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Abstract  

 

A strategy is presented that allows deriving a new index for burned area 

discrimination over the Amazon and Cerrado regions of Brazil. The index is based on 

information from the near-infrared (NIR) and middle-infrared (MIR) channels of the Moderate 

Resolution Imaging Spectroradiometer (MODIS). A thorough review is undertaken of existing 

methods for retrieving MIR reflectance and an assessment is performed, using simulated and 

real data, about the added value obtained when using the radiative transfer equation (RTE) 

instead of the simplified algorithm (KR94) developed by Kaufman and Remer (1994), the 

most used in the context of burned area studies. It is shown that use of KR94 in tropical 

environments to retrieve vegetation reflectance may lead to errors that are at least of the 

same order of magnitude of the reflectance to be retrieved and considerably higher for large 

values of land surface temperature (LST) and solar zenith angle (SZA). Use of the RTE 

approach leads to better estimates in virtually all cases, with the exception of high values of 

LST and SZA, where results from KR94 are also not usable. A transformation is finally 

defined on the MIR/NIR reflectance space aiming to enhance the spectral information such 

that vegetated and burned surfaces may be effectively discriminated. The transformation is 

based on the difference between MIR and NIR in conjunction with the distance from a 

convergence point in the MIR/NIR space, representative of a totally burnt surface. The 
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transformation allows defining a system of coordinates, one coordinate having a small scatter 

for pixels associated to vegetation, burned surfaces and soils containing organic matter and 

the other coordinate covering a wide range of values, from green and dry/stressed vegetation 

to burned surfaces. The new set of coordinates opens interesting perspectives to 

applications like drought monitoring and burned area discrimination using remote-sensed 

information. 
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Resumo  

 

O coberto vegetal da superfície da Terra tem vindo a sofrer mudanças, por vezes 

drásticas, que conduzem a alterações tanto na rugosidade da superfície terrestre como no 

seu albedo, afectando directamente as trocas de calor sensível e latente e de dióxido de 

carbono entre a superfície terrestre e a atmosfera (Sellers et al., 1996). Neste contexto, as 

queimadas assumem um papel de extremo relevo (Nobre et al., 1991; O’Brien, 1996; Xue, 

1996) na medida em que constituem uma das mais importantes fontes de alteração do 

coberto vegetal, resultando na destruição de florestas e de recursos naturais, libertando 

carbono da superfície continental para a atmosfera (Sellers et al., 1995) e perturbando as 

interacções biosfera-atmosfera (Levine et al., 1995; Scholes, 1995) através de mudanças na 

rugosidade do solo, na área foliar e noutros parâmetros biofísicos associados ao coberto 

vegetal. Ora, neste particular, a Amazónia Brasileira constitui um exemplo notável de 

mudanças no uso da terra e do coberto vegetal nas últimas décadas, como resultado da 

desflorestação induzida pelo homem bem como por causas naturais (Gedney e Valdes, 

2000; Houghton, 2000; Houghton et al., 2000; Lucas et al., 2000), estimando-se que as 
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regiões tropicais sejam responsáveis por cerca de 32% da emissão global de carbono para 

a atmosfera (Andreae, 1991). Neste contexto, a disponibilidade de informações 

pormenorizadas e actualizadas sobre as distribuições espacial e temporal de queimadas e 

de áreas ardidas em regiões tropicais afigura-se crucial, não só para uma melhor gestão dos 

recursos naturais, mas também para estudos da química da atmosfera e de mudanças 

climáticas (Zhan et al., 2002). 

A detecção remota constitui, neste âmbito, uma ferramenta indispensável na medida 

em que permite uma monitorização em tempo quase real, a qual se revela especialmente 

útil em áreas extensas e/ou de difícil acesso afectadas pelo fogo (Pereira et al., 1997). 

Diversos instrumentos, tais como o Land Remote Sensing Satellite/Thematic Mapper 

(LANDSAT/TM) e o National Oceanic and Atmospheric Administration/Advanced Very High 

Resolution Radiometer (NOAA/AVHRR) têm vindo a ser extensivamente utilizados na 

gestão dos fogos florestais, em particular aos níveis da detecção de focos de incêndio e da 

monitorização de áreas queimadas. Mais recentemente, o instrumento VEGETATION a 

bordo do Satellite Pour l'Observation de la Terre (SPOT) tem vindo a ser utilizado com 

sucesso na monitorização de fogos. Finalmente, são de referir os sensores da série Along 

Track Scanning Radiometer (ATSR) para os quais têm vindo a ser desenvolvidos algoritmos 

de identificação de focos de incêndio, e ainda o sensor Moderate Resolution Imaging 

Spectroradiometer (MODIS) que tem vindo a demonstrar capacidades óptimas no que 

respeita à observação global de fogos, plumas e áreas queimadas.  

Neste contexto, os métodos actuais de detecção de áreas ardidas através da 

detecção remota têm vindo a dar prioridade à utilização das regiões do vermelho (0.64 µm) 

e infravermelho-próximo (0.84 µm) do espectro eletromagnético. No entanto, tanto a região 

do vermelho quanto a do infravermelho-próximo apresentam a desvantagem de serem 

sensíveis à presença de aerossóis na atmosfera (Fraser e Kaufman, 1985; Holben et. al., 

1986). Desta forma, em regiões tropicais como a Amazónia, onde existem grandes camadas 

de fumo devido à queima de biomassa, a utlização destas duas regiões do espectro 
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eletromagnético torna-se insatisfatória para a detecção de áreas ardidas. Por outro lado, a 

região do infravermelho médio (3.7 – 3.9 µm) tem a vantagem de não ser sensível à 

presença da maior parte dos aerossóis, exceptuando a poeira (Kaufman e Remer, 1994) 

mostrando-se, ao mesmo tempo, sensível a mudanças na vegetação devido à absorção de 

água líquida. 

Com efeito, estudos acerca dos efeitos do vapor de água na atenuação do espectro 

eletromagnético demonstraram que a região do infravermelho médio é uma das únicas 

regiões com relativamente pouca atenuação (Kerber e Schut, 1986). Acresce que a região 

do infravermelho médio apresenta uma baixa variação da irradiância solar (Lean, 1991), 

tendo-se ainda que a influência das incertezas da emissividade na estimativa da 

temperatura da superfície é pequena quando comparada com outras regiões térmicas tais 

como as de 10.5 e 11.5 µm (Salysbury e D’Aria, 1994). 

A utilização da radiância medida através de satélites na região do infravermelho 

médio é, no entanto, dificultada pelo facto de esta ser afectada tanto pelo fluxo térmico 

quanto pelo fluxo solar, contendo, desta forma, duas componentes, uma emitida e outra 

reflectida, tendo-se que a componente reflectiva contém os fluxos térmico e solar reflectidos 

pela atmosfera e pela superfície enquanto que as emissões térmicas são oriundas da 

atmosfera e da superfície. Ora, a componente solar reflectida é de especial interesse para a 

detecção de áreas ardidas pelo que se torna necessário isolá-la do sinal total medido pelo 

sensor. Devido à ambiguidade deste sinal, a distinção dos efeitos da reflectância e da 

temperatura torna-se uma tarefa muito complexa, verificando-se que os métodos em que se 

não assume nenhuma simplificação, levando-se, portanto, em consideração todos os 

constituintes do sinal do infravermelho médio se tornam complexos e difíceis de serem 

aplicados na prática, na medida em que requerem dados auxiliares (e.g. perfis atmosféricos) 

e ferramentas computacionais (e.g. modelos de tranferência radiativa). Kaufman e Remer 

(1994) desenvolveram um método simples para estimar a reflectância do infravermelho 

médio o qual assenta em diversas hipóteses simplificadoras. Apesar do objectivo primário 
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que levou ao desenvolvimento do método ser a identificação de áreas cobertas por 

vegetação densa e escura em regiões temperadas, este método tem sido lagarmente 

utilizado nos estudos acerca da discriminação de áreas queimadas, algumas das vezes em 

regiões tropicais (Roy et al., 1999; Barbosa et al., 1999; Pereira, 1999). Na literatura não 

existe, no entanto, nenhum estudo acerca da exactidão e precisão deste método quando 

aplicado com o objectivo de detectar áreas ardidas, em especial em regiões tropicais. Neste 

sentido, no presente trabalho procedeu-se a um estudo de viabilidade do método proposto 

por Kaufman e Remer (1994) em simultâneo com a análise da equação de tranferência 

radiativa na região do infravermelho médio, tendo sido realizados testes de sensibilidade 

dos algoritmos em relação aos erros nos perfis atmosféricos, ruído do sensor e erros nas 

estimativas da temperatura da superfície. Para tal recorreu-se ao modelo de transferência 

radiativa Moderate Spectral Resolution Atmospheric Transmittance and Radiance Code 

(MODTRAN), dando-se especial atenção ao caso do sensor MODIS. Os resultados 

demonstraram que a utilização do método proposto por Kaufman e Remer (1994) em 

regiões tropicais para a estimativa da reflectância no infravermelho médio, leva a erros que 

são pelo menos da mesma ordem de magnitude do parâmetro estimado e, em alguns casos, 

muito maior, quando ocorre a combinação de altas temperaturas da superfície terrestre com 

baixos ângulos zenitais solares. A utilização da equação de transferência radiativa mostrou-

se uma boa alternativa, desde que estejam disponíveis dados acerca da temperatura da 

superfíce terrestre assim como dos perfis atmosféricos. Entretanto, nas regiões onde 

ocorrem altos valores de temperatura da superfície terrestre e baixos ângulos zenitais 

solares, quaisquer dos dois métodos se mostra pouco utilizável, já que nesta região a 

estimativa da reflectância constitui um problema mal-posto.  

Em paralelo, utilizaram-se informações sobre aerossóis de queimada para efectuar 

simulações do MODTRAN que permitiram avaliar a reposta do canal do infravermelho-médio 

à este tipo de perturbação do sinal, muito comum na Amazónia Brasileira. A fim de tornar o 

estudo o mais realístico possível, procedeu-se à coleta de material resultante de queimadas 
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na região Amazónica, mais especificamente em Alta Floresta, Mato Grosso, Brasil. Estes 

resultado foram então integrados nos estudos em questão, possibilitando a caracterização 

espectral das áreas ardidas. 

Com base nos resultados obtido definiu-se uma tranformação no espaço do 

infravermelho próximo e médio com o objetivo de maximizar a informação espectral de 

forma a que as superfícies vegetadas pudessem ser efectivamente discriminadas e as áreas 

ardidas identificadas. A tranformação baseia-se na diferença entre a reflectância nos 

infravermelhos próximo e médio, em conjunto com a distância a um ponto de convergência 

no espaço espectral dos infravermelhos próximo e médio, ponto esse representativo de uma 

área completamente ardida. A tranformação permitiu a definição de um novo sistema de 

coordenadas, o qual provou ser bastante útil no que diz respeito á identificação de áreas 

ardidas. Este novo espaço de coordenadas constitui uma inovação na área dos estudos de 

queimadas, já que permite ao mesmo tempo definir dois tipos de índices, o primeiro dos 

quais identifica superfícies que contém ou não biomassa e o segundo identifica, de entre as 

superfícies que contêm biomassa, a quantidade de água presente, podendo variar de 

vegetação verde (abundância de água) até áreas ardidas (ausência de água). Além de 

distiguir áreas ardidas, os índices desenvolvidos podem ainda ser aplicados em outros 

casos como, por exemplo, estudos de estresse hídrico e secas. 
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Chapter 1  

 

Introduction 

 

1.1. Motivation 

 

Over the last decade continuous monitoring of vegetation fires from space has greatly 

contributed to an increased recognition of the major role played by biomass burning in 

climate change. In fact, biomass burning is a global source of greenhouse gases (e.g. CO2 

and CH4) as well as of CO, NO2, NOx, CH3Br and hydrocarbons involved in the formation of 

acid rain, in the photochemical production of tropospheric ozone and in the destruction of 

stratospheric ozone (e.g. Crutzen and Andreae, 1990; Penner et al., 1992). High 

concentrations of aerosol particles in the atmosphere due to biomass burning decrease the 

amount of global photosynthetic radiation at canopy levels, affecting sensible and latent heat 

fluxes at the surface (Eck et al., 1998; Schafer et al., 2002; Procopio et al., 2004). At the 

regional level, biomass burning may induce changes in atmospheric stability and associated 

vertical motions, leading to alterations of the hydrologic cycle with significant impacts on 
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regional climate (e.g. Rosenfeld, 1999; Menon et al., 2002; Koren et al., 2004). 

Teleconnection processes may also take place, inducing changes e.g. of rainfall and surface 

temperature patterns across distant parts of the world (Chase et al., 2000; Zhao et al., 2001; 

Pielke et al., 2002). In particular, the study by Evangelista et al. (2007) suggests that almost 

half of the aerosol black carbon in the South-West Atlantic may derive from South American 

biomass burning. In addition, vegetation fires are one of the most important causes of land 

use/cover dynamics (Lambin and Geist, 2006), destroying and altering vegetation structure 

and depositing charcoal and ash on the surface. Such changes may, in turn, lead to 

modifications in the ratio of latent to sensible heat flux, the transfer of momentum from the 

atmosphere and the flux of moisture through evaporation and transpiration (Sellers et al., 

1996; Jin and Roy, 2005). 

Accordingly, a considerable number of environmental studies and Earth resources 

management activities require an accurate identification of burned areas. In addition, the 

apparent global increase in the incidence, extent, and severity of uncontrolled burning have 

lead to calls for international environmental policies concerning fire (Stocks et al., 2001). 

Such concerns support the need to provide reliable fire information to policymakers, 

scientists, and resource managers. However, due to the very broad spatial extent and the 

limited accessibility of some of the largest areas affected by fire, instruments on-board 

satellites are currently the only available operational systems capable to collect cost-effective 

burned area information at adequate spatial and temporal resolutions (Pereira, 1999). 

Several studies have been carried out using remote sensing images for burned land 

mapping, covering a variety of techniques based on different spatial, spectral and temporal 

resolutions. However an accurate algorithm to detect surface changes caused by fire is still 

hampered by the complexity of the processes involved, the spectral signature of burned 

areas depending on the type of vegetation that burns, the completeness of the burn, the post 

fire evolution and regeneration of the vegetation, and the rate of charcoal and ash 

dissipation. Even if the persistence of the signal is longer for burned areas, the detection of 
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active fires benefits from the fact that active fires have a spectral signature strongly 

contrasting with the environmental context (Eva and Lambin, 1998). Besides, there is 

another essential aspect of the problem which relates to two different post-fire signals, both 

commonly designated by fire scar (Robinson, 1991); first, the deposition of charcoal and ash 

on surface and second the alteration of vegetation structure/abundance. The first type of 

signal is a unique consequence of vegetation combustion, but has relatively short duration 

and tends to be almost completely erased by wind and rainfall in a few weeks or months after 

the fire. The second signal is more stable, although its persistence may vary from 2-3 weeks 

in tropical grasslands to several years in boreal forest ecosystems. However, the second 

type of signal is less appropriate to discriminate fire effects, since partial or complete removal 

of plant canopies may also be due to other factors such as cutting, grazing, wind throw, 

water stress, or the action of insects and pathogens (Pereira et al., 1994). 

In such context, reliable detection of burned vegetation from remote sensing requires 

the use of spectral bands that are sensitive to changes in radiance in response to burning 

(Trigg and Flasse, 2000). In this particular, most efforts have relied on spectral channels from 

coarse resolution sensors such as the National Oceanic and Atmospheric 

Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) (Fraser et al., 

2000; Martín and Chuvieco, 1993; Pereira, 1999), Satellite Pour l'Observation de la Terre 

(SPOT/VEGETATION) (Gregoire et al., 2003; Stroppiana et al., 2002), the Along Track 

Scanning Radiometer (ATSR) data (Eva and Lambin, 1998) and more recently, the Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Roy et al., 2002; Chuvieco et al., 2008). A 

large number of such studies have been undertaken using vegetation indices, in particular 

those based on the AVHRR sensor (Pereira et al., 1994; Caetano et al., 1996; Frederiksen et 

al., 1990; Malingreau, 1990; Kasischke et al., 1993; Martín and Chuvieco, 1993; Kasischke 

et al., 1995). Although the AVHRR sensor has been widely applied for burned area mapping, 

a number of limitations were identified which make AVHRR a less ideal tool for monitoring 

fire-effects (Barbosa et al., 1999; Martín and Chuvieco, 1995; Pereira, 1999). In contrast, the 
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MODIS sensor was designed to enhance fire-mapping capabilities and its spectral bands in 

near-infrared (NIR) wavelengths provide a better spectral discrimination among burned and 

unburned surfaces (Loboda et al., 2007). Moreover, MODIS produces full global coverage 

everyday, with a repeat cycle of approximately 1-2 days which is especially relevant for 

burned area detection in cloudy and smoky regions since it provides further alternative days 

for analysis.  

