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The ephemeral character of the radiative signal together with the presence of aerosols imposes severe
limitations on the use of classical approaches, e.g. based on red and near-infrared, to discriminate between
burned and unburned surfaces in tropical environments. Surface reflectance in the middle-infrared (MIR)
has been used to circumvent these difficulties because the signal is virtually unaffected by the presence of
aerosols associated to biomass burning. Retrieval of the MIR reflected component from the total signal is,
however, a difficult problem because of the presence of a diversity of radiance sources, namely the surface
reflected solar irradiance and the surface emitted radiance that may reach comparable magnitude during
daytime. The method proposed by Kaufman and Remer (1994) to retrieve surface MIR reflectance presents
the advantage of not requiring auxiliary datasets (e.g. atmospheric profiles) nor major computational means
(e.g. for solving radiative transfer models). Nevertheless, the method was specifically designed to retrieve
MIR reflectance over dense dark forests in the middle latitudes and, as shown in the present study, severe
problems may arise when applying it beyond the range of validity, namely for burned area mapping in
tropical environments. The present study consists of an assessment of the performance of the method for a
wide range of atmospheric, geometric and surface conditions and of the usefulness of extracted surface
reflectances for burned area discrimination. Results show that, in the case of tropical environments, there is a
significant decrease in performance of the method for high values of land surface temperature, especially
when associated with low sun elevation angles. Burned area discrimination is virtually impaired in such
conditions, which are often present when using data from instruments on-board polar orbiters, namely
MODIS in Aqua and Terra, to map burned surfaces over the Amazon forest and “cerrado” savanna regions.
L, Lisbon, Portugal.
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1. Introduction

Over the last decade continuous monitoring of vegetation fires
from space has greatly contributed to an increased recognition of the
major role played by biomass burning in climate change. In fact,
biomass burning is a global source of greenhouse gases (e.g. CO2 and
CH4) as well as of CO, NO2, NOx, CH3Br and hydrocarbons involved in
the formation of acid rain, in the photochemical production of
tropospheric ozone and in the destruction of stratospheric ozone (e.g.
Crutzen & Andreae, 1990; Penner et al., 1992). At the regional level,
biomass burning may induce changes in atmospheric stability and
associated vertical motions, leading to alterations of the hydrologic
cycle with significant impacts on regional climate (e.g. Rosenfeld,
1999; Menon et al., 2002; Koren et al., 2004). Teleconnection
processes may also take place, inducing changes e.g. of rainfall and
surface temperature patterns across distant parts of the world (Chase
et al., 2000; Zhao et al., 2001; Pielke et al., 2002). In particular, the
study by Evangelista et al. (2007) suggests that almost half of the
aerosol black carbon in the South-West Atlantic may derive from
South American biomass burning. In addition, vegetation fires are one
of the most important causes of land use/cover dynamics (Lambin &
Geist, 2006), destroying and altering vegetation structure and
depositing charcoal and ash on the surface. Such changes may, in
turn, lead to modifications in the physical properties of the surface
such as the ratio of latent to sensible heat flux, the transfer of
momentum from the atmosphere and the flux of moisture through
evaporation and transpiration (Sellers et al., 1996; Jin & Roy, 2005).

Accordingly, a considerable number of environmental studies and
Earth resources management activities require an accurate identifi-
cation of burned areas. However, due to the very broad spatial extent
and the limited accessibility of some of the largest areas affected by
fire, instruments on-board satellites are currently the only available
operational systems capable to collect cost-effective burned area
information at adequate spatial and temporal resolutions (Pereira,
1999). This is especially true in the tropics, where most burning take
place every year (Le Page et al., 2007). For instance, the Amazon
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Fig. 1. Spectral signatures of four charcoal samples (solid curves) and of three
vegetation samples (dot–dashed curves). Gray boxes delimit the SWIR (between 2.0
and 2.5 μm) and MIR (between 3.5 and 4 μm) spectral regions in order to emphasize
their contrast. Charcoal and vegetation signatures were respectively obtained from
samples of fire residues from Alta Floresta, state of Mato Grosso, Brazil and from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral
library (Baldridge et al., 2009).
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region together with the adjacent savanna (“cerrado”) presents one of
the highest numbers of occurrences of fire events (Prins et al., 1998).

Over the Amazon region the traditional use of red (R) and near-
infrared (NIR) channels for detecting burned areas is severely
impaired by the presence of heavy smoke layers due to biomass
burning, since both channels are very sensitive to aerosol scattering
and absorption in the atmosphere (Fraser & Kaufman, 1985; Holben
et al., 1992; França & Setzer, 1998). A possible way to mitigate the
aerosol effects associated to biomass burning on Earth observation
from space is by using the middle-infrared (MIR) region (between 3.5
and 4.1 μm), since this part of the spectrum is also sensitive to
vegetation changes but is virtually unaffected by the presence of most
aerosols. However, Boyd and Duane (2001) pointed out that the use of
MIR for studying the Earth's surface properties at and beyond the
regional scale may be unreliable. They further suggest that, in the case
of tropical forests at regional to global scales, it may be preferable to
only rely on the reflected component of MIR, since the emitted
component of the signal may be subject to additional confounding
variables, rather than representing intrinsic surface properties (Kauf-
man & Remer, 1994). Though related to tropical forest canopy
properties, emitted radiation may also be influenced by a wide
range of factors that include; i) localized atmospheric conditions such
as wind speed and water vapor conductance (Price, 1989), ii) site-
specific factors such as topography (Florinsky et al., 1994) and iii) soil
moisture conditions (Luvall & Holbo, 1991; Nemani et al., 1993).

