 0.02
Burned vegetation / Cloud 0.63 2.93 3.04 1.17 3.32
Green Vegetation / Soil 0.92 1.36 1.49 1.23 1.34
Green vegetation / Water 41.0 2.01 4.90 2.20 6.88
Green vegetation / Cloud 1.99 1.48 0.59 1.39 0.89
Soil /Water 14.8 0.36 2.41 0.49 3.64
Soil / Cloud 1.34 2.08 1.05 2.10 1.88
Water / Cloud 4.18 2.44 4.67 4.74 5.73

Fig. 18. Overall comparison of intra-class variability for four surface types (left panel) and of inter-class variability for six pairs of surface types (right panel) for coordinates V andW
and for GEMI20, VI20 and BAI20.
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Performance of the (V, W) coordinate system was finally assessed
by comparing, for a selected set of surface types, intra-class and inter-
class variability of V and W against the corresponding ones of VI20,
BAI20 and GEMI20which are three commonly used indices also based
on MIR and NIR information. The potential of using together
coordinates V and W translated into the fact that V had less intra-
class variability for four surface types (and W for the remaining one)
and that the pair (V, W) showed the largest discriminating ability for
seven pairs of classes (five for V and 2 for W) out of 10, the remaining
three being evenly distributed by GEMI20, BAI20 and VI20.

The concept behind the (V, W) coordinate system presents some
similarities with the tasseled cap transformation, where a new
coordinate system is used in order to emphasize vegetation
properties. On the other hand, the properties of the η/ξ space and of
the associated (V, W) coordinate system open interesting perspec-
tives for applications like drought monitoring and burned area
discrimination using remotely-sensed information. The potential of
the (V, W) coordinate system to be operationally used to discriminate
burned areas in the Amazon and Cerrado regions of Brazil is currently
being assessed with very encouraging preliminary results.

Finally, it is worth emphasizing that, although tested with the
MODIS sensor, the proposed transformationmay be straightforwardly
adapted to other sensors, such as the AVHRR, working in the MIR and
NIR bands. The approach may be further extended to other
combination of bands, e.g. SWIR/NIR according to the purpose of
study and to the availability of remotely-sensed information.
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Appendix

Analytical deduction of the (V, W) system of coordinates.
Let (η, ξ) be the coordinates defined in the kite domain U’ (Fig. 5,

right panel) by means of the transformation defined by Eqs. (5a)
and (5b). Let us define a new coordinate V such that V≡−1 along the
upper border [A'B’C’] of U’ and V≡+1 along the lower border [A'F’E’].
Accordingly,

ξ = f V ; ηð Þ = f1 V ;ηð Þ; 0≤ η≤ p Vð Þ
f2 V ;ηð Þ; p Vð Þ≤ η≤ q Vð Þ and−1≤ V ≤ + 1

�
ðA1Þ

where f1(V,η), f2(V,η), p(V) and q(V) will have to fulfill the boundary
conditions as defined by Eqs. (14) and (15), respectively for V=−1
and for V=+1. In the case of f1 and p this may be easily achieved
by defining the coordinate curves f1 as straight lines with slope
proportional to V and by assuming that p(V) is the straight line
η=mV+b such that η =

ffiffiffi
2

p
y0 for V=−1 and η =

ffiffiffi
2

p
x0 for V=+1.

Accordingly:

ξ = f1 V ; ηð Þ = −
ffiffiffi
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p
ηV + x0−y0ð Þ ðA2Þ

and

η = p Vð Þ =
ffiffiffi
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2
x0−y0ð ÞV + x0 + y0ð Þ½ �: ðA3Þ

A similar approach may be used in the case of f2 leading to:

ξ = f2 V ; ηð Þ = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2− p Vð Þ½ �2

2

s
+

p Vð Þffiffiffi
2

p
2
4

3
5 V + x0−y0; ðA4Þ

which fulfills the boundary conditions given by Eqs. (14) and (15),
respectively for V=−1 and for V=+1. Besides, since by construc-
tion f1[p(V)]= f2[p(V)], the condition of continuity of fat each point
p(V) is also fulfilled.

Finally, q(V) may be obtained by solving for η the system formed
by Eqs. (13a), (13b) and Eq. (A4), i.e. by computing the coordinate
ηmax of the point of intersection of the coordinate curve V with the
right boundary curve [E'D’C’]. This system may be solved numerically
in a straightforward manner by successively halving the interval
containing the solution.

Finally, Eq. (A1) may be inverted leading to:

V = F η; ξð Þ = F1 η; ξð Þ = − ξ− x0 + y0ð Þffiffiffi
2

p ; 0≤ η≤ p Vð Þ

F2 η; ξð Þ; p Vð Þ≤ η≤ q Vð Þ

8><
>: ðA5Þ

where F2(η,ξ) may be again evaluated by successive halving.
The second coordinate, W, will now be defined in such a way that

W≡0 at point A’(0, x0-y0) andW≡1 along the curve [C'D’E’]. Let P’ be a
generic point within the kite domain U’ and let V* be the coordinate
curve V that contains P’ and intersects the right boundary curve
[E'D’C’] at point R’. Coordinate W of point P’ will be accordingly given
by:

W =
Λ V�;A

0→P0	 

Λ V�;A

0→R0ð Þ ðA6Þ

where Λ(V*,X '→Y ') is the arc length, along coordinate curve V *, from
point X’ to point Y’.

Finally, taking into account Eqs. (A1), (A2) and (A4), Eq. (A5) may
be written as follows:

W =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2V2

�
q

ηP0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2V2

�
q

p Vð Þ + Ψ p Vð Þ;ηR0
� � ; ηP0 ≤ p Vð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2V2

�
q

ηP0 + Ψ p Vð Þ;ηP0
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2V2

�
q

p Vð Þ + Ψ p Vð Þ;ηR0
� � ; ηP0 ≥ p Vð Þ

8>>>>>>>><
>>>>>>>>:

ðA7Þ

where the integral given by:

Ψ α;β½ � = ∫β

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

V2
� p Vð Þ½ �2

η2− p Vð Þ½ �2ffiffi
2

p

vuut dη ðA8Þ

may be evaluated by gaussian quadrature.
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