Current methods for detecting burned areas mainly rely on information in the red (R) 

and the NIR regions of the electromagnetic spectrum. In fact, the NIR region appears as 

especially adequate for burned area detection, since the contrast between healthy vegetation 

(which are highly reflective) and charred surfaces (which are highly absorbent) tends to be 

very sharp in NIR region. On the other hand, several studies have shown that the visible 

(VIS) range is not very effective for discriminating burned surfaces (López and Caselles, 

1991; Pereira and Setzer, 1993; Razafimpanilo et al., 1995; Pereira, 1999). and have pointed 

out a number of reasons for such impairment; 1) several common land cover types, namely 

water bodies and wetlands, some forest types, especially the dense coniferous ones, and 

many soil types are as dark in the VIS as recent burns, reducing the usefulness of the VIS 

range to discriminate burns; 2) since Earth observation satellites were designed to image all 

types of surface features, ranging from the very bright, such as clouds, snow, and deserts, to 

the very dark ones, such as water, the dynamic range available for discriminating between 

different types of surfaces, which are dark in the VIS, is narrow; 3) the VIS domain is 

especially sensitive to aerosol and water vapor scattering and absorption in the atmosphere 

and therefore its usage for burned area detection may bring unsatisfactory results, in 

particular because of the presence of heavy smoke layers due to the biomass burning and as 

well as in case of very moist atmospheres. It is also worth mentioning that the short-wave 

infrared (SWIR) domain, from 1.2 to 2.5 µm, has also been widely used for burned area 

detection, with reasonably good results (Pereira and Setzer, 1993; Trigg and Flasse, 2001; 

Martin et al., 2006). 
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More recently the middle-infrared (MIR) spectral domain (around 3.75 – 3.9 µm) has 

been applied for burned area discrimination, since it may contribute to solving certain 

ambiguities between burned and unburned surfaces which may occur, for example, when 

using information from other parts of the electromagnetic spectrum, namely the SWIR, 

especially between 2.0 and 2.5 µm (França and Setzer, 2001). As shown by Libonati et al. 

(2010) the increase in reflectance over burned surfaces is higher in MIR than in SWIR, 

allowing a better discrimination between both surfaces. In addition, the spectral response to 

fire in the MIR domain is similar to that observed in the VIS region, but with a larger increase 

in brightness and with an unequivocal reduction of sensitivity to atmospheric effects. In fact, 

one of the major difficulties encountered in the tropics when discriminating burned areas 

relates to the ephemeral character of spectral signatures, in contrast with temperate and 

boreal regions, where it is possible to wait until the end of the fire season to map scars from 

previous months (Pereira, 2003). This procedure is not feasible in tropical savannas, where 

combustion products are easily scattered by wind, and the charcoal spectral signal quickly 

fades out. Burning of converted tropical forest produces a short-lived signal, since fire in this 

region is closely related to pasture and agriculture practices, which disturb the soil surface. In 

tropical regions, mapping burned areas with remote sensing data has, therefore, to be 

performed during the dry season, i.e. simultaneously with the fire episodes. Accordingly, 

results will be, largely affected by smoke aerosols, which contaminate surface observation 

and reduce the spectral contrast between distinct land cover types. As pointed out by 

Kaufman (1995), most of these particles may remain in the atmosphere for around a week. In 

addition, from July to October, i.e. during the Amazon fire season, a large high pressure 

system tends to dominate the region, inhibiting precipitation and reducing relative humidity 

due to the subsidence of dry air from the upper levels of the atmosphere (Nobre et al., 1998). 

The associated atmospheric circulation favors the retention over a large horizontal 

area of smoke emitted by fires, reducing visibility to the point of closing airports during, even 

up to two or three weeks after the end of the fire season (Reinhardt et al., 2001). Under such 
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circumstances, the MIR spectral band appears especially adequate for monitoring the land 

surface during fire episodes, because it is largely unaffected by the presence of most 

aerosols, a highly desired characteristic in remote sensing.  

 

1.2. The Problem 

 

As mentioned above, the MIR spectral domain potentially appears as an optimal way 

to mitigate the aerosol effects associated to biomass burning, since it is also affected by 

vegetation changes but is not sensitive to the presence of most aerosols. Pereira (1999) 

found that the increase in reflectance over burnt surfaces is higher in the MIR that in the VIS 

and thus considered the NIR/MIR bi-spectral space as more appropriate for burned area 

discrimination than the classical VIS/NIR space used in remote sensing of vegetation. 

However usage of the MIR radiation brings up the difficult problem of distinguishing, in a 

single measurement, between a diversity of radiance sources, namely the thermal emission 

and the solar reflection from the atmosphere and the surface, as shown in Figure 1.1.  

Boyd and Duane (2001) have pointed out that the use of MIR radiation for studying 

the Earth’s surface properties at and beyond the regional scale may be unreliable. At such 

scales, the emitted radiation component of the signal may be subject to additional 

confounding variables, rather than representing the intrinsic properties of the surface itself 

(Kaufman and Remer, 1994). Considering the tropical forest environment, emitted radiation, 

though related to forest canopy properties, may also be influenced by varying localized 

atmospheric conditions such as wind speed and air vapour conductance (Price, 1989), site-

specific factors such as topography and aspect (Florinsky et al., 1994), and soil moisture 

conditions (Luvall and Holbo, 1991; Nemani et al., 1993). Indeed, such factors have been 

more strongly related to emitted radiation from tropical forest canopies than to forest 

properties such as basal area and tree density (Luvall et al., 1990; Wong, 1993; Nichol, 
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1995). It may be preferable, therefore, to use only the reflected component of the MIR 

radiation in the study of tropical forests at regional to global scales.  

 

 

Figure 1.1. Spectrum of emission from the Sun and the Earth highlighting the contributions of 

both sources of radiation in the MIR domain. Adapted from 

http://aerial.evsc.virginia.edu/~jlm8h/class/. 

 

Methods that take into account the major components of the MIR signal have to rely 

on information from auxiliary datasets (e.g. atmospheric profiles) and require large 

computational means (e.g. for radiative transfer computations). Other methods like those 

proposed by Li and Becker (1993), Nerry et al. (1998) and Petitcolin and Vermote (2002) 

also require auxiliary datasets and heavy numerical computations. The methodology 

proposed by Goita and Royer (1997) shows promising potential but need further validation. 

Schutt and Holben (1991) and Roger and Vermote (1998) proposed the retrieval of MIR 

reflectance using data provided by the five AVHRR channels but results have significant bias 

when the surface emissivity in MIR and in thermal infrared (TIR) is not close to unity. 
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A simple method was proposed by Kaufman and Remer in 1994 where different 

assumptions are made to separate the thermal and solar components of the MIR signal. This 

method does not require heavy numerical computations and present the major advantage of 

avoiding the use of auxiliary datasets. It was first designed to identify dense, dark vegetation 

areas in mid-latitude environments and has been widely used in burned area discrimination 

(Roy et al., 1999; Barbosa et al., 1999; Pereira, 1999). However, to the best of our 

knowledge, no assessment has been made on the required accuracy of the MIR reflectance 

retrievals to adequately identify burnt areas in tropical environments. 

 

1.3. Main Contributions 

 

Taking into account the issues discussed in the previous sections, the work 

developed in the present thesis was organized into the following four main contributions and 

to the best of our knowledge the last three may be regarded as innovative: 

 

1.  To perform, for a wide range of atmospheric, geometric and surface 

conditions, a quality assessment of MIR reflectance data when retrieved using 

i) the algorithm proposed by Kaufman and Remer (1994) and ii) the complete 

radiative transfer equation (RTE); 

 

2.  To understand the adequacy and limitations of the above mentioned 

algorithms when applied to burned area discrimination, in particular in the 

Amazon and Cerrado regions. Special attention will be devoted to the MODIS 

sensor; 
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3.  To define a strategy that allows achieving an acceptable accuracy in retrieved 

MIR reflectances for a wide range of atmospheric and surface conditions 

occurring within the Amazon and Cerrado regions; 

 

4.  To develop a bi-spectral index, based on NIR and MIR information, which 

allows an optimal discrimination of burned areas.  

 

1.4. Publications 

 

Several parts of the results found in the present thesis were published both in 

conferences and journals with referee. Theses papers are listed below: 

 

I. Papers published in journals with referees 

 

1) Libonati, R.; DaCamara, C. C.; Pereira, J. M. C.; Peres, L. F. (2010). 

Retrieving middle-infrared reflectance for burned area mapping in tropical 

environments using MODIS. Remote Sensing of Environment, v. 114, p. 831-

843, 2010. http://dx.doi.org/10.1016/j.rse.2009.11.018. 

 

2) Chuvieco, E.; Opazo, S.; Sione, W.; Valle, h.; Anaya, J.; Bella, C.; Cruz, I.; 

Manzo, L.; Lopez, G.; Mari, N.; Gonzalez-Alonso, F.; Morelli, F., Setzer, A.; 

Csiszar, I.; Kanpandegi, J. A., Bastarrika, A., and Libonati, R. (2008). Global 

burned land estimation in Latin America using MODIS composite data. 

Ecological Applications, v. 18, p. 64-79, 2008. 

 

II. Papers submitted to journals with referees 

 

http://dx.doi.org/10.1016/j.rse.2009.11.018
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1) Libonati, R.; DaCamara, C. C.; Pereira, J. M. C.; Peres, L. F. (2010). On a 

new coordinate system for optimal discrimination of vegetation and burned 

areas using MIR/NIR information. Remote Sensing of Environment. 

 

2) Libonati, R.; DaCamara, C. C.; Pereira, J. M. C.; Peres, L. F. (2010). Retrieval 

of middle-infrared reflectance using the Radiative Transfer Equation. IEEE 

Transactions on Geoscience and Remote Sensing. 

 

III. Papers in conferences 

 

1) Libonati, R., DaCamara, C. C., Pereira, J. M. C., Setzer, A., and Peres, L. F. 

(2009). Developing an optimal spectral index for burnt scars identification. 

2009 EUMETSAT Meteorological Satellite Conference.  

 

2) Libonati, R., DaCamara, C. C., Pereira, J. M. C., Setzer, A., and Peres, L. F. 

(2009). Retrieval of middle-infrared reflectance using remote sensing data: the 

tropical point of view. XIV Simpósio Brasileiro de Sensoriamento Remoto. 

 

3) Libonati, R., DaCamara, C. C., Pereira, J. M. C., Setzer, A., and Peres, L. F. 

(2008). On the use of MIR reflectance for burned area identification. 2008 

EUMETSAT Meteorological Satellite Conference.  

 

4) Libonati, R., DaCamara, C. C., Pereira, J. M. C., Setzer, A., and Peres, L. F. 

(2008). Effects of the geometry of illumination on the retrieval of MIR 

reflectance. XV Congresso Brasileiro de Meteorologia. 
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5) Morelli, F., Libonati, R. and Setzer, A. (2007). Refinamento de um método de 

área queimada, e validação utilizando imagens CBERS no norte de Mato 
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1.5. Thesis Organization 

 

Including the present Introduction, the thesis is organized in seven Chapters. Chapter 

2 presents an overview of the fundamentals of radiometric theory in the middle infrared 

spectral region, as well as of the currently proposed methods aiming to the retrieval of MIR 

reflectance. The usage of MIR reflectance for burned area discrimination is also discussed in 

this Chapter. Chapter 3 provides a thorough description of the satellite datasets, sensors 

used and auxiliary data, and gives a brief overview of the Moderate Spectral Resolution 

Atmospheric Transmittance and Radiance code (MODTRAN). Chapter 4 deals with the 

problem of retrieving MIR reflectance by means of the Kaufman and Remer (1994) 

methodology, and provides an assessment of its advantages and disadvantages for burned 

area detection. Chapter 5 addresses the problem of inverting the MIR radiative transfer 

equation and a strategy is defined that allows achieving an adequate accuracy in MIR 

reflectance retrieval for a wide range of atmospheric and surface conditions occurring within 

Amazon and Cerrado regions. In this respect, a comparison between RTE and KR94 

approaches was carried out, tanking into account the performance, the need for auxiliary 

data and also the required computing resources. The development of a new coordinate 

system aiming burned area discrimination is presented in Chapter 6 together with its 

validation over the study area. Finally, Chapter 7 provides a critical review of the results 

obtained in this work, focusing on the limitations of the proposed index and pointing out some 

of the possible directions of future research. 
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Chapter 2  

 

Theoretical background 

 

2.1. Fundamentals of Radiation in MIR 

 

2.1.1. Blackbody concept 

 

A blackbody is defined as an ideal perfectly opaque material that absorbs all the 

incident radiation at any wavelength and reflects none. When in thermodynamic equilibrium 

(TE), the emitted radiance of a blackbody is isotropic and is determined by its temperature, 

T , according to Plank’s function given by:  

 

     11
2,

25
1
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
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e
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where  TB ,  is the spectral blackbody radiance at a given wavelength  , K  is the 

Boltzmann´s constant ( 123 KJ10381.1   ), h  is the Planck constant ( sJ10626.6 34   ), c  

represents the speed of light in the vacuum ( -18 sm10998.2  ) and T  is the absolute 

temperature of the blackbody. 2
1 2hcC   is given by ( 1428 srµmmW10191.1  ) and 

KhcC 2  is given by ( Kµm10438.1 4  ).  

A blackbody emits more than any other body in TE at the same temperature. A 

blackbody is therefore a perfect emitter as well as a perfect absorber. The radiance emitted 

by a non-blackbody object at a given wavelength from a surface at thermodynamic 

temperature sT  is given by multiplying the Planck function by the so-called spectral 

emissivity   : 

 

     .,, sTBTL            (2.2) 

 

The atmosphere is not strictly in TE, but below about 70 km a bulk volume of air 

behaves approximately as a blackbody, so that its radiant emission may be considered as 

depending only on the respective local temperature. In fact, some of the energy absorbed by 

every molecule of each chemical species in that volume of air is transferred by the collisional 

exchange with nearby molecules during the lifetime of the excited molecular in its vibrational 

or rotational state. If the mean time between molecular collisions is much shorter than the 

lifetime of the excited molecular state and diffusion time, then a single kinetic temperature 

characterizes the emission of the gas, to a good approximation. This condition is referred to 

as local thermodynamic equilibrium (LTE) and prevails up to height of about 70 km at the 

wavelength of the infrared radiation (Goody, 1964). The concept of LTE plays a fundamental 

role in radiative transfer studies since the main radiation laws discussed below, which are 

strictly valid in TE, may be extended to LTE.  
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2.1.2. Radiative transfer equation in MIR 

 

The atmosphere plays an important role both along the Sun-to-target and target-to-

sensor paths and as a source of thermal emission. First the atmosphere may reduce the 

radiance of the beam throughout absorption as well as by scattering. On the other hand, 

atmosphere may increase the radiance of the beam by emission plus multiple scattering from 

all other directions into the direction of its propagation (Liou, 1980). Therefore, under clear-

sky conditions, absorption, scattering and emission of radiation by atmospheric constituents 

(gaseous and aerosols) have also to be taken into account. 

Contributions to the total MIR radiation measured by a sensor are illustrated in Figure 

2.1. Surface thermal emission [1] is expressed by Eq. (2.2) and depends on the temperature 

and emissivity, on the wavelength and on the view zenith angle. As the Earth’s surface is not 

a blackbody, the downward radiance emitted by the atmosphere [2] may be reflected by it 

and propagated up to the sensor together with the downward solar diffuse radiance [3]. 