A large number of studies have shown that use of MIR reflectance
is promising for a variety of applications such as discriminating among
different vegetation types (Holben & Shimabukuro, 1993; Shimabu-
kuro et al., 1994; Goita & Royer, 1997); estimating the total biomass
and leaf biomass of several forest ecosystems (Boyd, 1999; Boyd et al.,
2000); and monitoring the intra- and inter-annual changes in
vegetation induced by climatic factors (Boyd & Duane, 2001). In
particular, the work of Pereira (1999) showed that spectral vegetation
indices using the R and NIR allow for improved burned/unburned area
discrimination when the R channel is replaced by the reflected
component of the MIR channel. Although use of the reflected
component of MIR appears very attractive, its retrieval poses several
challenging problems due to the presence, in a singlemeasurement, of
a diversity of radiance sources, namely linked to the thermal emission
and the solar reflection from the atmosphere and by the surface. For
instance, during daytime, the MIR surface reflected solar irradiance
and the surface emitted radiance in MIR have comparable magnitude
(Li & Becker, 1993).

Several methods have been proposed to solve the difficult problem
of retrieving MIR reflectance from the total signal measured by a
remote sensing instrument (e.g. Schutt & Holben, 1991; Li & Becker,
1993; Goita & Royer, 1997; Nerry et al., 1998; Roger & Vermote, 1998;
Petitcolin & Vermote, 2002). All mentioned methods allow for the
retrieval of MIR reflectance with acceptable accuracy, but most are
time consuming, and normally require auxiliary datasets (e.g.
atmospheric profiles) as well as intensive computational means (e.g.
for solving radiative transfer computations). Kaufman and Remer
(1994) proposed a different approach for retrieving MIR reflectance
without direct knowledge of the atmospheric state and with no need
for a radiative transfer model. Their method was originally designed
to identify dense, dark vegetation areas in mid-latitude environments
and the authors specifically stressed the need for further studies
under different atmospheric conditions, as well as for other types of
surface. Themethod has been applied in a number of studies involving
both temperate and tropical conditions (e.g. Holben & Shimabukuro,
1993; Boyd, 1999; Boyd & Duane, 2001; Cihlar et al., 2004).

In particular, the approach proposed by Kaufman and Remer
(1994), hereafter referred to as KR94, has been applied for burned
area discrimination, since the MIR spectral domain may contribute to
solving certain ambiguities between burned and unburned surfaces.
These occur, for example, when using information from other parts of
the electromagnetic spectrum, namely the short-wave infrared
(SWIR), especially between 2.0 and 2.5 μm (França & Setzer, 2001).
As shown in Fig. (1), the increase in reflectance over burned surfaces
is higher in MIR than in SWIR, allowing a better discrimination
between both surfaces. For instance, Pereira (1999) showed the added
value of the method developed by KR94 in a pioneering study aiming
to assess the ability of various vegetation indices to discriminate
between burned and unburned surfaces in Portugal. The same
methodology was used by Barbosa et al. (1999) and by Roy et al.
(1999) to extract the reflective part of Advanced Very High Resolution
Radiometer (AVHRR) channel 3, for input to algorithms aiming tomap
burned areas in Africa.

Results from the above-mentioned studies are certainly relevant,
useful and promising; nevertheless, to the best of our knowledge, no
assessment has discussed in depth the accuracy of the methodology
proposed by KR94 when used to discriminate burned areas in tropical
environments. Approximate solutions, like that proposed by KR94, are
fast and easy to implement, but may be insufficiently accurate under
specific surface and atmospheric conditions. The aim of the present
study is to assess the quality and limitations of the retrieved MIR
reflectance by means of KR94's method when applied to discriminate
burned areas in tropical environments.

Accordingly, the main objectives of the analysis are twofold:

1. To perform a quality assessment of MIR reflectance when retrieved
using the algorithm proposed by KR94, for a wide range of
atmospheric, geometric and surface conditions;

2. To assess the adequacy and limitations of the above-mentioned
algorithm when applied to burned area discrimination, in
particular in the Amazon and “cerrado” regions. Special attention
will be devoted to the Moderate Resolution Imaging Spectrometer
(MODIS) sensor, because of its widespread use in operational
applications at the Brazilian National Institute for Space Research
(INPE).

2. Rationale

One of the major difficulties encountered in the tropics when
discriminating burned areas relates to the ephemeral character of
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spectral signatures, in contrast with temperate and boreal regions,
where one may wait until the end of the fire season to map scars from
previous months (Pereira, 2003). This procedure is not feasible in
tropical savannas, where combustion products are easily scattered by
wind, and the charcoal spectral signal quickly fades out. Burning of
converted tropical forest produces a short-lived signal, since fire in
this region is closely related to pasture and agriculture practices,
which disturb the soil surface. In tropical regions, mapping burned
areas with remote sensing data has, therefore, to be performed during
the dry season, i.e. simultaneously with the fire episodes. Results will
be, in general, largely affected by smoke aerosols, which contaminate
surface observation and reduce the spectral contrast between distinct
land cover types. According to Kaufman (1995), most of these
particles may remain in the atmosphere for around a week. In
addition, from July to October, i.e. during the Amazon fire season, a
large high pressure system tends to dominate the region, inhibiting
precipitation and reducing relative humidity due to the subsidence of
dry air from the upper levels of the atmosphere (Nobre et al., 1998).
The associated atmospheric circulation favors the retention over a
large horizontal area of smoke emitted by fires, reducing visibility to
the point of closing airports during, even up to two or three weeks
after the end of the fire season (Reinhardt et al., 2001).

Under such circumstances, the MIR spectral band appears
especially adequate for monitoring the land surface during fire
episodes, because it is largely unaffected by the presence of most
aerosols. This feature of MIR becomes well apparent when atmo-
spheric transmittance attenuation is computed over the visible (VIS)
to MIR bands, for different levels of smoke contamination due to
biomass burning. Transmittance attenuation is defined here as the
difference between the transmittance from an aerosol-free atmo-
sphere and that from an atmosphere with a given level of smoke
contamination. Fig. (2) shows the impact on MODIS VIS to MIR
channels resulting from increasing the aerosol optical depth (AOD)
associated to biomass burning. Values of transmittance attenuation
were obtained from radiative transfer simulations performed with
MODTRAN-4 (see Section 3.3). The model was run using a Tropical
atmospheric profile (see Table 2) perturbed with aerosols associated
to biomass burning, based on cloud-screened level 2.0 AOD at 440 nm
(τa(0.44)) data from the Abracos Hill station. The station is located in
Rondonia, Brazil, an area with high fire activity and is part of the
Fig. 2. Atmospheric transmittance attenuation [%] onMODIS VIS toMIR channels for three
different levels of smoke contamination due to biomass burning. τa(0.44) indicates the
AOD at 0.44 μm and α denotes the Ängstrom parameter, which characterizes aerosol
particle size distribution.
Aerosol Robotic Network (AERONET), a global sun/sky radiometer
network for aerosol monitoring (Holben et al., 1998).