During day time, in the MIR spectral domain, part of the direct solar irradiance that reaches 

the surface is then reflected by it towards the sensor [4].The other part of the radiance 

emitted and scattered by the atmosphere that reaches the sensor is represented by the 

atmospheric upward emitted radiance [5] and by the scattering of solar radiation [6]. The 

surface emission [1], the downward atmospheric radiance [2], the downward solar diffuse 

radiance [3] and the reflected direct solar irradiance [4], penetrate the atmosphere and part 

of them reach the sensor after atmospheric absorption and scattering. Therefore, in clear sky 

conditions and for an atmosphere in LTE, the top of the atmosphere (TOA) radiance, ),( L  

as measured by a sensor in the wavelength  , is given by: 
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where   is the cosine of the viewing zenith angle ( v ),   ,  is the surface spectral 

emissivity,  sTB ,  is the radiance emitted by a blackbody at surface temperature sT , 

 ,atmL  is the atmospheric upward radiance,  00 ,,, sL  is the radiance resulting 

from scattering of solar radiation,  0E  is the spectral solar irradiance incident on the TOA 

(normal to the beam), 0  is the cosine of the solar zenith angle ( s ), 0  is the relative 

azimuth between viewing direction and the solar beam direction,  00 ,; rf  is the 

Bidirectional Reflectance Distribution Function (BRDF),    ,,dL  is the downward solar 

diffuse radiance,    ,,tL  is the atmospheric downward thermal radiance, their 

incident direction is represented by    and   , and tt  ,,,  are transmission functions for 

the corresponding terms. 

The wavelength   in Eq. (2.3) is the wavelength center of a narrow wavelength 

interval because there is no way to measure the exact monochromatic signal as a continuous 

function of wavelength satellite sensors (Wan, 1999). Equation (2.3) is the form used in the 

thermal infrared range 8-14 µm (Wan and Dozier, 1990) generalized to a wider wavelength 

range of 3-14 µm.  
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Figure 2.1. Radiative transfer at a middle-infrared wavelength  .  

 

In order to make practical use of multi-temporal and multi-channel data, it is 

necessary to simplify Eq. (2.3) by taking some realistic assumptions about the atmosphere 

and surface properties. First, it is assumed that     ,,   and that     ,, t  , 

i.e., the transmittances corresponding to the surface emittance, solar diffuse radiation and to 

the atmospheric downward emitted radiance are assumed to be equal and represented by 

  , . This assumption is motivated by the fact that the set of simulated radiances was 

produced using MODTRAN-4, where these transmission functions are assumed to be equal 

at wavenumber intervals of 1 cm-1. Second, the surface is considered to be Lambertian, i.e. 

the surface reflectance is assumed as isotropic. Within the 3 - 14 µm range the Lambertian 
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surface approximation does not introduce a significant error in the terms concerning the 

surface-reflected diffuse solar and surface-reflected atmospheric downward thermal 

irradiances, since atmospheric radiative transfer simulations show that in clear-sky conditions 

the surface-reflected diffuse solar irradiance term is much smaller that the surface-reflected 

solar beam term, and that the surface-reflected atmospheric downward thermal irradiance 

term is smaller than the surface thermal emission (Wan, 1999). 

However, the BRDF effects should be taken into account in the case of the reflection 

of the direct solar radiation (  0E ). The assumption of a Lambertian surface is nevertheless 

often considered in the literature (Li and Becker, 1993; Goita and Royer, 1997; Roger and 

Vermote, 1994), mainly on practical grounds so that that only one reflectivity measurement is 

enough to retrieve emissivity. Jiang and Li (2008) have shown that the maximum deviation in 

the bi-directional reflectance with solar zenith angle (from 0º to 60º) is about 0.025 with mean 

values around 0.02.  

In the present work, the Lambertian assumption was also made for the following two 

reasons. On the first hand, for charcoal reflectance in MIR (around 0.24) the above-

mentioned deviation around 0.02 in the bi-directional reflectance with solar zenith angle 

accounts for 10%, whereas for vegetation reflectance in this wavelength (around 0.03) is of 

the same order of magnitude. Accordingly, even in case of a high deviation in vegetation, this 

order of magnitude for errors will not significantly affect the distinction between charcoal and 

vegetated surfaces. On the second hand, MODTRAN has several parameterized BRDF 

representations and therefore it is necessary to accommodate angularly varying bi-directional 

reflectance distribution functions. However, angular dependences with this wavelength range 

are not available in the literature for our broad selection of cover types. Besides, 

incorporating any real surface BRDF would probably not change the main conclusions drawn 

in this study. 
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By taking the Lambertian assumption, the BRDF function  00 ,; rf  in Eq. (2.3) 

may be replaced by  , where  is the reflectance of the assumed Lambertian surface, 

and then linked to the surface emissivity  , since according to Kirchhoff’s law  1 .  

Based on the above assumptions, Eq. (2.3) becomes:  

 

           

      

      .,,1

,,,1

,,,,,,,,

2

0

1

0

000

00























  ddLL

Et

LLTBL

td

satms

   (2.4) 

 

Integrating the last term and taking into account that both the surface and the 

radiance are considered as isotropic: 
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2.1.3. Channel equivalent quantities 

 

Equations (2.3), (2.4) and (2.5) represent radiance at a particular wavelength  , 

however, as already pointed out, real sensors do not measure radiance at a unique 

wavelength, but over a finite range. Therefore, the so-called channel-average radiance, 
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defined as the radiance recorded in a given channel i  by a sensor on-board a satellite 

observing the Earth’s surface, is given by: 
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where  i  is the normalized spectral response function of the sensor in channel i  (see 

Chapter 3), and 1  and 2  are respectively the lower and the upper limit of the channel 

spectral range. The channel response functions define the channel ranges and characterize 

the response of a given sensor to available radiance in a particular wavelength range. 

In the case of channels with a narrow spectral range ( µm0.1~ ), the radiance given 

by Eq. (2.6) may be expressed, without significant errors, in terms of channel-equivalent 

quantities, namely ,,0.,, ,,,,,, iiatmiatmisiii ELLLB  , i.e., 

 

    





 

 iatmiii
i

iisiatmsiiii LEtLLTBL ,,00,, 1
1





    (2.7) 

 

where the channel-equivalent quantities ,,0.,, ,,,,,, iiatmiatmisiii ELLLB   are given by  
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the mute variable   standing for ,,0.,, ,,,,,, iiatmiatmisiii ELLLB  .  
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It is worth noting that the symbols respecting to the view and solar angles were 

neglected in Eq. (2.7). The first term on the right-hand side of Eq. (2.7) represents the 

radiance emitted by the surface that is attenuated by the atmosphere. The second term 

denotes the radiance emitted by the atmosphere towards the sensor. The third term 

represents atmospheric scattering. The fourth term stands for the solar radiance that is 

attenuated by the atmosphere in its downward path, then reflected by the surface and again 

attenuated in its upward path to the sensor. The last term denotes the downward 

atmospheric radiance that is reflected by the surface and then attenuated in its upward path 

to the sensor.  

 

2.2. Retrieval of MIR reflectance 

 

As pointed out in the previous sections, the retrieval of MIR reflectance from the total 

radiance measured by a sensor is a very difficult task, since the total MIR radiance is a 

combination of an emitted and a reflected radiance. It is a non-linear and under-determined 

problem with three other unknowns beyond the target reflectance, namely the surface 

temperature, the atmospheric state and the BRDF. The latter unknown may be replaced by 

MIR emissivity or any relation between MIR bidirectional reflectance (Boyd and Petitcolin, 

2004) but, even considering a Lambertian surface, an accurate retrieval of MIR reflectance 

still requires a proper characterization of the atmosphere influence and an adequate 

knowledge of the land surface temperature (LST). Such as in the case of the retrieval of LST, 

the main difficulty is that the data are non-deterministic (Gillespie et al., 1999) and therefore 

the algorithms differ according to the hypothesis assumed in order to generate a new 

equation that closes the problem and reduces it to a unique solution. In this section a 

thorough review will be undertaken of the current algorithms for MIR reflectance retrieval.  
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1) Becker and Li (1990). The so-called Temperature Independent Spectral Index (TISI) 

method aimed at the separation of land surface emissivity (LSE) and LST, a problem that 

requires retrieving the MIR reflectance. The approach is based on the fact that around 3.75 

µm (e.g., AVHRR channel 3) the radiance emitted by land surface and the reflected radiance 

due to sun irradiation during the day, are of the same order of magnitude. The general idea 

behind the method is to make use of the emission at night to estimate the emissive part of 

the signal at daytime by means of a TISI. Using combined day/night data and TISI, the 

emitted part of the radiance is calculated allowing for the determination of the reflected part 

(Li and Becker, 1993). It may be further noted that the method relies on the Lambertian 

assumption.  

Since the TISI method is applicable only to ground-level radiances, atmospheric 

correction needs first to be performed. Moreover the use of the method may be compromised 

by the requirement of consecutive day and night acquisitions (so that the surface conditions 

do not change). Other issues inherent to the method include the need for precise image geo-

location and cloud cover occurrence.  

 

2) Kaufman and Remer (1994). The method was originally designed to identify dense, dark 

vegetation areas in mid-latitude environments where aerosols loading can be assessed using 

AVHRR sensor. The proposed approach for retrieving MIR reflectance requires neither direct 

knowledge of atmospheric conditions, nor a radiative transfer model and considers a 

Lambertian surface. The approach is based on the studies of Gesell (1989) and Ruff and 

Gruber (1983), who pointed out the existence of a mutual compensation between attenuation 

and thermal emission terms, so that both atmospheric transmittances may be assumed as 

equal to unity, and both the atmospheric downward and upward thermal emission terms may 

be neglected. Kaufman and Remer (1994) introduced another approximation, which consists 

of using the brightness temperature, from a TIR band (10 - 12 µm) as a surrogate for the 

LST.  
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A number of assumptions are used for land emissivity and BRDF as well as for all 

atmospheric effects. Nevertheless, the method represents the first attempt to derive and 

apply MIR reflectance in a land based application. 

 

3) Goıta and Royer (1997). This method aimed at the separation of surface temperature and 

emissivity over land without any a priori knowledge of these variables. The work of Becker 

and Li (1990) is at the root of the method in the sense that it uses MIR reflectance as a step 

towards the derivation of thermal emissivity. Atmospheric contributions to the MIR signal are 

accounted for by using a radiative transfer code such as MODTRAN, together with a 

description of the atmospheric state. Placed in such configuration, the method assumes an a 

priori knowledge of the solar irradiance at ground level as well as of the atmospheric 

downward emission and presupposes that the ground level brightness temperature in MIR 

and TIR channels may be derived because upward atmospheric transmission and emission 

are known. The model requires two consecutive measurements in MIR and TIR channels 

and relies on the assumption that MIR reflectance and TISI do not change between the two 

records. The method is hard to reproduce operationally and computing is time consuming. 

 

4) Nerry et al. (1998). This method aims at the operational retrieval of MIR reflectance using 

day- and night-time measurements of MIR and TIR radiation using AVHRR data at the 

regional scale. The approach is based on Li and Becker’s method, incorporating minor 

modifications. Nerry et al. (1998) have shown that the Lambertian approximation may lead to 

considerable uncertainties because the reflected radiance is not small with respect to the 

surface-emitted radiance. In such context, they have determined the so-called angular form 

factor   ,iR , that quantifies how much the reflectance of a non-Lambertian surface differs 

from that of a Lambertian reflector (   1, iR ) and allows taking into account land-surface 

anisotropy. The method assumes that combination of MIR and TIR emissivities does not 

change significantly between the two measurements made at day- and night-time. 
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Atmospheric effects are computed using the MODTRAN radiative transfer model which is run 

using atmospheric data extracted from analysis fields of the global circulation model 

ARPEGE provided by the French meteorological service. No account is made for solar 

contributions to the MIR radiative signal due to scattering in the atmosphere.  

The method has the advantage of not assuming a Lambertian behavior of the 

surface, allowing for the study of the angular variation of MIR reflectance. However, like other 

similar methods, there may be limitations to its application since the main assumption is that 

the combination of MIR and TIR emissivities does not change between day- and nighttime 

acquisitions. This assumption may be compromised in case of rapid changes of the surface 

state (e.g. surface drying, or snow melt) or when faced with two different viewing directions. 

The latter means that the product of MIR and TIR emissivities at specific powers is assumed 

to be independent of the viewing direction. 

 

5) Roger and Vermote (1998). The method presents a formula for computation of the 

reflectance in MIR, in particular for AVHRR channel 3. The formulation takes into account 

emissivity, emitted radiation, and atmospheric transmission without the need for any ancillary 

data other than those provided by the five AVHRR channels. MIR reflectance is computed by 

subtracting the thermal contribution from the total signal and then dividing the remaining 

signal component by atmospheric transmission and solar irradiance. The thermal contribution 

is estimated by using thermal infrared channels as well as the Normalized Difference 

Vegetation Index (NDVI) to estimate infrared surface emissivities. The atmospheric 

transmission is computed with MODTRAN and uses integrated water vapor as derived from 

the split window technique (Wan and Dozier, 1996).  

This method builds on that developed by Kaufman and Remer (1994) with attention 

paid to atmospheric effects on the MIR radiative signal through the use of the radiative 

transfer code and a simulation dataset. The retrieved MIR reflectance is successfully 

validated over water in the case of sun glint with comparisons made against that computed 
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with the Cox and Munk (1954) model. An indirect validation using the MIR land surface 

temperature was also conducted; however, there was a limited number range of land cover 

types evaluated. Assumptions made include that of Lambertian target behavior.  

 

6) Petitcolin and Vermote (2002). This study aimed at the operational retrieval of MIR 

reflectance in order to encourage its inclusion in the MODIS surface reflectance product. The 

method first requires the atmospheric correction of the middle to thermal infrared radiances. 

The atmospheric correction scheme is based on MODTRAN and atmospheric profiles were 

extracted from analysis of the global circulation model as provided by the US National Center 

for Environmental Prediction (NCEP). The second requirement is the construction and use of 

a database of night emissivity ratios. Here, two aspects of Becker and Li’s (1990) method 

were modified according to the findings of Petitcolin et al. (2002), who demonstrated that the 

products of MIR and TIR emissivities, all derived from night-time observations, do not change 

significantly over several weeks, or at least that variations of view angle and surface state 

have less impact on them than instrumental noise or inaccuracies introduced by the 

atmospheric correction scheme. The first modification consisted on the accumulation of 16 

days of night-time acquisitions at the same location in order to average the products of MIR 

and TIR emissivities. The second modification was the introduction of an advanced BRDF 

model, namely the kernel-driven BRDF model of Lucht et al. (2000), with the MIR reflectance 

obtained during a 16-day period. MIR hemispherical reflectance is computed with the same 

scheme as for MODIS reflectance in visible and near-infrared (Strahler et al., 1999) that is 

able to adequately represent the various BRDF shapes of natural surfaces. The BRDF model 

is then used to derive MIR directional emissivity. Petitcolin and Vermote (2002) validated 

their retrieved MIR reflectance over water for two cases; 1) in case of no sun-glint, very low 

MIR reflectance values were obtained and 2) when sun-glint occurred, MIR reflectance was 

in agreement with that of the Cox and Munk (1954) model. Assumptions made in this method 

are similar to those of Nerry et al. (1998).  
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The above-described methods clearly show that retrieving MIR reflectance from 

satellite data is not an easy task due to the complexity of the total MIR radiative signal, which 

has three sources of radiation (sun, surface and atmosphere) and three type of interactions 

(emission, absorption and reflection) with the two media (surface and atmosphere). The 

usefulness of each method depends on the simplifications and assumptions in their 

formulation, as well as on the nature of the data to be used (e.g. the temporal and spatial 

resolution and spectral characteristics), and on the available ancillary information (e.g. an 

accurate description of the atmosphere or a good knowledge about LST). Methods that take 

into account the major constituents of the MIR signal remain complex and are quite difficult to 

apply without the help of important auxiliary datasets and major computational requirements. 

The theoretical work of Li and Becker (1993) forms the basis for a family of MIR 

surface reflectance retrieval methods. These methods (Nerry et al., 1998; Petitcolin and 

Vermote, 2002) provide the quantitative estimation of MIR reflectance with acceptable 

accuracy. However, they require large auxiliary datasets and heavy numerical computations 

for the atmospheric corrections. The method developed by Kaufman and Remer (1994) is the 

simplest, but relies on many assumptions that may impair an accurate estimation of MIR 

reflectance. This method, alike the one adopted by Roger and Vermote (1998), performs well 

over areas with dense vegetation, or water surfaces, because assumptions made for the 

estimation of MIR thermal emission have limited impact on MIR reflectance. However, they 

introduce significant bias when the surface emissivity in MIR and TIR is not close to unity, for 

instance over bare soil. Finally, the two methods proposed by Goıta and Royer (1997) show 

promising potential but require further testing and validation. 

 

2.3. Usage of MIR reflectance for burned area 

discrimination 
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A large number of studies have shown that use of MIR region is promising for a 

variety of applications which include discriminating among different vegetation types (Holben 

and Shimabukuro, 1993; Shimabukuro et al., 1994; Goita and Royer, 1997); estimating the 

total biomass and leaf biomass of several forest ecosystems (Boyd, 1999; Boyd et al., 2000); 

monitoring temporal changes in vegetation (França and Setzer, 1998; Boyd and Duane, 

2001); and detecting deforestation processes (Amaral, 1992; Di Maio Mantovani and Setzer, 

1996; 1997). 

MIR reflectance has also proven to be useful when applied to burned area 

discrimination (e.g. Roy et al., 1999; Barbosa et al., 1999; Pereira, 1999). Healthy vegetation 

has low MIR reflectance, due to water absorption, and therefore the scorching or combustion 

of vegetation, and the soil drying caused by fire, are likely causes for the observed increase 

in MIR brightness. Natural materials seem to display a broader range of reflectance values in 

the MIR than in the visible, facilitating the discrimination of different land cover types (Figure 

2.2). On the other hand, the increase in reflectance over burned surfaces is higher in MIR 

than in the SWIR region (Figure 2.3), allowing a better discrimination between both surfaces. 

Besides, atmospheric scattering is very insignificant in this wavelength range, and 

therefore does not reduce spectral contrast at the surface. The better discriminant ability of 

the MIR, in comparison with the visible region of the spectrum, appears to be confirmed by 

studies that identified the MIR-NIR bi-spectral space as more adequate for burned area 

detection and mapping, than the classical visible-NIR space. For instance, Libonati et al. 

(2006, 2007) has performed an analysis on the potential of MODIS visible and MIR channels 

to discriminate burned areas in Cerrado regions of Brazil. MIR channel 20 was evaluated 

under two configurations, i.e. using the full normalized radiance of the surface (i.e. the sum of 

emitted and reflected components of the signal) and restricting to the reflected component of 

the signal. The reflected component was estimated based on the methodology proposed by 

Kaufman and Remer (1994). The ability of each index to discriminate between burned and 
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unburned surfaces was assessed by means of a discrimination index similar to the one 

proposed by Kaufman and Remer (1994), i.e. 

 

 
 bu

buM






           (2.9) 

 

where u  ( b  ) is the mean value for the unburned (burned) class and u ( b ) the standard 

deviation for the unburned (burned) class. 

Figure 2.4 shows the histograms corresponding to the burned and unburned classes 

for each evaluated MODIS channel. A full description of MODIS channels is provided in 

Chapter 3. It may be noted that the degree of overlap between burned and unburned areas is 

too high for channels 3 (M=0.10), 7 (M=0.24), 4 (M=0.40), 1 (M=0.51), and 6 (M=0.69). 

Channel 5 was not considered in this study because it was totally contaminated by noise. 

Although some overlaps are still observed, obtained results clearly show that the burned and 

unburned classes are better discriminated when channel 2 (M=1.06), the reflected 

component of channel 20 (M=0.88) and the total radiance of channel 20 (M=0.84) are used. 

The histograms also illustrate that burnt surfaces tend to be darker than the background in R 

(channel 1) and NIR (channel 2), and brighter in MIR (channel 20).  

In fact, in most of the studies, the MIR band is commonly used together with the NIR 

one to indentify vegetation and detect its changes, given the strong contrast between these 

two bands, since green vegetation appears quite bright in the latter and quite dark in the 

former (Figures 2.2, 2.3 and 2.4).  

Vegetation reflectance in the NIR, around 0.8 µm, is affected primarily by leaf 

structure (Slaton et al., 2001). Green vegetation exhibits high reflectance values, as the leaf 

matures the cells enlarge, crowing together, and reducing the intercellular space, 

consequently decreasing the reflectance (Gates et al., 1965). On the other hand, the use of 

MIR band in vegetation indices as a surrogate of the traditional R band (around 0.6 µm), is 
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based on the fact that MIR reflectance is well correlated to the R one, but is not sensitive to 

most aerosols. Several authors have pointed out this important advantage of MIR region.  

 

 

Figure 2.2. Spectral signatures of burned material sample (solid curves), green vegetation 

(dot curve) and dry vegetation (dashed curve). Gray boxes delimit the VISIBLE (between 0.4 

and 0.7), NIR (around 0.8) and SWIR (between 1.0 and 2.0 µm) spectral regions in order to 

emphasize their contrast. Charcoal signatures were obtained from the USGS Digital Spectral 

Library as well as from samples provide by the author, whereas vegetation signatures were 

obtained from the MODIS-UCSB spectral library (see Chapter 3). 

 

Kaufman and Remer (1994) showed that the Mie scattering cross-section of the 

typical aerosol particle (except dust) at MIR wavelengths is considerably smaller than at 

shorter wavelengths used in remote sensing; França and Setzer (1998) observed a lack of 

atmospheric effects on the viewing angle due to the little effects of smoke aerosols in 

AVHRR channel 3, and more recently Libonati et al. (2010) showed that MODIS MIR channel 



Chapter 2 – MIR theoretical background 
 

 

30 

20 is unaffected by aerosols associated to smoke from biomass burning events. This feature 

of MIR becomes well apparent when atmospheric transmittance attenuation is computed 

over the VIS to MIR bands, for different levels of smoke contamination due to biomass 

burning. Transmittance attenuation is defined here as the difference between the 

transmittance from an aerosol-free atmosphere and that from an atmosphere with a given 

level of smoke contamination.  

 

 

Figure 2.3. Spectral signatures of four charcoal samples (solid curves) and of three 

vegetation samples (dot-dashed curves). Gray boxes delimit the SWIR (between 2.0 and 2.5 

µm) and MIR (between 3.5 and 4 µm) spectral regions in order to emphasize their contrast. 

Charcoal and vegetation signatures were respectively obtained from samples of fire residues 

from Alta Floresta (see next Chapter), state of Mato Grosso, Brazil and from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral library 

(Baldridge et al., 2009). 
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Figure 2.4. Histograms of the burned and unburned classes for MODIS channels. 
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Figure 2.5 shows the impact on MODIS VIS to MIR channels resulting from 

increasing the aerosol optical depth (AOD) associated to biomass burning. Values of 

transmittance attenuation were obtained from radiative transfer simulations performed with 

MODTRAN-4. The model was run using a Tropical atmospheric profile perturbed with 

aerosols associated to biomass burning, based on cloud-screened level 2.0 AOD at 550 nm 

( )55.0(a ) data from the Abracos Hill station. Details about MODTRAN and perturbation of 

the Tropical atmospheric profile by aerosols are given in Chapter 3. 

During the dry season, in an atmosphere heavily contaminated by smoke (e.g. with 

an AOD at 0.55 µm for about 2.73), the VIS and NIR channels (0.4 – 1.0 µm) are inadequate 

for surface observation. Even at lower levels of contamination by smoke (with an AOD at 

0.55 µm lower than 0.72) VIS channels remain strongly affected. Although less sensitive to 

smoke aerosol, atmospheric transmittance in the SWIR (1.2 – 2.5 µm) spectral region is still 

markedly attenuated. In striking contrast, the MIR domain is practically unaffected by smoke, 

allowing for almost undisturbed surface observation. The atmospheric transmittance 

attenuation displays almost constant low values of atmospheric contamination by smoke in 

all three cases analyzed, including under extreme AOD conditions. This is a major reason to 

favor the MIR spectral domain for monitoring and mapping burned areas. 

By taking into account the effects of atmospheric water on the attenuation of the 

electromagnetic spectrum, Bird (1984) and Kerber and Schutt (1986) have demonstrated that 

the MIR spectral region is one of the few regions with relatively little attenuation, requiring 

about 10 cm of precipitable water to reduce transmission below 90%. For instance, Figure 

2.6 clearly shows the considerable impact of water vapor content in the transmittance over 

the TIR region in contrast with the small attenuation in MIR for three atmospheric profiles 

stored at MODTRAN-4.  
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Figure 2.5. Atmospheric transmittance attenuation [%] on MODIS VIS to MIR channels for 

three different levels of smoke contamination due to biomass burning. )55.0(a  indicates the 

AOD at 0.55 µm and   denotes the Ängstrom parameter, which characterizes aerosol 

particle size distribution. 

 

 
Figure 2.6. Comparison between MIR (left panel) and TIR (right panel) regions concerning 

the attenuation by water vapor content throughout the three atmospheric profiles (MLS, MLW 

and TRO) stored at MODTRAN-4 (see Chapter 3 for details). 
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Kaufman and Remer (1994) have shown that the correlation between MIR and R is 

due to the simultaneous occurrence of processes that darken the surface in these two bands. 

Whereas in the visible wavelengths, the pigmentation of leaves, especially by active 

chlorophyll, absorbs the solar radiation, reducing the reflectivity, in the MIR domain (around 

3.7 - 3.9 µm) the cellular water content, present in green vegetation, causes a strong 

absorption, reducing the reflectance at these wavelengths (Gates, et al., 1965; Salisbury and 

D’Aria, 1994). As green leaves become senescent due to the decrease of the levels of 

chlorophyll and the decrease of water content, the absorption of solar radiation decreases in 

both R and MIR regions, rising the brightness of the two bands. 

Regional to global monitoring of burned areas currently involves the use of spectral 

indices as measured from satellite remote sensors. The MIR/NIR bi-spectral space has been 

widely used within different vegetation indices, such as the VI3 (Kaufman and Remer, 1994) 

and the GEMI3 (Pereira, 1999). The VI3 is a modified version of the traditional NDVI, where 

the red reflectance is replaced by the reflective part of the middle-infrared signal (channel 3 

from AVHRR sensor). It was firstly proposed by Kaufman and Remer (1994) aiming at the 

identification of dark, dense vegetation. Because of the specific characteristics of the MIR 

spectral region for distinguishing between burned/unburned surfaces as well as it’s virtual 

insensitivity to atmospheric effects, Pereira (1999) suggested the application of VI3 for 

burned scars mapping. The index is defined as following: 

 

   MIRNIRMIRNIRVI  3 , for REDNIR    

or                      (2.10) 

03 VI , for REDNIR    
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where MIR , NIR  and RED  are the MIR,NIR and R reflectance, respectively. The restriction 

that REDNIR   , protects the index from being applied to water areas where it is ill defined 

(Kaufman and Remer, 1994). 

Pinty and Verstraete (1992) have proposed the so-called Global Environmental 

Monitoring Index (GEMI), which was specifically designed to minimize contamination of the 

vegetation signal by extraneous factors, such as the atmosphere and the soil background. 

Pereira (1999) explored the synergistic effects of the desirable properties of the AVHRR 

channel 3 reflective components for burned area mapping with the sophisticated nonlinear 

design of the GEMI. Therefore, the GEMI3 index is an empirical modification of the GEMI, 

since the values of the coefficients in the GEMI equation, which were kept unchanged, are 

not expected to retain their original physical interpretation. As in VI3, this decision was based 

on the fact that the range of reflectance values over the study area was similar for AVHRR 

channels 1 and 3. GEMI3 is defined as follows: 

 

     MIRMIRGEMI   1125.025.013               (2.11a) 

 

where 

 

    .5.05.05.12 22  MIRNIRMIRNIRMIRNIR              (2.11b) 

 

Although the above mentioned indices generally provide reasonable results, they are 

merely empirical in what respects to the respective design. According to the authors 

responsible for VI3 and GEMI3, the indices are basically based on the fact that MIR and R 

reflectance are strongly correlated. Moreover, they stressed out that the processes governing 

the reflectance in R and MIR are not expected to lead to the same value and that there are 

other processes that may change the reflectance in the two channels. 
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Taking into account the above-mentioned limitations, at least from the theoretical 

perspective, the present thesis represents a first attempt to fill the present lack of indices 

specifically designed to map burned areas. Accordingly, a new burned are index will be 

developed, adapted to the spectral resolutions of MODIS MIR/NIR channels, and particularly 

appropriate for the Amazon and Cerrado regions of Brazil. The decision lies on the following 

grounds: 

 

1. On the first hand, although the AVHRR sensor has been widely applied for burned 

area mapping, a number of limitations have been identified which made AVHRR a 

less ideal tool for monitoring fire-effects (Barbosa et al., 1999; Martín and Chuvieco, 

1995; Pereira, 1999). In contrast, the MODIS sensor was designed to enhance fire-

mapping capabilities and its spectral bands in NIR wavelength provide the better 

spectral discrimination among burned and unburned surfaces (Loboda et al., 2007). 

Moreover, MODIS provides full global coverage everyday, with a repeat cycle of 

approximately 1-2 days which is especially relevant for burned area detection in 

cloudy and smoky regions since it provides further alternative days for analysis. 

2.  On the second hand, and although the Brazilian Amazonia together with the adjacent 

savanna (Cerrado) presents one of the highest numbers of occurrences of fire events 

(Prins et al., 1998), to the best of our knowledge, hardly any studies have attempted 

to design burned area indices specifically for these regions.  

 

The development of an index with the above described characteristics would in fact 

be especially useful for operational purposes taking into account that present thesis the 

accuracy of burned area maps is closely related to the characteristics of the location where it 

is applied (e.g., pre-fire land-cover type and conditions, background soil, fire severity, post-

fire processes, atmospheric conditions), and that index thresholds are often subjective and/or 

vary from region to region. 
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Chapter 3  

 

Sensors, datasets and radiative transfer code 

 

3.1. Satellite sensors characteristics 

 

3.1.1. MODIS coarser resolution sensor 

 

 

A major instrument for the National Aeronautics and Space Administration (NASA)’s 

Earth Observing System (EOS) missions, MODIS is currently operating on-board the EOS 

Terra and Aqua spacecraft, respectively launched on December 1999 and May 2002. Both 

satellites have sun-synchronous, near-polar, circular orbits at a 705 km nominal altitude and 
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Terra's orbit around the Earth is timed so that it passes from north to south across the 

equator in the morning (10:30 AM, descending), while Aqua passes south to north over the 

equator in the afternoon (1:30 AM, ascending). The entire Earth's surface is viewed every 1 

to 2 days by Terra MODIS and Aqua MODIS, the MODIS instrument acquiring data in 36 

spectral bands from the visible to the thermal infrared regions of the spectrum at the spatial 

resolutions of 250 m (bands 1-2), 500 m (bands 3-7) and 1 km (bands 7-36). Together, Terra 

and Aqua MODIS have already produced more than 10 years of global data sets which have 

significantly helped scientists worldwide to better understanding the Earth as an interacting 

system and assessing the impacts on this system due to human related activities. Figure 3.1 

presents the normalized spectral response function of the MODIS channels.  

 

 

Figure 3.1. Spectral response function of MODIS channels.  
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Table 3.1 provides a summary of MODIS channels specifications, including the 

respective bandwidth, central wavelength, spectral radiance and signal-to-noise ratio (SNR) 

or noise equivalent temperature differerences (NEΔT). MODIS channels 1 – 19 and 26 with 

wavelengths from 0.41 to 2.2 m are the reflective solar bands, collecting data only during 

daytime. In turn, bands 20 – 25 and 27 – 36 are the thermal emissive bands, making 

continuous measurements during day and nighttime.  

 

Table 3.1. MODIS channels specifications. 