During the dry season, in an atmosphere heavily contaminated by
smoke (e.g. with an AOD at 0.44 μm for about 2.73), the VIS and NIR
channels (0.4–1.0 μm) are inadequate for surface observation. Even at
lower levels of contamination by smoke (with an AOD at 0.44 μm lower
than 0.72) VIS channels remain strongly affected. Although less
sensitive to smoke aerosol, atmospheric transmittance in the SWIR
(1.2–2.5 μm) spectral region is still markedly attenuated. In striking
contrast, the MIR domain is practically unaffected by smoke, allowing
for almost undisturbed surface observation. The atmospheric transmit-
tance attenuation displays almost constantly low values of atmospheric
contamination by smoke in all three cases analyzed, including under
extremeAOD conditions. This is amajor reason to favor theMIR spectral
domain for monitoring and mapping burned areas.

3. Data and methods

3.1. Theoretical background

Top of the atmosphere (TOA) radiance measured by a sensor in the
MIR region results from the contribution of the reflective and thermal
emissive components. In case of clear sky conditions, radiation balance
is translated by the so-called radiative transfer equation (RTE):

LMIR = tMIRρMIR
E0MIR

π
μ0 + τMIRεMIRBðλMIR; TSÞ

+ τMIRρMIR

P

Latm;MIR↓ + Latm;MIR↑ + LS:

ð1Þ

In the previous equation tMIR is the two-way atmospheric
transmittance (sun–surface–sensor); ρMIR is the surface reflectance;
E0MIR is the exo-atmospheric irradiance; μ0 is the cosine of the solar
zenith angle (SZA); τMIR is the one-way atmospheric transmittance
(surface–sensor); ɛMIR is the surface emissivity; B(λMIR, TS) is the
emitted radiance given by Planck's function for surface temperature
TS and central wavelength λMIR; L a̅tm,MIR↓ is the hemispherical aver-
age of the atmospheric downward emission; and Latm,MIR ↑ is the
atmospheric upward emission; and LS is the term associated with
atmospheric scattering.

The first term on the right-hand side of Eq. (1) represents the solar
radiance that is attenuated by the atmosphere in its downward path,
then reflected by the surface and again attenuated in its upward path
to the sensor. The second term represents the radiance emitted by the
surface that is attenuated by the atmosphere. The third term denotes
the downward atmospheric radiance that is reflected by the surface
and then attenuated in its upward path to the sensor. The fourth term
represents the radiance emitted by the atmosphere towards the
sensor. The last term is associated with atmospheric scattering.

Since the Earth surface is opaque and assuming it behaves as a
Lambertian emitter–reflector, surface reflectance and emissivity are
related as:

ρMIR = 1−εMIR: ð2Þ

Using Eq. (2) and neglecting the atmospheric scattering term, LS,
the solution to Eq. (1) is given by:

ρMIR =
LMIR−τMIRBðλMIR; TSÞ−Latm;MIR↑

tMIR
E0MIR
π μ0−τMIRBðλMIR; TSÞ + τMIRLatm;MIR↓

: ð3Þ

3.2. Retrieval of MIR reflectance

Eq. (3) lays the grounds for the so-called physically-based
methods, which involve a direct evaluation of all constituents of the
MIR signal by means of a radiative transfer model, requiring



Table 2
Effects of water vapor content [g cm−2] on atmospheric terms for the three profiles
analyzed, considering nadir view and a SZA of 0°.

Profile Water vapour
content
[g cm−2]

τMIR tMIR Latm,MIR ↑
[W m−2 μm−1 sr−1]

L ̅atm,MIR ↓
[W m−2 μm−1 sr−1]

MLW 0.85 0.91 0.81 0.006 0.012
MLS 2.92 0.83 0.70 0.038 0.068
TRO 4.11 0.79 0.65 0.057 0.104
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substantial computational means. Operational use of physically-based
methods is limited by other factors, namely the need of quantitative
information on atmospheric conditions, mainly humidity and tem-
perature profiles, in order to perform the atmospheric corrections.

The above-mentioned limitations led to the development of
simpler methods, like the one proposed by KR94, which require
neither direct knowledge of atmospheric conditions, nor a radiative
transfer model. The approach is based on the studies of Gesell (1989)
and Ruff and Gruber (1983), who pointed out the existence of a
mutual compensation between attenuation and thermal emission
terms, so that both atmospheric transmittances (i.e. tMIR and τMIR)
may be assumed as equal to unity, and both the atmospheric
downward and upward thermal emission terms may be neglected.
The validity of these assumptions may be assessed by simplifying
Eq. (3) and then justifying the performed simplifications using typical
values of the relevant terms of Eq. (3) for surface and atmospheric
conditions associated to dense, dark vegetation areas in mid-latitude
environments. Typical values are given in Table 1 for nadir view and
three different values of SZA, respectively 0, 15 and 45°, where a Mid-
Latitude Winter atmospheric profile (see Table 2) and a surface
temperature TS of 290 K are assumed. Accordingly, after some
algebraic manipulations, Eq. (3) may be rewritten as:

ρMIR =
LMIR−BðλMIR; TSÞ−Δ1

E0MIR
π μ0−BðλMIR; TSÞ

h i
½1 + Δ2�

ð4Þ

where:

Δ1 = ðτMIR−1ÞBðλMIR; TSÞ + Latm;MIR↑ ð5Þ

Δ2 =
ðτMIR−1Þ E0MIR

π μ0−ðτMIR−1ÞBðλMIR; TSÞ + τMIR Latm;MIR↓
E0MIR
π μ0−BðλMIR; TSÞ

ð6Þ

Since Δ2≪1 according to the values in Table 1, the factor 1
1+Δ2

�
in Eq. (4) may be expanded in a Taylor series up to the first order
leading to:

ρMIR =
LMIR−BðλMIR; TSÞ−Δ1
E0MIR
π μ0−BðλMIR; TSÞ

h i ½1 + Δ2�: ð7Þ

Taking further into account that Δ1≪LMIR−B(λMIR, TS), terms Δ1

and Δ2 may be neglected in Eq. (7) leading to the following simplified
form:

ρMIR =
LMIR−BðλMIR; TSÞ

E0MIR
π μ0−BðλMIR; TSÞ

: ð8Þ

The above described mathematical procedure may be also viewed
from a physical point of view. First, consider the numerator of the
second hand term of Eq. (3), and suppose the atmospheric upward
emission term (Latm,MIR ↑) is neglected. Since LMIR is fixed, the only
way to compensate the neglected term is by increasing the
contribution of the remaining term, τMIRB(λMIR, TS). This is only
possible by increasing the atmospheric transmittance τMIR, in
particular by setting it equal to unity. Now, taking into consideration
Table 1
Typical values of the different terms of Eq. (3) in the case of nadir view and for three differen
TS, equal to 290 K.

SZA τMIR tMIR LMIR
a B(λMIR, TS)a

45° 0.912 0.794 0.700 0.315
15° 0.912 0.813 0.872 0.315
0° 0.912 0.816 0.899 0.315

a [W m−2 μm−1 sr−1].
the denominator, suppose the atmospheric downward emission term
(L ̅atm,MIR ↓) is neglected. Then, in order to compensate the neglected
term, either the contribution of term τMIRB(λMIR, TS), or the
contribution of term tMIR

E0MIR
π μ0 have to be increased. However, the

first possibility is ruled out by the fact that it was already assumed that
τMIR=1. Therefore, the contribution of the tMIR

E0MIR
π μ0 term has to be

raised by increasing tMIR, in particular by setting it equal to unity.
Setting both tMIR and τMIR to unity does lead to the required increase
that compensates for neglecting the L ̅atm,MIR ↓ term. This is due to the
fact that, in general, tbτ and therefore the assumption tMIR=τMIR=1
leads to a greater increase in the contribution of tMIR

E0MIR
π μ0 term than

in τMIRB(λMIR, TS) term.
KR94 introduced another approximation for Eq. (8), that consists

of using the brightness temperature, TB,TIR, from a thermal infrared
(TIR) band (10–12 µm) as a surrogate for the land surface temper-
ature (LST), TS. In fact, as pointed out by Prata et al. (1995), brightness
temperature is usually lower than surface temperature, the difference
typically ranging from1 to 5 K in TIR.

Following a procedure similar to the one above-described, Eq. (8)
may be approximated (up to the first order) as:

ρMIR =
LMIR−BðλMIR; TB;TIRÞ−Δ3
E0MIR
π μ0−BðλMIR; TB;TIRÞ

1− Δ3
E0MIR
π μ0−BðλMIR; TB;TIRÞ

" #
: ð9Þ

Since, according to results in Table 1, Δ3=B(λMIR, TS)−B(λMIR,
TB,TIR)≪LMIR−B(λMIR, TB,TIR) and Δ3

E0MIR
π μ0−BðλMIR ;TB;TIRÞ

≪1, Eq. (3) may

be approximated by the following equation, that represents the final
form of the KR94 algorithm:

ρMIR =
LMIR−BðλMIR; TB;TIRÞ

E0MIR
π μ0−BðλMIR; TB;TIRÞ

: ð10Þ

3.3. Radiative transfer simulations

As pointed out in the Introduction, the aim of the present paper is
to perform a systematic assessment of the performance of the KR94
algorithm when applied to burned area discrimination under a wide
range of atmospheric, surface and geometry conditions, paying special
attention to those expected when applying the algorithm to the
Amazon and “cerrado” regions.

For this purpose, estimation of the error associated with MIR
reflectance as retrieved using Eq. (10) will be performed based on a
t SZA considering a Mid-LatitudeWinter atmospheric profile and a surface temperature,

B(λMIR, TB,TIR)a Latm,MIR ↑ a E0MIR
π μ0

a L ̅atm,MIR ↓a

0.212 0.006 2.46 0.011
0.212 0.006 3.29 0.011
0.212 0.006 3.42 0.011
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large number of simulated top of atmosphere (TOA) radiances. These
simulations are generated with MODTRAN-4, a widely used radiative
transfer model (Berk et al., 2000) encompassing a large set of
observation conditions. The simulations are performed in the spectral
ranges of 3.62 μm–3.97 μm and 10 μm–12 μm, i.e. covering MODIS
channels 20 and 31. Brightness temperature from MODIS channel 31
is also required as input to Eq. (10).

The atmospheric contribution is computed for three geographical–
seasonal model atmospheres stored in MODTRAN-4, namely Mid-
Latitude Winter (MLW), Mid-Latitude Summer (MLS), and Tropical
(TRO). Use of mid-latitude profiles (i.e. MLW and MLS) is required to
establish a baseline of performance of KR94 when subject to atmo-
spheric, surface and geometric conditions for which the algorithm
was specifically designed. Such baseline will then serve to assess the
limitations of KR94 when employed beyond specifications, namely in
case of tropical environments (e.g. as described by the TRO profile).

The three standard atmospheres cover a wide range of atmo-
spheric conditions, with water vapor content of 0.85, 2.92 and
4.11 gcm−2 and 2-m air temperature (Tatm) of 272.2, 294.2 and
299.7 K, for MLW, MLS, and TRO respectively. The assigned LST values
are based on the 2-m air temperature of each profile, varying from
Tatm to Tatm+30.0 K in steps of 1.0 K, totalizing 31 different values.
The sun-view geometry consists of 31 solar zenith angles, from 0° to
60° in steps of 2°, and of a single view zenith angle of 0°. Although
nadir viewing is limited along the tropics when using polar orbiting
instruments (such as MODIS), choice of a nadir view corresponds to
the most favorable surface observation conditions. If problems arise
when simulating nadir viewing (i.e. the most favorable case), then
performance is expected to degrade for less favorable observation
conditions. In fact, simulations were also performed for off-nadir
viewing angles and, as expected, results (not shown) revealed a slight
degradation in performance of the KR94 algorithm with increasing
viewing angle, a feature consistent with former studies (França &
Fig. 3. Monthly values of P75 of LST during August, 2008 over B
Setzer, 1998; Jiang et al., 2006) that demonstrate weak dependence of
MIR region on view angle variations.

The ranges of SZA and LST are set to be representative of the
observed geometric and surface conditions characteristic of regions
associated to each atmospheric profile. For instance, Fig. 3 depicts
pixel values of the third quartile (P75) of LST during August 2008,
retrieved over Brazil using the Spinning Enhanced Visible and Infra-
Red Imager (SEVIRI) on-board METEOSAT-8. Fig. 4 presents monthly
P75 values, throughout the year, of SZA as obtained from a large
sample of pixels from MODIS imagery that has been operationally
used for burned area discrimination over Brazil. During the fire season
(from June to October) very high values of LST are observed over
Amazonia and especially over the adjacent “cerrado”, region, where a
large area may be found that presents values of P75 larger than 320 K.
In addition, more than 25% of the pixels are associated to values of SZA
greater than 40°, i.e. to low values of the solar signal.

Two types of surface cover were considered, namely burned and
unburned. Both surface types were assumed to be homogeneous and
Lambertian, the burned and unburned surfaces being characterized
respectively by charcoal and vegetation spectra. Spectral libraries like
ASTER and MODIS-UCSB supply reliable reflectance data for different
types of materials, such as vegetation, water, soil, rocks and man-
made. However, to the best of our knowledge, no reflectance
measurements are currently available for charcoal, ash or any burned
plant material, in the spectral region accounted for in this study.
Therefore, four fire residue samples were collected at Alta Floresta,
state of Mato Grosso, Brazil. Charcoal spectra were measured at the
NASA Jet Propulsion Laboratory and may be viewed as typical of
tropical environments. Mean values of the four charcoal spectra were
then used to prescribe the surface reflectance of the burned surface as
input to MODTRAN-4. Regarding the unburned surface, prescribed
reflectance values were obtained from a set of 25 surfaces from the
MODIS-UCSB spectral library. The set includes most vegetation types
razil. Data were retrieved from METEOSAT-8/SEVIRI data.



Fig. 4. Monthly values of P75 of SZA as obtained from samples of AQUA/MODIS and TERRA/MODIS imagery along the year of 2007 over Brazil. The threshold of 40° for SZA is
highlighted by the dotted horizontal line. Dotted vertical lines delimit the fire season in Amazonia (June to October).
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(Salisbury & D'Aria, 1994; Peres & DaCamara, 2004), with reflectance
values varying from 0.01 to 0.04, in the MIR region. A value of 0.24
(0.03) was, accordingly, prescribed for MIR reflectance for the burned
(unburned) types of surface cover. These values were obtained by
averaging the MIR spectral signature for the four (25) considered
charcoal (vegetation) types, which were convolved with the MODIS
channel 20 normalized response function. Results ought to be
applicable to other sensors having spectral windows similar to that
used in this work.

4. Analysis and results

4.1. MODTRAN-4 simulations

As discussed in the previous section, the method developed by
KR94 relies on a number of simplifying assumptions regarding
atmospheric transmittances and atmospheric downward and upward
thermal emission radiances. All these terms are correlated and
depend essentially on atmospheric water vapor content. When
atmospheric water vapor increases, atmospheric transmittances
decrease, whereas the atmospheric downward and upward thermal
emission radiances increase. Table 2 shows the range of atmospheric
terms that may typically be found in the MIR region, in the case of the
three geographical–seasonal model atmospheres considered, i.e.,
when varying from ‘dry’ to ‘moist’ conditions. For instance, whereas
high transmittances and low path-radiances values characterize the
MLW atmospheric profile, the TRO profile is associated to lower
transmittances and relatively high path-radiance values. It is therefore
to be expected that use of Eq. (10) in retrieving MIR reflectance may
introduce systematic deviations, especially in the case of ‘moist’
atmospheres. For example, in the case of TRO, the relative error
associated to the assumption of τMIR=1 (instead of the realistic value
τMIR=0.79) is about 27% but drops to 10% in the case of MLW (taking
into account that τMIR=0.91). In the case of the two-way atmospheric
transmittance, the relative error associated to the assumption of
tMIR=1 (instead of tMIR=0.65) in the case of TRO is about 54% but
drops to 24% in the case of MLW (where tMIR=0.81). In a similar
fashion, neglecting the atmospheric downward emission term leads
to a relative error of 17% for the TRO profile, in contrast with MLW
where the corresponding error decreases to 3%. Finally, neglecting the
atmospheric upward emission term leads to a relative error of 9% for
the TRO profile and just to an error of 2% in the case of MLW.

Accuracy of the solutions provided by Eq. (10) may be assessed by
evaluating the corresponding relative errors, defined as the differ-
ences between retrieved values using Eq. (3) and the corresponding
prescribed values as input to MODTRAN-4, divided by the latter
values. Figs. 5–7 present the obtained values of relative errors of MIR
reflectance as a function of LST and SZA. The curves correspond to
nadir viewing conditions and represent charcoal (left panels) and
vegetation (right panels) surfaces for MLW (Fig. 5), MLS (Fig. 6) and
TRO (Fig. 7). It is worth stressing that ranges of LST considered are
different for each profile (as discussed in Section 3.3) and reflect the
surface conditions typically associated to each type of atmosphere.