Band Bandwidth 
[nm] 

Central 
wavelength 
[nm] 

Spectral Radiance 
[W·m-2·µm-1·sr-1] 

Required SNR 

1 620 - 670 645 21.8 128 
2 841 - 876 858 24.7 201 
3 459 - 479 469 35.3 243 
4 545 - 565 555 29.0 228 
5 1230 - 1250 1240 5.4 74 
6 1628 - 1652 1640 7.3 275 
7 2105 - 2155 2130 1.0 110 
8 405 - 420 412 44.9 880 
9 438 - 448 443 41.9 838 
10 483 - 493 488 32.1 802 
11 526 - 536 531 27.9 754 
12 546 - 556 551 21.0 750 
13 662 - 672 667 9.5 910 
14 673 - 683 678 8.7 1087 
15 743 - 753 748 10.2 586 
16 862 - 877 869 6.2 516 
17 890 - 920 905 10.0 167 
18 931 - 941 936 3.6 57 
19 915 - 965 940 15.0 250 

Band 
Bandwidth 
[m] 

Central 
wavelength 
[m] 

Spectral Radiance 
[W·m-2·µm-1·sr-1] 

Required NEΔT[K]  

20 3.660 - 3.840 3.75 0.45 (300 K) 0.05 
21 3.929 - 3.989 3.96 2.38 (335 K) 2.00 
22 3.929 - 3.989 3.96 0.67 (300 K) 0.07 
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23 4.020 - 4.080 4.05 0.79 (300 K) 0.07 
24 4.433 - 4.498 4.47 0.17 (250 K) 0.25 
25 4.482 - 4.549 4.52 0.59 (275 K) 0.25 
26 1.360 - 1.390 1.375 6.00 150 (SNR) 
27 6.535 - 6.895 6.72 1.16 (240 K) 0.25 
28 7.175 - 7.475 7.33 2.18 (250 K) 0.25 
29 8.400 - 8.700 8.55 9.58 (300 K) 0.05 
30 9.580 - 9.880 9.73 3.69 (250 K) 0.25 
31 10.780 - 11.280 11.03 9.55 (300 K) 0.05 
32 11.770 - 12.270 12.02 8.94 (300 K) 0.05 
33 13.185 - 13.485 13.34 4.52 (260 K) 0.25 
34 13.485 - 13.785 13.64 3.76 (250 K) 0.25 
35 13.785 - 14.085 13.94 3.11 (240 K) 0.25 
36 14.085 - 14.385 14.24 2.08 (220 K) 0.35 

 

3.1.2. ETM+ high resolution sensor  

 

The Land Remote Sensing Satellite (Landsat) Program is a series of Earth-observing 

satellite missions jointly managed by NASA and the U.S. Geological Survey (USGS). 

Landsat 7 is the latest NASA satellite in a series that has produced an uninterrupted 

multispectral record of the Earth's land surface since 1972. Landsat 7's sensor - the 

Enhanced Thematic Mapper Plus (ETM+) is a successor of the Thematic Mapper (TM) 

engineered for Landsats 4 and 5, but is more closely related to the Enhanced Thematic 

Mapper (ETM) lost during the Landsat 6 failure. The primary performance related changes of 

the ETM+ over the TM's are the addition of the panchromatic band and two gain ranges 

(added for Landsat 6), the improved spatial resolution for the thermal band, and the addition 

of two solar calibrators. The ETM+ design provides for a nadir-viewing, eight-band 

multispectral scanning radiometer capable of providing high-resolution image information of 

the Earth's surface when operated from Landsat 7, a 3 axis stabilized spacecraft located in a 

near polar, sun-synchronous and circular orbit at a 705 km nominal altitude, with an orbit 

inclination of 98.2 degrees. The ETM+ is designed to collect, filter and detect radiation from 
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the Earth in a swath 185 km wide as it passes overhead and provides the necessary cross-

track scanning motion while the spacecraft orbital motion provides an along-track scan. 

Approximately one quarter of the Earth's landmass is imaged every 16 days, with an 

equatorial crossing time at 10 AM local time (descending node). The spatial resolution varies 

from 15 m in the panchromatic band, to 30 m in visible bands and to 60 m in the thermal 

band (Table 3.2).  

 

Table 3.2. ETM+ channels specifications. 

Band Bandwidth [µm] Resolution [m] 
1 0.45-0.515 30 
2 0.525-0.605 30 
3 0.63-0.69 30 
4 0.75-0.90 30 
5 1.55-1.75 30 
6 10.4-12.5 60 
7 2.09-2.35 30 
8 0.52-0.9 15 

 

3.2. Datasets 

 

3.2.1. Satellite data 

 

3.2.1.1. MODIS data 

 

Currently more than 40 science data products derived from MODIS observations are 

routinely produced and widely distributed (Salomonson et al., 2002; Justice et al., 1998; 

Esaias et al., 1998; King et al., 1998). These products include LST, vegetation and land-

surface cover and productivity, snow and sea-ice cover, ocean color, sea surface 

temperature (SST), cloud mask, aerosol concentration and optical properties, and 
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atmospheric profiles. The Level 1B data set contains calibrated and geolocated at-aperture 

radiances, in [W·m-2·µm-1·sr-1], for 36 bands generated from MODIS Level 1A sensor 

(MOD01) counts. In addition, reflectance may be determined for the solar reflective bands 

(bands 1 - 19, 26) through knowledge of the solar irradiance (e.g., determined from MODIS 

solar-diffuser data, and from the target-illumination geometry). Additional data are provided, 

including quality flags, error estimates, and calibration data.  

The MODIS Atmospheric Profiles product (MOD07) consists of several parameters, 

including total-ozone burden, atmospheric stability, temperature and moisture profiles, and 

atmospheric water vapor. There are two MODIS Atmosphere Profile data product files, 

respectively the so-called MOD07_L2, containing data collected from the Terra platform; and 

the so-called MYD07_L2, containing data collected from the Aqua platform. Data are 

produced day and night for Level 2 at 5 x 5 1-km pixel resolution when at least 9 field of 

views (FOVs) are cloud free. Temperature and moisture profile retrieval algorithms are 

adapted from the International TOVS Processing Package (ITPP), taking into account the 

lack of stratospheric channels and far higher horizontal resolution of MODIS. The profile 

retrieval algorithm requires calibrated, navigated, and coregistered 1-km FOV radiances from 

MODIS channels 20, 22-25, 27- 29, and 30-36. The MODIS cloud mask (MOD35_L2) is used 

for cloud screening. The algorithm also requires NCEP model analyses of temperature and 

moisture profiles as a first guess and an NCEP analysis of surface temperature and 

pressure. 

The MODIS Land Surface Temperature and Emissivity products provide per-pixel 

temperature and emissivity values in a sequence of swath-based to grid-based global 

products. The MODIS/Aqua LST/E 5-Minute L2 Swath 1 km data set (MYD11_L2) is 

produced daily at 5-minute increments, and covers both daytime and nighttime acquisitions 

including the polar regions. The LST and Emissivity daily data are retrieved at 1-km pixels by 

the generalized split-window algorithm and at 6km grids by the day/night algorithm. In the 

split-window algorithm (Wan and Dozier, 1996), emissivities in bands 31 and 32 are 
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estimated from land cover types, and atmospheric column water vapor and lower boundary 

air surface temperature are separated into tractable sub-ranges for optimal retrieval. In the 

day/night algorithm (Wan and Li, 1997), daytime and nighttime LSTs and surface emissivities 

are retrieved from pairs of day and night MODIS observations in seven TIR bands. The 

product comprises LST values, quality assessment, observation time, view angles, and 

emissivities. 

TOA values of MIR radiance, NIR reflectance and TIR brightness temperature as 

acquired by the MODIS instrument on-board the Terra satellite during the year of 2002 were 

used in this work, as well as solar and view zenith angles (respectively SZA and VZA). Data 

were obtained from the Terra/MODIS Level 1B 1 km V5 product, MOD021 (MCST, 2006) 

and respect to channels 20 (centered at 3.785 µm), 2 (centered at 0.858 µm) and 31 

(centered at 11.017 µm). According to Boyd and Petitcolin (2004), when considering the 

three MODIS bands from which MIR reflectance can be retrieved, reflectance in band 20 

appears to be less noisy than reflectance derived in band 22 (around 3.96 µm) and band 23 

(around 4.06 µm). This result illustrates in fact the rapid decrease of the solar contribution to 

radiation at MIR wavelengths. In addition, Petitcolin and Vermote (2002) have shown that 

although surface reflectances in bands 20, 22 and 23 are similar, reflectances at 3.79 µm are 

slightly higher than those at 3.97 and 4.06 µm, with weaker angular variations. These two 

aspects have motivated the choice of band 20 in this work, in particular the last one, because 

of the assumption of a Lambertian surface, as explained in Chapter 2. Figure 3.2 presents 

the MODIS response functions of the four MIR channels, in particular channel 20, which was 

used is this work. 

Data from land surface temperature and from atmospheric profiles of temperature and 

humidity were finally obtained using the Land Surface Temperature/Emissivity Daily 5-Min L2 

Swath 1km product, MYD11_L2 (Wang, 1999) and the Atmospheric profiles were obtained 

from the Atmosphere Profile Level 2.0 product, MYD07_L2 (Seemann et al., 2006). 
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It may be noted that all MODIS products mentioned above were requested via the 

MODIS website and downloaded via File Transfer Protocol (FTP) server. The products are 

available in Hierarchical Data Format (HDF) format, and were directly imported into 

Environment for Visualizing Images 4.2 (ENVI) software in order be georeferenced.  

 

 

Figure 3.2. Spectral response functions of MODIS MIR channels. 

 

3.2.1.2. Landsat data 

 

Use of Landsat ETM+ images in this work was motivated by the need to have ground 

reference information for the analysis performed on MODIS images in Chapter 6. Imagery 

was provided by the Brazilian National Institute for Space Research (INPE) and obtained 

from the Image Generation Division (DGI) database (http://www.dgi.inpe.br/CDSR/). The 

http://www.dgi.inpe.br/CDSR
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images were geometrically corrected by Dr. Wilfrid Schroeder from NOAA, who also 

identified recent burned area polygons based on visual classification of ETM+ images.  

Selection of different classes of surface in MODIS data, namely vegetation, soil, and 

water, was performed based on visual comparison with high resolution ETM+ images, 

whereas identification of recent burned pixels in MODIS images was based on burned area 

polygons as derived from the above mentioned visual classification made by Dr. Wilfrid 

Schroeder.  

A total of 16 Landsat ETM+ images were used in the present work, covering two main 

Brazilian biomes (accordingly to the Instituto Brasileiro do Meio Ambiente e dos Recursos 

Naturais Renováveis (IBAMA)), namely the Amazon Forest and the Cerrado, as shown in 

Figure 3.3. Detailed information is given in Table 3.3. 

 

 

Figure 3.3. IBAMA general biomes classification map for Brazil and the location of the 16 

Landsat ETM+ scenes listed in Table 3.3. 

 

Finally, two TM images were used when testing the performance of the algorithm 

developed by Kaufman and Remer (1994) when applied for burned area discrimination 
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(Chapter 4). The two TM images respect to pre-fire (04/26/2006) and post-fire (05/12/2006) 

scenes of a large fire event that took place from April 30 to May 12, 2006 and affected the 

entire area of the Ilha Grande National Park, located between the states of Paraná and Mato 

Grosso do Sul, Brazil. The images were also extracted from the DGI/INPE's Database and 

were geographically corrected at the Satellite Division from INPE (DSA/INPE).  

 

Table 3.3. The 16 Landsat ETM+ images used for validation and respective biomes and 

locations. 

ETM scene 
number Path/row Date 

(mm/dd/yyyy) 
Location Biome 

1 220/65 06/28/2002 Maranhão/Piauí Cerrado 
2 221/70 06/05/2002 Goiás Cerrado 
3 222/66 08/15/2002 Tocantins Cerrado 
4 222/67 08/15/2002 Tocantins Cerrado 
5 224/65 08/13/2002 Pará Amazon Forest 
6 224/66 08/13/2002 Pará Amazon Forest 
7 224/67 08/13/2002 Mato Grosso Cerrado/ Amazon Forest 
8 224/69 08/29/2002 Mato Grosso Cerrado/ Deciduous Forest 
9 225/64 08/20/2002 Pará Amazon Forest 
10 225/67 08/04/2002 Mato Grosso Amazon Forest/ Deciduous Forest 
11 226/64 08/11/2002 Mato Grosso Cerrado/ Deciduous Forest 
12 227/65 08/18/2002 Pará Amazon Forest 
13 228/65 08/09/2002 Pará Amazon Forest 
14 228/69 10/28/2002 Pará Amazon Forest 
15 231/67 06/11/2002 Rondonia Amazon Forest 
16 232/65 08/05/2002 Amazonas Amazon Forest 

 

3.2.2. Laboratory spectral data on reflectance  

 

3.2.2.1. Spectral library data 
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Data on reflectance were obtained from the Johns Hopkins University (JHU) and the 

Jet Propulsion Laboratory (JPL) spectral libraries included in ASTER spectral library 

(Baldridge et al., 2009) as well as from the MODIS-University of California-Santa Barbara 

(MODIS-UCSB) spectral library. 

The ASTER library provides a comprehensive collection of over 2300 spectra of a 

wide 34 variety of materials, made available from http://speclib.jpl.nasa.gov. The library 

includes spectra of rocks, minerals, lunar soils, terrestrial soils, manmade materials, 

meteorites, vegetation, snow and ice covering the visible through thermal infrared 

wavelength region (0.4-15.4 µm). We have restricted to materials belonging to vegetation, 

water and terrestrial soils (Table 3.4, 3.5 and 3.6). Samples of the library spectra are shown 

in Figure 3.4 (vegetation), 3.5 (soils) and 3.6 (water). Figure 3.4(A), 3.5(A) and 3.6(A) show 

the 0.25-2.5 µm spectral range and Figure 3.4(B), 3.5(B) and 3.6(B) show the 2-15 µm 

spectral range. 

 

Table 3.4. ASTER spectral library – vegetation. 

Name Class Sub-class 
Dry grass Grasses Dry grass 
Grass Grasses Green grass 
Conifer Trees Conifers 
Decidous Trees Deciduous 

 

Table 3.5. ASTER spectral library – soil. 

Name Class  Sub-class 
Brown to dark brown clay  Vertisol  Chromoxerert  
Pale brown dry silty clay loam  Inceptisol  Ustocrept  
Brown to dark brown silt loam  Entisol  Ustifluvent  
Pale brown silty loam  Alfisol  Fragiboralf  
Brown to dark brown gravelly loam  Alfisol  Haploxeralf  
Brown loamy fine sand  Alfisol  Haplustalf  
Brown fine sandy loam  Alfisol  Haplustalf  
Brown fine sandy loam  Alfisol  Haplustalf  
Reddish brown fine sandy loam  Alfisol  Paleustalf  

http://speclib.jpl.nasa.gov
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Reddish brown fine sandy loam  Alfisol  Paleustalf  
Brown sandy loam  Alfisol  Paleustalf  
Dark reddish brown fine sandy loam  Alfisol  Paleustalf  
Light yellowish brown interior dry gravelly loam  Aridisol  Calciorthid  
Light yellowish brown loam  Aridisol  Calciorthid  
Brown silty loam  Aridisol  Camborthid  
Light yellowish brown loamy sand  Aridisol  Camborthid  
Very pale brown to brownish yellow interior dry 
gravelly silt loam  Aridisol  Gypsiorthid  

Brown gravelly sandy loam  Aridisol  Haplargid  
Dark brown interior moist clay loam  Aridisol  Salorthid  
Light yellowish brown clay  Aridisol  Salorthid  
Dark yellowish brown silty clay  Aridisol  Salorthid  
Very dark grayish brown loamy sand  Aridisol  Torripsamment  
Brown to dark brown sand  Entisol  Quartzipsamment  
White gypsum dune sand.  Entisol  Torripsamment  
Gray/dark brown extremely stoney coarse sandy  Inceptisol  Cryumbrept  
Dark yellowish brown micaceous loam  Inceptisol  Dystrochrept  
Dark brown fine sandy loam  Inceptisol  Haplumbrept  
Brown sandy loam  Inceptisol  Haplumbrept  
Very dark grayish brown silty loam  Inceptisol  Plaggept  
Brown to dark brown gravelly fine sandy loam  Inceptisol  Xerumbrept  
Dark grayish brown silty loam  Mollisol  Agialboll  
Vary dark grayish brown loam  Mollisol  Agriudoll  
Very dark grayish brown silty loam  Mollisol  Argiustoll  
Black loam  Mollisol  Cryoboroll  
Very dark grayish brown loam  Mollisol  Cryoboroll  
Gray silty clay  Mollisol  Haplaquoll  
Brown to dark brown sandy loam  Mollisol  Hapludoll  
Grayish brown loam  Mollisol  Haplustall  
Very dark grayish brown loam  Mollisol  Paleustoll  
Dark reddish brown, organic-rich, silty loam  Spodosol  Cryohumod  
Brown to dark brown loamy sand  Utisol  Hapludult  

 

Table 3.6. ASTER spectral library – water. 

Name Class Sub-class 
Tap water Tap water  
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Figure 3.4. Spectral signature of vegetation from ASTER spectral library in (A) the 0.25-2.5 

µm and (B) the 2-15 µm spectral ranges. 

 

 

Figure 3.5. As in Figure 3.4, but respecting to soils. 

 

 

Figure 3.6. As in Figure 3.4, but respecting to water. 
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The MODIS-UCSB spectral library provides information of natural and manmade 

materials from MIR to TIR region (3 - 14 µm). Data are available at: 

http://www.icess.ucsb.edu./modis/EMIS/html/em.html and we have relied on information 

about vegetation, which includes most vegetation types (Salisbury and D’Aria, 1994; Peres 

and DaCamara, 2005), with surfaces emissivities varying from 0.96 to 0.99 in MODIS MIR 

channel 20. Figure 3.7 presents the spectral behavior of the vegetation samples used in the 

present work (Table 3.7).  

It may be noted that the information from MODIS-UCSB spectral library is used in this 

thesis in all approaches that take only rely on MIR information, since this library does not 

provide information in the visible domain. On the other hand, the ASTER spectral library is 

used here as a surrogate for issues that take into consideration information in the visible 

domain. For instance, Chapters 4 and 5 rely on information from the MODIS-UCSB spectral 

library, since both only deal with the MIR region. In the case of Chapter 6, where the bi-

spectral domain MIR/NIR is used for identification of burned areas, the ASTER spectral 

library is employed instead. 

 

 

Figure 3.7. Spectral signature of vegetation from MODIS-UCSB spectral library. 

http://www.icess.ucsb.edu./modis/EMIS/html/em.html
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Table 3.7. MODIS spectral library – vegetation. 

Name Class Description 
Algerian Ivy Vegetation Leaf Algerian Ivy  
Bird of Paradise Vegetation Leaf of Bird of Paradise  
Brazilian Peppertree Vegetation Leaf of Brazilian Peppertree  
Bronze Loquat Vegetation Leaf of Bronze Loquat  
Naked Coral  Vegetation Leaf of Naked Coral tree 
Cypress Vegetation Leaf of Cypress 
Eucalyptus  Vegetation Fresh Leaf of Eucalyptus Tree 
Eucalyptus  Vegetation Leaf of Eucalyptus tree  
Tasmanian Blue Gum 
Eucalyptus Vegetation Leaf of Tasmanian Blue Gum Eucalyptus  

Laurel Vegetation Leaf of Laurel Tree 
India Hawthorne Vegetation Leaf of India Hawthrone  
Arailia Japonica Vegetation Leaf of Arailia Japonica  
Laurel  Vegetation Leaf of Laurel tree  
Laurel Vegetation Leaf of Laurel (Fresh)  
Magnolia Vegetation Leaf Magnolia (1st day)  
Maple Vegetation Leaf of Maple (Red Star )  
Myoporum Vegetation Leaf of Myoporum 
Oak Vegetation Leaf of Oak (Face)  
Shiny Xylosma Vegetation Leaf of Shiny Xylosma  
Evergreen Pear Vegetation Leaf of Evergreen Pear  
Pine Vegetation Leaf of Pine (Old)  
Pine Vegetation Leaf of Pine (New)  
Green Spruce Vegetation Leaf of Green Spruce from Canada  
Sweet Gum Vegetation Leaf of Sweet Gum  
Bark  Bark Bark of Eucalyptus Tree 
Dry Grass Grass Dry Grass (Averaged over 9 Sets) 
Dry  Grass Grass Dry Grass (Averaged over 9 Sets) 
Dry Grass Grass Dry Grass (Averaged over 9 Sets) 

 

3.2.2.2. Charcoal data 

 

Spectral libraries like ASTER and MODIS-UCSB supply reliable reflectance data for 

different types of materials, such as vegetation, water, soil, rocks and manmade. However, to 

the best of our knowledge, no reflectance measurements are currently available for charcoal, 

ash or any burned plant material, in the spectral region accounted for in this thesis (MIR 

region). Therefore, four fire residue samples were collected at Alta Floresta, state of Mato 
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Grosso, Brazil. The samples were kindly collected by the Combustion Laboratory from INPE 

(LCP/INPE). In addition, fire residues were also collected by J.M.C.P. at Portugal from 

samples of burned pine tree. Fire residues from Alta Floresta relies basically on charcoal, 

while those from Pine tree relies on a mixed of bark, charcoal and dry leaf. Both charcoal 

samples (from Brazil and from Portugal) were send to the NASA/JPL, where spectral 

signatures were measured by Dr. Simon Hook. Spectral measurements from samples of Alta 

Floresta were made only in the 2 - 15 µm region, due to problems in the instruments, while 

the pine tree sample was measured in both 0.4 - 2.5 µm and 2 - 15 µm regions.  

The above-mentioned data on emissivity of charcoal in the vicinity of 3.9 µm appear 

therefore as the only information currently available about the behavior of burned materials in 

this spectral domain. Table 3.8 shows the description of the five samples of charcoal and 

Figure 3.8 presents the respective spectral signatures. 

 

Table 3.8. Description of the five charcoal samples. 

Name Family Origin 
Tachi Polygonaceae Brazil  
Quina Rubiaceae Brazil 
Angelim Leguminosae-apilionoideae Brazil 
Amescla Burseraceae Brazil 
Pine  Pinaceae Portugal 

 

As already mentioned, the Pine tree sample of fire residues were the only ones that 

were measured in the visible domain. Therefore, in order to extend the spectral domain of 

the Brazilian trees samples to the visible domain, we have opted to rely on information from 

burned area as stored at the USGS Digital Spectral Library. This information corresponds to 

an average of 16 field spectra collected on a severely burned area, specifically of blackened 

ash/char coated materials on the soil surface following a wildfire in a ponderosa pine forest 

(Figure 3.9). 
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Figure 3.8. Spectral signature of the five charcoal samples. 

 

For each laboratory spectral data described above (Section 3.2.2), the MODIS 

channel equivalent reflectance was estimated by convolving the laboratory measurements 

within the MODIS channels normalized response function according to Eq. (2.10), where   

stands for i . Figure 3.10 depicts the computed reflectance values in MODIS channels 2 

and 20 for different samples from the ASTER spectral library as well as from burned material 

samples. Computed values of reflectance in MODIS channels will be used in Chapters 4 and 

5 to prescribe the surface reflectance as input to MODTRAN-4. The same reflectance values 

will be used in Chapter 6 as auxiliary information in the development of a new coordinate 

system aiming at an optimal discrimination of burned areas using data in the MIR and NIR 

domains. 
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Figure 3.9. Burned area stored at the USGS Digital Spectral Library. Adapted from 

http://speclab.cr.usgs.gov/spectral-lib.html 

 

 

Figure 3.10. Computed reflectance values in channels 20 (MIR) and 2 (NIR) for samples 

belonging to vegetation, water and soil classes as stored in the JHU directory at ASTER 

spectral library, as well as based on samples of burned materials. 

http://speclab.cr.usgs.gov/spectral-lib.html
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3.2.3. Auxiliary information 

 

3.2.3.1.  AERONET 

 

The AErosol RObotic NETwork (AERONET) program provides a long-term, 

continuous and readily accessible public domain database of aerosol optical, mircrophysical 

and radiative properties for aerosol research and characterization, validation of satellite 

retrievals, and synergism with other databases. The network imposes standardization of 

instruments, calibration, processing and distribution (Holben et al., 1998). 

In this respect, the AERONET collaboration provides globally distributed observations 

of spectral AOD, inversion products, and precipitable water in diverse aerosol regimes. The 

aerosol optical depth is computed at three data quality levels, namely Level 1.0 

(unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud-screened and quality-

assured). Inversions, precipitable water, and other AOD-dependent products are derived 

from these levels and may implement additional quality checks. Typically the sun 

photometers, that are currently installed, take measurements of the direct sun radiance at 

eight spectral channels (340, 380, 440, 500, 670, 870, 940 and 1020 nm) with triplet 

observations per wavelength and diffuse sky radiances at four spectral channels (440, 670, 

870 and 1020 nm). 

For this study, we used data from Abracos Hill station (latitude -10.76, longitude -

62.35), as obtained through the AERONET webservice (http://aeronet.gsfc.nasa.gov), which 

is located in Rondonia, Brazil, an area with high fire activity. We have selected data on the 

extinction coefficient at 550 nm from aerosols associated to biomass burning, based on 

cloud-screened level 2.0 AOD at 550 nm ( )55.0(a ), during the local dry season (August to 

October) from the years of 1999 to 2005. It may be further noted that level 2.0 data are pre 

and post field calibrated, automatically cloud cleared and manually inspected. 

http://aeronet.gsfc.nasa.gov
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3.2.3.2. Hot spots 

 

INPE makes available data on active fires using data based on information provided 

by Geostationary Satellite Server (GOES), NOAA, Aqua and Terra satellites (see information 

at http://www.dpi.inpe.br/proarco/bdqueimadas/). Data on active fires will be used in Chapter 

4 in order to provide ground reference information for burned areas analysis. 

 

3.3. MODTRAN radiative transfer code and atmospheric 

characterization 

MODTRAN is a well established radiative transfer code, developed jointly by the Air 

Force Research Lab/Space Vehicles Directorate (AFRL/VSBT) and the Spectral Sciences, 

Inc. The MODTRAN code calculates atmospheric transmittance and radiance for frequencies 

from 0 to 50,000 cm-1 at moderate resolution, primarily 2 cm-1 (20 cm-1 in the ultraviolet 

region). The latest version, MODTRAN-4, which was used in the present research, adds 

some new features, e.g. two correlated-k options, an azimuth dependent DISORT option, 

upgraded ground surface modeling and an high-speed option that make the computations 

more accurate than the former version (Berk et al., 1998).  

As shown in Table 3.9, MODTRAN prescribes six standard model atmospheres, 

namely Tropical (TRO), Mid-Latitude Summer (MLS), Mid-Latitude Winter (MLW), Sub-Arctic 

Summer (SAS), Sub-Arctic Winter (SAW) and 1976 US Standard (STD). Each standard 

atmosphere available in MODTRAN-4 is tabulated at 36 levels in terms of temperature, 

humidity and pressure. In the present research work, we restrict to TRO, MLS and MLW 

profiles and the respective pressure, temperature and humidity profiles are shown in Figure 

3.11. The three standard atmospheric profiles chosen are expected to cover a wide variety of 

atmospheric conditions (air temperature at the first boundary from 272.2 to 299.7 K and 

water vapour contents from 0.85 to 4.11 g·cm-2) that are likely to be encountered within the 

http://www.dpi.inpe.br/proarco/bdqueimadas
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Amazon and Cerrado regions where both wet and dry conditions may be observed. For 

instance, from July to October, a large high pressure system dominates partially the North 

and the Center-West Regions of Brazil reducing the humidity due to subsidence of dry air 

from the upper levels of the atmosphere (Nobre et al., 1988).  

Representative atmospheric aerosol, cloud and rain models are also provided within 

the MODTRAN code with options to replace them by user-modelled or measured values. In 

this work, we have used aerosol from biomass burning as obtained from the AERONET 

network.  

 

Table 3.9. Air temperature at the first boundary and total water vapour contents of the six 

standard model atmosphere stored at MODTRAN-4.  

Model atmosphere Air temperature [K] Column water vapour [g·cm-2] 
TRO 299.7 4.11 
MLS 294.2 2.92 
MLW 272.2 0.85 
SAS 287.2 2.08 
SAW 257.2 0.42 
STD 288.2 1.42 

 

In addition to the standard model atmospheres, MODTRAN also enables users to 

define their own atmospheric profiles, e.g. from radiosounding, satellite sounder or numeric 

weather prediction (NWP) model data. A set of perturbed TRO, MLS and MLW profiles was 

accordingly generated to be used in Chapter 5 with the aim of assessing the effect of the 

atmospheric profile source of error on the retrieval of MIR reflectance. Following Peres and 

DaCamara (2004) the three standard profiles were perturbed with values based on the 

background error covariance matrix used in the assimilation schemes of the Global 

Circulation Model operated at the European Centre for Medium-Range Weather Forecast 

(ECMWF) (Fillion and Mahfouf, 2000). It may be noted that the covariance coefficients were 

computed statistically using the NCEP method based on 24/48-hour forecast differences of 

the ECMWF model And that the background refers to a short-range forecast, which has been 
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started from the analysis at the previous assimilation cycle and is used, in conjunction with a 

set of observations, to help finding the new analysis state. It may be further noted that 

ECMWF model prognostic variables like temperature and specific humidity are currently 

represented on a vertical grid with 60 levels (from the top of the atmosphere to the surface). 

Since the MLS, MLW and TRO standard atmospheres available in MODTRAN-4 are 

tabulated at 36 levels with temperature, humidity and pressure values, the temperature and 

humidity profiles were interpolated to the 60 pressure-level grids in order to impose the 

above-mentioned perturbations on the three standard atmospheres. 

 

 

Figure 3.11. Pressure, temperature and humidity profiles of the six standard model 

atmospheres prescribed in MODTRAN.  

 

Although it may seem obvious, at first sight, to adopt the error associated with the 

MODIS Atmospheric Profile product (since it is the main sensor used in the present study), 

the use of the ECWMF background error covariance matrix is preferable because it allows 

generating sets of perturbed profiles of temperature and humidity based on the reference 
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TRO, MLS and MLW profiles. The set of imposed errors due to uncertainties on atmospheric 

information respects therefore to a specific and pre-defined standard profile/atmospheric 

condition. On the other hand, the information about the accuracy of the MODIS product is 

based on the comparison between collocated MODIS profile retrievals and the so-called 

best-estimated profiles (Tobin et al., 2006) at the Southern Great Plains (SGP) Atmospheric 

Radiation Measurement (ARM) site for 80 clear sky Aqua cases between October 2002 and 

August 2005. The best estimate profiles of the atmospheric state are an ensemble of 

temperature and moisture profiles generated from two radiosondes launched within two 

hours of the Aqua satellite overpass times. The use of the ECMWF background error 

covariance matrix provides therefore uncertainty information that is more realistic for each 

standard profile than the one from the MODIS product.  

 

 

Figure 3.12. Standard deviation (SD) of the MODIS and the three ECMWF (TRO, MLS and 

MLW) SD profiles of mass mixing ratio (solid curves) and temperature (dashed curves). 

 

Moreover, and as shown in Figure 3.12, the computed standard deviation (SD) of the 

mass mixing ratio (solid curves) and temperature (dashed curve) errors using the ECMWF 
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background error covariance matrix present lower values than the SD from MODIS 

Atmospheric Profile product. Perturbing the three standard profiles by using the former type 

of errors may be viewed as adopting the most favorable conditions when assessing the effect 

of the atmospheric profile source of error on the retrieval of MIR reflectance.  
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Chapter 4  

 

Retrieving MIR reflectance for burned area 

mapping in tropical regions 

 

4.1. Introduction 

 

The ephemeral character of the radiative signal together with the presence of 

aerosols imposes severe limitations on the use of classical approaches, e.g. based on red 

and near-infrared, to discriminate between burned and unburned surfaces in tropical 

environments. Surface reflectance in MIR has been used to circumvent these difficulties 

because the signal is virtually unaffected by the presence of aerosols associated to biomass 

burning. Retrieval of the MIR reflected component from the total signal is, however, a difficult 
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problem because of the presence of a diversity of radiance sources, namely the surface 

reflected solar irradiance and the surface emitted radiance that may reach comparable 

magnitude during daytime. The method proposed by Kaufman and Remer (1994), hereafter 

KR94, to retrieve surface MIR reflectance presents the advantage of not requiring auxiliary 

datasets (e.g. atmospheric profiles) nor major computational means (e.g. for solving radiative 

transfer models). Nevertheless, the method was specifically designed to retrieve MIR 

reflectance over dense dark forests in the middle latitudes and severe problems may 

therefore arise when applying it beyond the range of validity, namely for burned area 

mapping in tropical environments. The present Chapter consists of an assessment of the 

performance of the method for a wide range of atmospheric, geometric and surface 

conditions and of the usefulness of extracted surface reflectances for burned area 

discrimination. Approximate solutions, like that proposed by KR94, are fast and easy to 

implement, but may be insufficiently accurate under specific surface and atmospheric 

conditions. The aim of the present Chapter is to assess the quality and limitations of the 

retrieved MIR reflectance by means of KR94’s method when applied to discriminate burned 

areas in tropical environments.  