It is well apparent that relative errors strongly depend on the
surface type, for all three atmospheric profiles. In particular, it may be
noted that the magnitude of relative errors is considerably larger for
vegetation than for charcoal, and increases with moisture content,
MLW showing the lowest values and TRO the highest. For instance,
the lower values obtained in the case of MLW are in close agreement
with results found by KR94, who estimated the accuracy of Eq. (10) to
lie in the range of 0.01–0.02 (absolute errors) for a mid-latitude
atmosphere and for the range of reflectance to be expected from a
variety of vegetation and soils (0.01–0.06). In strong contrast,
vegetation surfaces present extremely large relative errors, ranging
from 100% to 1200% for LST values to be expected in tropical regions.
Taking the value of 0.03 as reference for reflectance of vegetation, the
obtained range corresponds to absolute errors of 0.06–0.4. In the case
of charcoal, relative errors are one order of magnitude smaller,
ranging from −20%–80%, i.e. from about −0.05–0.2 in terms of
absolute error, and taking a reference value of 0.24 for charcoal
reflectance. Dependence of the relative error on LST is stronger than
on SZA, especially for values of SZA lower than 30°, a feature clearly
revealed by the low slope of the error curves in Figs. 5–7.

Performance of the KR94 algorithm is closely linked to the
magnitude of the relative contribution of thermal emitted radiance,
Le, to the total TOA MIR radiance, LMIR, given by Eq. (1). It may be



Fig. 5. Relative error [%] onMIR reflectance (retrieved minus prescribed values) as a function of LST and SZA in the case of MLW profile for charcoal (left panel) and vegetation (right
panel) surfaces. Solid (dotted) curves indicate positive (negative) errors and the thick curve highlights the no-error line.

Fig. 6. As in Fig. 5 but in the case of MLS.

Fig. 7. As in Fig. 5 but in the case of TRO.
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noted that Le is given by the second, third and fourth terms of the
right-hand side of Eq. (1), i.e.

Le = τMIRεMIRBðλMIR; TSÞ + τMIRρMIR

P

Latm;MIR↓ + Latm;MIR↑: ð11Þ
When the ratio Le/LMIR exceeds a threshold of about 0.75 the
solutions provided by Eq. (10) are contaminated by unacceptably
large relative errors, on the order of 100%. The magnitude of Le/LMIR,
and therefore the range of validity of Eq. (10), mainly depends on the
type of the surface considered, as well as on its temperature,
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atmospheric profile, and sun elevation angle. Fig. 8 presents the
dependence of Le/LMIR on LST for vegetation (circles) and charcoal
(squares) under two extreme illumination angles, respectively an SZA
of 0° (open symbols) and of 60° (black symbols), and for the two
extreme cases of atmospheric moisture content, respectively MLW
(left panel) and TRO (right panel) profiles. The contrasting behavior of
charcoal and vegetation is well apparent. In the case of charcoal, high
values of MIR reflectance (about 0.24) lead to a major contribution of
the reflected component and, therefore, the ratio Le/LMIR will be below
50% (75%) in the case of MLW (TRO), except for large values of LST,
above 289 K (293 K) for MLW (TRO), associated to very low sun
elevation angles (SZA=60°). Acceptable estimates of charcoal
reflectance are therefore to be expected from Eq. (10), the sole
exception being cases of high LST values (larger than 320 K), co-
occurring with high SZA values (larger than 50°), which may lead to
relative errors in excess of 25%. Because of the very low vegetation
reflectance (about 0.03, i.e. eight times lower than that of charcoal),
total TOA MIR radiance, LMIR, will be primarily due to the thermal
emitted component, and a deeply contrasting behavior is to be ex-
pected between charcoal and vegetation. In the latter type of sur-
face, the ratio Le/LMIR is always larger that 75% in the case of TRO, and
in the case of MLW for low solar elevation (SZA=60°). Even for solar
zenith conditions (SZA=0°) the ratio Le/LMIR exceeds 75% in the
case of MLW, for LST values as low as 288 K. Implications of the
solutions provided by Eq. (10) on relative errors are well depicted in
the left panels of Figs. 5 and 7; in the case of TRO, relative errors are
unacceptably large (exceeding 50%) over the entire domain consid-
ered, whereas in the case of MLW relative errors are larger than 25%
for values of LST beyond 290 K, whenever SZA surpasses 50°.

The above-discussed limitations of the KR94 algorithm may give
rise to serious difficulties when attempting to discriminate between
burned and unburned surfaces, in particular in the case of tropical
environments. For instance, an absolute error of 0.2 in a typical
vegetation reflectance of about 0.03 leads to a retrieved value of about
Fig. 8. Plot of the ratio Le/LMIR[%] as a function of LST in the case of MLW (left panel) and TR
open (black) symbols characterizes SZA of 0° (60°).
0.23which reaches the range characteristic of charcoal. The problem is
illustrated in Fig. 9, which presents results obtained when using
Eq. (10) to retrieve the reflectance of vegetation (with the prescribed
value of 0.03) and of charcoal (with the prescribed value of 0.24) in the
three considered cases of MLW,MLS and TRO, for values of SZA from 0
to 60° and for ranges of typical values of LST for each profile. It is well
apparent that the accuracy of retrieved values of reflectance is much
more sensitive to LST and SZA in the case of vegetation than for
charcoal. For instance, the reference contour line of 0.03 (for
vegetation) is displaced out of the considered domain in the case of
MLS and TRO and, even forMLW, it is located at the bottom, almost out
of the domain. The displacement of the reference contour line of 0.24
for charcoal is much smaller and is barely noticeable in the case of
MLW.However, the robustness of Eq. (10) in the case of charcoal is not
enough to discriminate burned from unburned surfaces, because
values of reflectance for vegetation attain those characteristics of
charcoal for sufficiently high values of LST and SZA. As shown in Fig. 9,
in the case of MLS, even if the discontinuities observed along the band
separating the two considered surfaces indicate the possibility of
discriminating between them, values of the contour lines on both sides
are larger than 0.20. Therefore, it is not possible to label either type as
the unburned surface. The situation is even worse for TRO where, for
values of LST greater than 315 K and SZA larger than 30°, both surfaces
reach similar reflectance values, becoming undistinguishable.