Accordingly, the main objectives of the analysis are twofold: 

 

1. To perform a quality assessment of MIR reflectance when retrieved using the 

algorithm proposed by KR94, for a wide range of atmospheric, geometric and surface 

conditions; 

 

2. To assess the adequacy and limitations of the above mentioned algorithm 

when applied to burned area discrimination, in particular in the Amazon and Cerrado regions. 

Special attention will be devoted to the MODIS sensor, because of its widespread use in 

operational applications at INPE. 
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4.2. Data and methods 

 

4.2.1. Theoretical background 

 

As discussed in Chapter 2, TOA radiance measured by a sensor in the MIR region 

results from the contribution of the reflective and thermal emissive components. In case of 

clear-sky conditions, radiation balance is translated by the so-called RTE given by Eq. (2.8). 

Since the Earth surface is opaque and assuming it behaves as a Lambertian emitter-

reflector, surface reflectance and emissivity are related as: 

 

.1 MIRMIR             (4.1) 

 

Using Eq. (4.1) and neglecting the atmospheric scattering term, SL , the solution to 

Eq. (2.8) is given by: 
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Eq. (4.2) neglects the effects of atmospheric scattering. Figure 4.1 shows the box plot 

of the contributions to the MIR signal due to atmospheric scattering, surface reflection, 

surface emission and atmospheric emission for TRO atmospheric profile (see Section 3.3), 

considering all simulations performed. The lower and upper lines of the "box" are the 25th 

and 75th percentiles of the sample. The distance between the top and bottom of the box is 

the interquartile range. The line in the middle of the box is the sample median. Assuming no 

outliers, the maximum of the sample is the top of the upper whisker. The minimum of the 
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sample is the bottom of the lower whisker. It may be noted from Figure 4.1, that the 

contribution of atmospheric scattering to the total signal ranges from 0.001 to 0.01% and is 

orders of magnitude smaller than the other terms. A contribution this small is negligible and 

will not introduce significant errors in the retrieval of surface reflectance. Similar results were 

found for MLS and MLW atmospheric profiles, which were briefly described in Section 3.3. 

 

 

Figure 4.1. Contribution to the MIR signal due to surface emission (SE), surface reflection 

(SR), atmospheric emission (AE) and atmospheric scattering (AS) for TRO atmospheric 

profile, considering all simulations. 

 

4.2.2. Retrieval of MIR reflectance 

 

Equation (4.2) lays the grounds for the so-called physically-based methods, which 

involve a direct evaluation of all constituents of the MIR signal by means of a radiative 

transfer model, requiring substantial computational means. Operational use of physically-

based methods is limited by other factors, namely the need of quantitative information on 

atmospheric conditions, mainly humidity and temperature profiles, in order to perform the 

atmospheric corrections. 
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The above-mentioned limitations led to the development of simpler methods, like the 

one proposed by KR94, which require neither direct knowledge of atmospheric conditions, 

nor a radiative transfer model. The approach is based on the studies of Gesell (1989) and 

Ruff and Gruber (1983), who pointed out the existence of a mutual compensation between 

attenuation and thermal emission terms, so that both atmospheric transmittances (i.e. MIRt  

and MIR ) may be assumed as equal to unity, and both the atmospheric downward and 

upward thermal emission terms may be neglected. The validity of these assumptions may be 

assessed by simplifying Eq. (4.2) and then justifying the performed simplifications using 

typical values of the relevant terms of Eq. (4.2) for surface and atmospheric conditions 

associated to dense, dark vegetation areas in mid-latitude environments. Typical values are 

given in Table 4.1 for nadir view and three different values of SZA, respectively 0, 15 and 

45º, where a MLW atmospheric profile and a surface temperature ST  of 290 K are assumed. 

Accordingly, after some algebraic manipulations, Eq. (4.2) may be rewritten as: 
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where: 
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Since 12   according to the values in Table 1, the factor 
21

1
 in Eq. (4.4) may be 

expanded in a Taylor series up to the first order leading to: 
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Taking further into account that ),( SMIRMIR1 TBL  , terms 1  and 2  may be 

neglected in Eq. (4.6) leading to the following simplified form: 
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Table 4.1. Typical values of the different terms of Eq. (4.2) in the case of nadir view and for 

three different SZA considering a MLW atmospheric profile and a surface temperature equal 

to 290 K.  

SZA  
45º 15º 0º 

MIR  0.912 0.912 0.912 

MIRt  0.794 0.813 0.816 

MIRL 1 0.700 0.872 0.899 

),( SMIR TB  1 0.315 0.315 0.315 

),( TIRB,MIR TB  1 0.212 0.212 0.212 

MIRatm,L 1 0.006 0.006 0.006 

0
0MIR 


E 1 2.46 3.29 3.42 

MIRatm,L 1 0.011 0.011 0.011 
1[W·m-2·µm-1·sr-1] 
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The above described mathematical procedure may be also viewed from a physical 

point of view. First, consider the numerator of the second hand term of Eq. (4.2), and 

suppose the atmospheric upward emission term ( MIRatm,L ) is neglected. Since MIRL  is 

fixed, the only way to compensate the neglected term is by increasing the contribution of the 

remaining term, ),( SMIRMIR TB  . This is only possible by increasing the atmospheric 

transmittance MIR , in particular by setting it equal to unity. Now, taking into consideration the 

denominator, suppose the atmospheric downward emission term ( MIRatm,L ) is neglected. 

Then, in order to compensate the neglected term, either the contribution of term 

),( SMIRMIR TB  , or the contribution of term 0
0MIR

MIR 


Et  have to be increased. However, the 

first possibility is ruled out by the fact that it was already assumed that 1MIR  . Therefore, 

the contribution of the 0
0MIR

MIR 


Et  term has to be raised by increasing MIRt , in particular by 

setting it equal to unity. Setting both MIRt  and MIR  to unity does lead to the required increase 

that compensates for neglecting the MIRatm,L  term. This is due to the fact that, in general, 

t  and therefore the assumption 1MIRMIR  t  leads to a greater increase in the 

contribution of 0
0MIR

MIR 


E
t  term than in ),( SMIRMIR TB   term. 

KR94 introduced another approximation for Eq. (4.7), that consists of using the 

brightness temperature, TIRB,T , from a TIR band (10 - 12 µm) as a surrogate for the LST, ST . 

In fact, as pointed out by Prata et al. (1995), brightness temperature is usually lower than 

surface temperature, the difference typically ranging from1 to 5 K in TIR. 

Following a procedure similar to the one above-described, Eq. (4.7) may be 

approximated (up to the first order) as: 
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Since, according to results in Table 1, 
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 and taking into account that 

 

          (4.10) 

 

Equation (4.2) may be approximated by the following equation, which represents the final 

form of the KR94 algorithm: 
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4.2.3. Radiative transfer simulations 

 

As pointed out in the introduction, the aim of the present Chapter is to perform a 

systematic assessment of the performance of the KR94 algorithm when applied to burned 

area discrimination under a wide range of atmospheric, surface and geometry conditions, 
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paying special attention to those expected when applying the algorithm to the Amazon and 

Cerrado regions. 

For this purpose, estimation of the error associated with MIR reflectance as retrieved 

using Eq. (4.11) will be performed based on a large number of simulated TOA radiances. 

These simulations are generated with MODTRAN-4, a widely used radiative transfer model 

(Berk et al., 2000) which was described in Section 3.3. Encompassing a large set of 

observation conditions, the simulations are performed in the spectral ranges of 3.62 - 3.97 

µm and 10 -12 µm, i.e. covering MODIS channels 20 and 31. Brightness temperature from 

MODIS channel 31 is also required as input to Eq. (4.11).  

The atmospheric contribution is computed for three geographical–seasonal model 

atmospheres stored in MODTRAN-4, namely MLW, MLS, and TRO (see Chapter 3). Use of 

mid-latitude profiles (i.e. MLW and MLS) is required to establish a baseline of performance of 

KR94 when subject to atmospheric, surface and geometric conditions for which the algorithm 

was specifically designed. Such baseline will then serve to assess the limitations of KR94 

when employed beyond specifications, namely in case of tropical environments (e.g. as 

described by the TRO profile). 

The three standard atmospheres cover a wide range of atmospheric conditions, with 

water vapor content of 0.85, 2.92 and 4.11 g·cm-2  and 2m-air temperature ( atmT ) of 272.2, 

294.2 and 299.7 K, for MLW, MLS, and TRO respectively. The assigned LST values are 

based on the 2-m air temperature of each profile, varying from atmT  to atmT  + 30.0 K in steps 

of 1.0 K, totalizing 31 different values. The sun-view geometry consists of 31 SZAs, from 0º 

to 60º in steps of 2º, and of a single VZA of 0º. Although nadir viewing is limited along the 

tropics when using polar orbiting instruments (such as MODIS), choice of a nadir view 

corresponds to the most favorable surface observation conditions. If problems arise when 

simulating nadir viewing (i.e. the most favorable case), then performance is expected to 

degrade for less favorable observation conditions. In fact, simulations were also performed 

for off-nadir viewing angles and, as expected, results (not shown) revealed a slight 



Chapter 4 – Retrieving MIR reflectance for burned area mapping in tropical regions 
 

 

70 

 

degradation in performance of the KR94 algorithm with increasing viewing angle, a feature 

consistent with former studies (França and Setzer, 1998; Jiang et al., 2006) that demonstrate 

weak dependence of MIR region on view angle variations. 

The ranges of SZA and LST are set to be representative of the observed geometric 

and surface conditions characteristic of regions associated to each atmospheric profile. For 

instance, Figure 4.2 depicts pixel values of the third quartile (P75) of LST during August 

2008, retrieved over Brazil using the Spinning Enhanced Visible and Infra-Red Imager 

(SEVIRI) on-board METEOSAT-8.  

 

 

 

Figure 4.2. Monthly values of P75 of LST during August, 2008 over Brazil. Data were 

retrieved from METEOSAT-8/SEVIRI data. 

 

Figure 4.3 presents monthly P75 values, throughout the year, of SZA as obtained 

from a large sample of pixels from MODIS imagery that has been operationally used for 
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burned area discrimination over Brazil. During the fire season (from June to October) very 

high values of LST are observed over Amazonia and especially over the adjacent Cerrado, 

region, where a large area may be found that presents values of P75 larger than 320 K. In 

addition, more than 25% of the pixels are associated to values of SZA greater than 40º, i.e. 

to low values of the solar signal. 

 

 

Figure 4.3. Monthly values of P75 of SZA as obtained from samples of Aqua/MODIS and 

Terra/MODIS imagery along the year of 2007 over Brazil. The threshold of 40º for SZA is 

highlighted by the dotted horizontal line. Dotted vertical lines delimit the fire season in 

Amazonia (June to October). 

 

Two types of surface cover were considered, namely burned and unburned. Both 

surface types were assumed to be homogeneous and Lambertian, the burned and unburned 

surfaces being characterized respectively by charcoal and vegetation spectra. As discussed 

in Section 3.2, four fire residue samples were collected at Alta Floresta, state of Mato 

Grosso, Brazil. Charcoal spectra were measured at the NASA/JPL and may be viewed as 
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typical of tropical environments. Mean values of the four charcoal spectra were then used to 

prescribe the surface reflectance of the burned surface as input to MODTRAN-4. Regarding 

the unburned surface, prescribed reflectance values were obtained from a set of 25 surfaces 

from the MODIS-UCSB spectral library. The set includes most vegetation types (Salisbury 

and D’Aria, 1994; Peres and DaCamara, 2004), with reflectance values varying from 0.01 to 

0.04, in the MIR region. A value of 0.24 (0.03) was, accordingly, prescribed for MIR 

reflectance for the burned (unburned) types of surface cover. These values were obtained by 

averaging the MIR spectral signature for the four (25) considered charcoal (vegetation) 

types, which were convolved with the MODIS channel 20 normalized response function. 

Results ought to be applicable to other sensors having spectral windows similar to that used 

in this work.  

 

4.3. Analysis and results 

 

4.3.1. MODTRAN-4 simulations 

 

As discussed in the previous section, the method developed by KR94 relies on a 

number of simplifying assumptions regarding atmospheric transmittances and atmospheric 

downward and upward thermal emission radiances. All these terms are correlated and 

depend essentially on atmospheric water vapor content. When atmospheric water vapor 

increases, atmospheric transmittances decrease, whereas the atmospheric downward and 

upward thermal emission radiances increase. Table 4.2 shows the range of atmospheric 

terms that may typically be found in the MIR region, in the case of the three geographical-

seasonal model atmospheres considered, i.e., when varying from ‘dry’ to ‘moist’ conditions. 

For instance, whereas high transmittances and low path-radiances values characterize the 

MLW atmospheric profile, the TRO profile is associated to lower transmittances and relatively 
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high path-radiance values. It is therefore to be expected that use of Eq. (4.11) in retrieving 

MIR reflectance may introduce systematic deviations, especially in the case of ‘moist’ 

atmospheres. For example, in the case of TRO, the relative error associated to the 

assumption of 1MIR   (instead of the realistic value 79.0MIR  ) is about 27% but drops to 

10% in the case of MLW (taking into account that 91.0MIR  ). In the case of the two-way 

atmospheric transmittance, the relative error associated to the assumption of 1MIR t  

(instead of 65.0MIR t ) in the case of TRO is about 54% but drops to 24% in the case of 

MLW (where 81.0MIR t ). In a similar fashion, neglecting the atmospheric downward 

emission term leads to a relative error of 17% for the TRO profile, in contrast with MLW 

where the corresponding error decreases to 3%. Finally, neglecting the atmospheric upward 

emission term leads to a relative error of 9% for the TRO profile and just to an error of 2% in 

the case of MLW. 

 

Table 4.2. Effects of water vapor content [g·cm-2] on atmospheric terms for the three profiles 

analyzed, considering nadir view and a SZA of 0º. 

Profile Water vapour content 
[g·cm-2] τMIR tMIR MIRatm,L  

[W·m-2·µm-1·sr-1] 
MIRatm,L  

[W·m-2·µm-1·sr-1] 
MLW 0.85 0.91 0.81 0.006 0.012 
MLS 2.92 0.83 0.70 0.038 0.068 
TRO 4.11 0.79 0.65 0.057 0.104 

 

Accuracy of the solutions provided by Eq. (4.11) may be assessed by evaluating the 

corresponding relative errors, defined as the differences between retrieved values using Eq. 

(4.2) and the corresponding prescribed values as input to MODTRAN-4, divided by the latter 

values. Figures 4.4 - 4.6 present the obtained values of relative errors of MIR reflectance as 

a function of LST and SZA. The curves correspond to nadir-viewing conditions and represent 

charcoal (left panels) and vegetation (right panels) surfaces for MLW (Figure 4.4), MLS 

(Figure 4.5) and TRO (Figure 4.6). It is worth stressing that ranges of LST considered are 
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different for each profile (as discussed in Section 4.2.3) and reflect the surface conditions 

typically associated to each type of atmosphere. 

It is well apparent that relative errors strongly depend on the surface type, for all three 

atmospheric profiles. In particular, it may be noted that the magnitude of relative errors is 

considerably larger for vegetation than for charcoal, and increases with moisture content, 

MLW showing the lowest values and TRO the highest. For instance, the lower values 

obtained in the case of MLW are in close agreement with results found by KR94, who 

estimated the accuracy of Eq. (4.11) to lie in the range of 0.01 – 0.02 (absolute errors) for a 

mid-latitude atmosphere and for the range of reflectance to be expected from a variety of 

vegetation and soils (0.01 – 0.06). In strong contrast, vegetation surfaces present extremely 

large relative errors, ranging from 100% – 1,200% for LST values to be expected in tropical 

regions. Taking the value of 0.03 as reference for reflectance of vegetation, the obtained 

range corresponds to absolute errors of 0.06 – 0.4. In the case of charcoal, relative errors 

are one order of magnitude smaller, ranging from -20% – 80%, i.e. from about -0.05 – 0.2 in 

terms of absolute error, and taking a reference value of 0.24 for charcoal reflectance. 