4.2. Case study

A more realistic assessment of the implications of using Eq. (10)
for burned area discrimination in tropical environments may be
achieved by means of a case study based on satellite imagery.
However, as pointed out by Roger and Vermote (1998), any attempt
to validate retrieved values of MIR reflectance from satellite data is
virtually impaired by the absence of “in-situ” (direct) measurements.
This limitationmay be circumvented by creating a reference dataset of
O (right panel). Square (circle) symbols denotes charcoal (vegetation) surface whereas



Fig. 9. Diagram of values of reflectance for vegetation and charcoal surfaces for different atmospheric profiles, LST and SZA; a) the two surfaces with prescribed constant values of
0.03 and 0.24 for vegetation (green) and charcoal (orange); b) to d) retrieved values of reflectance using Eq. (10) as a function of SZA and LST for MLW, MLS and TRO profiles.
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MIR reflectance based on information from a real satellite image. The
adopted approach consists of the following steps: (1) collect
information about land surface temperature, land surface emissivity,
atmospheric profiles and view/solar angles for the selected scene; (2)
use a radiative transfer model (MODTRAN-4 in the present study) to
compute the respective values of transmittance and atmospheric
parameters; and (3) use Eq. (3) with values obtained in the previous
steps to retrieve MIR reflectance from the total signal. The generated
reference dataset of MIR reflectance may then be used to validate the
corresponding MIR reflectance as retrieved by means of KR94.

Taking into account the described procedure, it seems appropriate
to select an image where the atmospheric conditions are particularly
favorable, e.g. with low values of the water vapor column, and a low
amount of aerosols (i.e. with a clear sky surrounding). Since results
from simulations (Section 4.1) showed that the accuracy of retrieved
values of reflectance is very sensitive to high values of LST, it seems
also appropriate to select an image with moderate values of LST.

All the above-mentioned favorable characteristics are met in the
case of the large fire event that took place from April 30 to May 12,
2006 and affected the entire area of the Ilha Grande National Park,
located between the states of Paraná and Mato Grosso do Sul, Brazil.
The burned is about 200 km2, as estimated by INPE based on
information from LANDSAT TM imagery (Fig. 10). A total of 413
active fires during the above-mentioned period were also identified
by INPE, using data from GOES, NOAA, Aqua and Terra satellites.

Performance of Eq. (10) was assessed using TOA values of MIR
radiance and TIR brightness temperature as acquired on May 12, 2006
by theMODIS instrument on-boardAqua. Datawere obtained from the
Aqua/MODIS Level 1B 1 km V5 product, MYD021 (MCST, 2006) and
correspond to channels 20 (centered at 3.785 µm) and 31 (centered at
11.017 µm). Surface values of MIR reflectance were then retrieved by
solving Eq. (3) using MODTRAN-4, using information about surface
temperature and sun elevation together with data of temperature and
humidity for the atmospheric column. Pixels values of LST and of SZA,
varying from 295 to 315 K and from 48.5 to 51°, respectively were
obtained from Land Surface Temperature/Emissivity Daily 5-Min L2
Swath 1 km product, MYD11_L2 (Wang, 1999). Atmospheric profiles
of temperature and humidity were obtained from the Atmosphere
Profile Level 2.0 product, MYD07_L2 (Seemann et al., 2006), the water
vapor content over the selected area varying from 1.3 to 2.3 g cm−2, a
quite lowamountwhen comparedwith the value of 4.11 g cm−2 of the
TRO profile stored inMODTRAN-4. Fig. 11 represents theMODISmean
profiles of temperature and humidity together with the TRO profile
that will be used to generate synthetic imagery with characteristics to
be expected over tropical environments.

Retrieved values of surface MIR reflectance and values of LST are
shown in Fig. 12. Higher values of MIR reflectance and LST over the
burned area are particularly conspicuous, especially because of the
contrasting behavior of the surrounding vegetated areas, which
present a large spatial variability of reflectance and temperature.

Values of retrieved surface MIR reflectance and of LST (Fig. 12) were
input to MODTRAN-4, to produce synthetic images of TOAMIR radiance
and TIR brightness temperature. These images correspond to the
following two environments, characterized by atmospheric and surface
conditions expected in tropical regions; i) the TRO environment,
obtained using the TRO profile and the LST of May 12 ,2006 and ii)
the TRO–HOT environment, obtained using the TRO profile and LST+
20 K. The KR94 algorithm was then used to retrieve values of surface

http://www.mcst.ssai.biz/mcstweb/documents/M1054.pdf
http://www.icess.ucsb.edu/modis/atbd-mod-11.pdf
http://modis-atmos.gsfc.nasa.gov/_docs/MOD07:MYD07_ATBD_C005.pdf


Fig. 10. Location of the Ilha Grande National Park, between the states of Paraná and Mato Grosso do Sul (upper right panel) in southwestern Brazil (upper left panel) and LANDSAT
TM image (RGB 543) of the National park before the fire episode, on April 26, 2006 (lower left panel) and after the fire episode onMay 12, 2006 (lower right panel). The outline of the
National Park is shown in red.

Fig. 11. MODIS mean profiles (bold curves) of temperature (left panel) and humidity (right panel) over Ilha Grande National Park on May 12, 2006. The TRO profile stored at
MODTRAN-4 is also represented (thin curves).
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Fig. 12. Retrieved values of surface MIR reflectance (left panel) and LST (right panel) over the Ilha Grande National Park on May 12, 2006.
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reflectance from TOA MIR radiance and TIR brightness temperature of
the original images (May-12 environment) and of the synthetic ones
(TRO and TRO–HOT environments).

The impact of using retrieved values to discriminate between
burned and unburned surfaces for the three considered environments
was evaluated by comparing the values of reflectance as retrieved by
Eq. (10) over two sets of pixels representative of the two classes to be
discriminated and then checking whether the respective statistical
distributions allow distinguishing between the surfaces.

A set of 133 burned pixels, hereafter referred to as the burned class,
was therefore selected from the scene, togetherwith a set of 262 pixels
that included the remaining land cover types (namely green
vegetation, crop fields and water bodies), hereafter referred to as the
Fig. 13.Histograms of MIR reflectance for burned (black) and unburned (gray) classes as retr
(lower panel) environments.
unburned class. Choice of pixels was made by visual comparison
between two LANDSAT TM scenes (path/row 224/76) acquired on
April 24 and May 12, 2006. Hot spots detected by INPE were also used
in the process of selecting pixels associated to burned surfaces.

According to Kaufman and Remer (1994), a quantitative assessment
of the effectiveness of the KR94 algorithm to discriminate between
burnedandunburned surfacesmaybeobtainedwith the following index:

M =
jμu−μb j
σu + σb

: ð12Þ

where μu(μb) is the mean value and σu(σb) is the standard deviation
for the unburned (burned) class. It is worth noting that index M may
ieved bymeans of Eq. (10) for May-12 (upper panel), TRO (middle panel) and TRO–HOT



Table 3
Mean values, μu(μb), and standard deviation, σu(σb), of unburned (burned) surfaces
and discrimination indices, M, for retrieved values of surface reflectance in the case of
May-12, TRO and TRO–HOT environments.

μu σu μb σb M

May-12 0.02 0.021 0.11 0.032 1.76
TRO 0.03 0.024 0.12 0.027 1.58
TRO–HOT 0.17 0.046 0.18 0.033 0.53
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be viewed as an estimator of signal-to-noise ratio, the absolute
difference between the mean values of the two classes representing
the signal (associated to between-group variability) and the sum of
the standard deviations representing noise (associated to within-
group variability). Values of M larger than one indicate good
separability, whereas values smaller than one represent a large
degree of overlap between the values associated to the two classes.

Results are shown in Fig. 13 and Table 3. In the case of unburned
surfaces, and when going from May-12 to TRO–HOT environments,
there is a progressive shift of the histograms towards larger values of
reflectance, accompanied by an increase of dispersion. Both shift and
increase are especially pronounced from TRO to TRO–HOT. In strong
contrast, in the case of burned surfaces, histograms of reflectance
remain virtually unchanged when comparing May-12 to TRO
environments, and there is a moderate shift when going from TRO to
TRO–HOT environments. Moreover, the dispersion is virtually unaf-
fected by injection of water vapor in the atmosphere and by surface
temperature increase. The different sensitivity of the two types of
surface leads to a progressive overlap of the histograms, which is
translated by the decrease of M, from May-12 to TRO–HOT, and
especially from TRO to TRO–HOT. In the latter type of environment M
reaches a value of 0.53, an indication of very poor discriminant ability.

Results obtained for the fire event at the Ilha Grande National Park
confirm those previously obtained with MODTRAN-4 simulations,
namely that discrimination between burned and unburned surface
basedonvaluesof surface reflectance retrievedwith theKR94algorithm
is virtually impaired in the case of tropical regions for high values of
surface temperature, especially when associated to low sun elevation
angles. Since such circumstances are often present when using data
from instruments on-board polar-orbiters (namely MODIS in Aqua and
Terra) to identify burned areas over the Amazon and the adjacent
“cerrado”, special care is required when using the KR94 algorithm.
5. Concluding remarks

Identification of burned areas over the Amazon and “cerrado”
regions is a challenging task because of the ephemeral character of the
radiative signal and the presence of aerosols that prevent using
classical approaches e.g. based on red and near-infrared information.
Middle-infrared (MIR) presents the advantage of being virtually
unaffected by the presence of most types of aerosols, in particular
those associated to biomass burning. In this respect the reflected
component of MIR has proven to be especially adequate to discrim-
inate between burned and unburned surfaces in mid-latitude regions
(e.g. Pereira, 1999).

Kaufman and Remer (1994) proposed a methodology that
presents the advantage of enabling for the retrieval of MIR reflectance
with no need for auxiliary datasets or major computational means.
The so-called KR94 algorithm, given by Eq. (10), has been specifically
designed to retrieve MIR reflectance over dense dark forests in the
middle latitudes. It has been also successfully applied to other types of
surfaces and atmospheric environments, in particular for burned area
discrimination (e.g. Barbosa et al., 1999; Roy et al., 1999). However,
the quality of the retrieved values of MIR reflectance by Eq. (10) may
significantly degrade when the relative contribution of the thermal
emitted component to the total signal exceeds a threshold of about
75%. In the case of surfaces, such as vegetation, characterized by low
values of MIR reflectance, the relative contribution of the solar
component to the total MIR signal tends to be small, especially when
the surface is hot (i.e. in case of relatively high values of LST). This
contribution may be further reduced when the solar signal is weak
due to low sun elevation angles (i.e. in case of high values of SZA). The
above-mentioned aspects are especially relevant in tropical environ-
ments, where high land surface temperatures naturally dominate the
scenes and pixels illuminated by low sun elevation angles are often
present when using data from sensors on-board polar orbiters, in
particular MODIS on-board Aqua and Terra.

Use of Eq. (10) in tropical environments to retrieve vegetation
reflectance may lead to errors that are at least of the same order of
magnitude of the reflectance to be retrieved and considerably higher
for large values of LST and SZA. Under such conditions, retrieved values
of reflectance for vegetationmay attain those characteristic of charcoal
making the two types of surface undistinguishable. Use of the KR94
algorithm becomes severely impaired and the complete radiative
transfer equation, i.e. Eq. (3), should be used instead, provided the
required auxiliary information is available about the surface (LST) and
the atmospheric column (temperature and humidity profiles).
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