Dependence of the relative error on LST is stronger than on SZA, especially for values of 

SZA lower than 30º, a feature clearly revealed by the low slope of the error curves in Figures 

4.4 - 4.6.  

Performance of the KR94 algorithm is closely linked to the magnitude of the relative 

contribution of thermal emitted radiance, eL , to the total TOA MIR radiance, MIRL , given by 

Eq. (2.8). It may be noted that eL  is given by the second, third and fourth terms of the right-

hand side of Eq. (2.8), i.e. 

 

.),( MIRatm,MIRatm,MIRMIRSMIRMIRMIRe  LLTBL               (4.12) 
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Figure 4.4. Relative error [%] on MIR reflectance in the case of MLW for charcoal (left panel) 

and vegetation (right panel). Solid (dotted) curves indicate positive (negative) errors and the 

thick curve highlights the no-error line. 

 

Figure 4.5. As in Figure 4.4 but in the case of MLS. 

 

Figure 4.6. As in Figure 4.4 but in the case of TRO. 



Chapter 4 – Retrieving MIR reflectance for burned area mapping in tropical regions 
 

 

76 

 

When the ratio MIRe LL  exceeds a threshold of about 0.75 the solutions provided by 

Eq. (4.11) are contaminated by unacceptably large relative errors, on the order of 100%. The 

magnitude of MIRe LL , and therefore the range of validity of Eq. (4.11), mainly depends on 

the type of the surface considered, as well as on its temperature, atmospheric profile, and 

sun elevation angle. Figure 4.7 presents the dependence of MIRe LL  on LST for vegetation 

(circles) and charcoal (squares) under two extreme illumination angles, respectively an SZA 

of 0º (open symbols) and of 60º (black symbols), and for the two extreme cases of 

atmospheric moisture content, respectively MLW (left panel) and TRO (right panel) profiles. 

The contrasting behavior of charcoal and vegetation is well apparent. In the case of charcoal, 

high values of MIR reflectance (about 0.24) lead to a major contribution of the reflected 

component and, therefore, the ratio MIRe LL will be below 50% (75%) in the case of MLW 

(TRO), except for large values of LST, above 289 K (293 K) for MLW (TRO), associated to 

very low sun elevation angles (SZA=60º). Acceptable estimates of charcoal reflectance are 

therefore to be expected from Eq. (4.11), the sole exception being cases of high LST values 

(larger than 320 K), co-occurring with high SZA values (larger than 50º), which may lead to 

relative errors in excess of 25%. Because of the very low vegetation reflectance (about 0.03, 

i.e. eight times lower than that of charcoal), total TOA MIR radiance, MIRL , will be primarily 

due to the thermal emitted component, and a deeply contrasting behavior is to be expected 

between charcoal and vegetation. In the latter type of surface, the ratio MIRe LL  is always 

larger that 75% in the case of TRO, and in the case of MLW for low solar elevation 

(SZA=60º). Even for solar zenith conditions (SZA=0º) the ratio MIRe LL  exceeds 75% in the 

case of MLW, for LST values as low as 288 K. Implications of the solutions provided by Eq. 

(4.11) on relative errors are well depicted in the left panels of Figs. 4.4 and 4.6; in the case of 

TRO, relative errors are unacceptably large (exceeding 50%) over the entire domain 
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considered, whereas in the case of MLW relative errors are larger than 25% for values of 

LST beyond 290 K, whenever SZA surpasses 50º.  

 

 

Figure 4.7. Plot of the ratio MIRe LL [%] as a function of LST in the case of MLW (left panel) 

and TRO (right panel). Square (circle) symbols denotes charcoal (vegetation) surface 

whereas open (black) symbols characterizes SZA of 0º (60º). 

 

The above-discussed limitations of the KR94 algorithm may give rise to serious 

difficulties when attempting to discriminate between burned and unburned surfaces, in 

particular in the case of tropical environments. For instance, an absolute error of 0.2 in a 

typical vegetation reflectance of about 0.03 leads to a retrieved value of about 0.23 which 

reaches the range characteristic of charcoal. The problem is illustrated in Figure 4.8, which 

presents results obtained when using Eq. (4.11) to retrieve the reflectance of vegetation (with 

the prescribed value of 0.03) and of charcoal (with the prescribed value of 0.24) in the three 
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considered cases of MLW, MLS and TRO, for values of SZA from 0 – 60º and for ranges of 

typical values of LST for each profile.  

 

 

Figure 4.8. Diagram of values of reflectance for vegetation and charcoal surfaces for different 

atmospheric profiles, LST and SZA; a) the two surfaces with prescribed constant values of 

0.03 and 0.24 for vegetation (green) and charcoal (orange); b) to d) retrieved values of 

reflectance using Eq. (4.11) as a function of SZA and LST for MLW, MLS and TRO profiles. 

 

It is well apparent that the accuracy of retrieved values of reflectance is much more 

sensitive to LST and SZA in the case of vegetation than for charcoal. For instance, the 

reference contour line of 0.03 (for vegetation) is displaced out of the considered domain in 

the case of MLS and TRO and, even for MLW; it is located at the bottom, almost out of the 
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domain. The displacement of the reference contour line of 0.24 for charcoal is much smaller 

and is barely noticeable in the case of MLW. However, the robustness of Eq. (4.11) in the 

case of charcoal is not enough to discriminate burned from unburned surfaces, because 

values of reflectance for vegetation attain those characteristics of charcoal for sufficiently 

high values of LST and SZA. As shown in Figure 4.8, in the case of MLS, even if the 

discontinuities observed along the band separating the two considered surfaces indicate the 

possibility of discriminating between them, values of the contour lines on both sides are 

larger than 0.20. Therefore, it is not possible to label either type as the unburned surface. 

The situation is even worse for TRO where, for values of LST grater than 315 K and SZA 

larger than 30º, both surfaces reach similar reflectance values, becoming undistinguishable. 

 

4.3.2. Case study 

 

A more realistic assessment of the implications of using Eq. (4.11) for burned area 

discrimination in tropical environments may be achieved by means of a case study based on 

satellite imagery. However, as pointed out by Roger and Vermote (1998), any attempt to 

validate retrieved values of MIR reflectance from satellite data is virtually impaired by the 

absence of “in-situ” (direct) measurements. This limitation may be circumvented by creating 

a reference dataset of MIR reflectance based on information from a real satellite image. The 

adopted approach consists of the following steps: (1) collect information about land surface 

temperature, land surface emissivity, atmospheric profiles and view/solar angles for the 

selected scene; (2) use a radiative transfer model (MODTRAN-4 in the present study) to 

compute the respective values of transmittance and atmospheric parameters; and (3) use 

Eq. (4.2) with values obtained in the previous steps to retrieve MIR reflectance from the total 

signal. The generated reference dataset of MIR reflectance may then be used to validate the 

corresponding MIR reflectance as retrieved by means of KR94. 
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Taking into account the described procedure, it seems appropriate to select an image 

where the atmospheric conditions are particularly favorable, e.g. with low values of the water 

vapor column, and a low amount of aerosols (i.e. with a clear sky surrounding). Since results 

from simulations (Section 4.3.1) showed that the accuracy of retrieved values of reflectance 

is very sensitive to high values of LST, it seems also appropriate to select an image with 

moderate values of LST. 

All the above-mentioned favorable characteristics are met in the case of the large fire 

event that took place from April 30 to May 12, 2006 and affected the entire area of the Ilha 

Grande National Park, located between the states of Paraná and Mato Grosso do Sul, Brazil. 

The burned is about 200 km2, as estimated by INPE based on information from Landsat TM 

imagery (Figure 4.9). A total of 413 active fires during the above-mentioned period were also 

identified by INPE, using data from GOES, NOAA, Aqua and Terra satellites. 

Performance of Eq. (4.11) was assessed using TOA values of MIR radiance and TIR 

brightness temperature as acquired on May 12, 2006 by the MODIS instrument on-board 

Aqua. Data were obtained from the Aqua/MODIS Level 1B 1km V5 product, MYD021 

(MCST, 2006) and correspond to channels 20 and 31. Surface values of MIR reflectance 

were then retrieved by solving Eq. (4.2) using MODTRAN-4, using information about surface 

temperature and sun elevation together with data of temperature and humidity for the 

atmospheric column. As mentioned in Section 3.2.1.1, pixel values of LST and of SZA, 

varying from 295 to 315 K and from 48.5 to 51º, respectively were obtained from Land 

Surface Temperature/Emissivity Daily 5-Min L2 Swath 1 km product, MYD11_L2 (Wan, 

1999). As also mentioned in Section 3.2.1.1, atmospheric profiles of temperature and 

humidity were obtained from the Atmosphere Profile Level 2.0 product, MYD07_L2 

(Seemann et al., 2006), the water vapor content over the selected area varying from 1.3 to 

2.3 g·cm-2, a quite low amount when compared with the value of 4.11 g·cm-2 of the TRO 

profile stored in MODTRAN-4. Figure 4.10 represents the MODIS mean profiles of 
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temperature and humidity together with the TRO profile that will be used to generate 

synthetic imagery with characteristics to be expected over tropical environments.  

 

 

Figure 4.9. Location of the Ilha Grande National Park, between the states of Paraná and 

Mato Grosso do Sul (upper right panel) in southwestern Brazil (upper left panel) and Landsat 

TM image (RGB 543) of the National park before the fire episode, on April 26, 2006 (lower 

left panel) and after the fire episode on May 12, 2006 (lower right panel). The outline of the 

National Park is shown in red. 
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Figure 4.10 MODIS mean profiles (bold curves) of temperature (left panel) and humidity 

(right panel) over Ilha Grande National Park on May 12, 2006. The TRO profile stored at 

MODTRAN-4 is also represented (thin curves). 

 

Retrieved values of surface MIR reflectance and values of LST are shown in Figure 

4.11. Higher values of MIR reflectance and LST over the burned area are particularly 

conspicuous, especially because of the contrasting behavior of the surrounding vegetated 

areas, which present a large spatial variability of reflectance and temperature. 

Values of retrieved surface MIR reflectance and of LST (Figure 4.11) were input to 

MODTRAN-4, to produce synthetic images of TOA MIR radiance and TIR brightness 

temperature. These images correspond to the following two environments, characterized by 

atmospheric and surface conditions expected in tropical regions; i) the TRO environment, 

obtained using the TRO profile and the LST of May 12 ,2006 and ii) the TRO-HOT 

environment, obtained using the TRO profile and LST+20 K. The KR94 algorithm was then 

used to retrieve values of surface reflectance from TOA MIR radiance and TIR brightness 
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temperature of the original images (May-12 environment) and of the synthetic ones (TRO 

and TRO-HOT environments). 

 

 

Figure 4.11. Retrieved values of surface MIR reflectance (left panel) and LST (right panel) 

over the Ilha Grande National Park on May 12, 2006. 

 

The impact of using retrieved values to discriminate between burned and unburned 

surfaces for the three considered environments was evaluated by comparing the values of 

reflectance as retrieved by Eq. (4.11) over two sets of pixels representative of the two 

classes to be discriminated and then checking whether the respective statistical distributions 

allow distinguishing between the surfaces. 

A set of 133 burned pixels, hereafter referred to as the burned class, was therefore 

selected from the scene, together with a set of 262 pixels that included the remaining land 

cover types (namely green vegetation, crop fields and water bodies), hereafter referred to as 

the unburned class. As described in Section 3.2.1.2, choice of pixels was made by visual 

comparison between two Landsat TM scenes (path/row 224/76) acquired on April 24 and 
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May 12, 2006. Hot spots detected by INPE (see Section 3.2.3.2) were also used in the 

process of selecting pixels associated to burned surfaces. 

According to Kaufman and Remer (1994), a quantitative assessment of the 

effectiveness of the KR94 algorithm to discriminate between burned and unburned surfaces 

may be obtained with the M index, as described in Chapter 2 (Eq. (2.9)). It is worth noting 

that index M may be viewed as an estimator of signal-to-noise ratio, the absolute difference 

between the mean values of the two classes representing the signal (associated to between-

group variability) and the sum of the standard deviations representing noise (associated to 

within-group variability). Values of M larger than one indicate good separability, whereas 

values smaller than one represent a large degree of overlap between the values associated 

to the two classes. 

Results are shown in Figure 4.12 and Table 4.3. In the case of unburned surfaces, 

and when going from May-12 to TRO-HOT environments, there is a progressive shift of the 

histograms towards larger values of reflectance, accompanied by an increase of dispersion. 

Both shift and increase are especially pronounced from TRO to TRO-HOT. In strong 

contrast, in the case of burned surfaces, histograms of reflectance remain virtually 

unchanged when comparing May-12 to TRO environments, and there is a moderate shift 

when going from TRO to TRO-HOT environments.  
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Figure 4.12. Histograms of MIR reflectance for burned (black) and unburned (gray) classes 

as retrieved by means of Eq. (4.11) for May-12 (upper panel), TRO (middle panel) and TRO-

HOT (lower panel) environments.  

 

Moreover, the dispersion is virtually unaffected by injection of water vapor in the 

atmosphere and by surface temperature increase. The different sensitivity of the two types of 

surface leads to a progressive overlap of the histograms, which is translated by the decrease 

of M, from May-12 to TRO-HOT, and especially from TRO to TRO-HOT. In the latter type of 

environment M reaches a value of 0.53, an indication of very poor discriminant ability.  

Results obtained for the fire event at the Ilha Grande National Park confirm those 

previously obtained with MODTRAN-4 simulations, namely that discrimination between 

burned and unburned surface based on values of surface reflectance retrieved with the KR94 

algorithm is virtually impaired in the case of tropical regions for high values of surface 

temperature, especially when associated to low sun elevation angles. Since such 

circumstances are often present when using data from instruments on-board polar-orbiters 
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(namely MODIS in Aqua and Terra) to identify burned areas over the Amazon and the 

adjacent Cerrado, special care is required when using the KR94 algorithm. 

 

Table 4.3. Mean values, u ( b ), and standard deviation, u ( b ), of unburned (burned) 

surfaces and discrimination indices, M, for retrieved values of surface reflectance in the case 

of May-12, TRO and TRO-HOT environments. 

 µu σu µb σb M 

May-12 0.02 0.021 0.11 0.032 1.76 
TRO 0.03 0.024 0.12 0.027 1.58 
TRO+HOT 0.17 0.046 0.18 0.033 0.53 

 

4.4. Concluding remarks 

 

Identification of burned areas over the Amazon and Cerrado regions is a challenging 

task because of the ephemeral character of the radiative signal and the presence of aerosols 

that prevent using classical approaches e.g. based on red and near-infrared information. MIR 

presents the advantage of being virtually unaffected by the presence of most types of 

aerosols, in particular those associated to biomass burning. In this respect the reflected 

component of MIR has proven to be especially adequate to discriminate between burned and 

unburned surfaces in mid-latitude regions (e.g. Pereira, 1999). 

Kaufman and Remer (1994) proposed a methodology that presents the advantage of 

enabling for the retrieval of MIR reflectance with no need for auxiliary datasets or major 

computational means. The so-called KR94 algorithm, given by Eq. (4.11), has been 

specifically designed to retrieve MIR reflectance over dense dark forests in the middle 

latitudes. It has been also successfully applied to other types of surfaces and atmospheric 

environments, in particular for burned area discrimination (e.g. Barbosa et al., 1999; Roy et 

al., 1999). However, the quality of the retrieved values of MIR reflectance by means of KR94 
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methodology may significantly degrade when the relative contribution of the thermal emitted 

component to the total signal exceeds a threshold of about 75%. In the case of surfaces, 

such as vegetation, characterized by low values of MIR reflectance, the relative contribution 

of the solar component to the total MIR signal tends to be small, especially when the surface 

is hot (i.e. in case of relatively high values of LST). This contribution may be further reduced 

when the solar signal is weak due to low sun elevation angles (i.e. in case of high values of 

SZA). The above-mentioned aspects are especially relevant in tropical environments, where 

high land surface temperatures naturally dominate the scenes and pixels illuminated by low 

sun elevation angles are often present when using data from sensors on-board polar 

orbiters, in particular MODIS on-board Aqua and Terra.  

Use of Eq. (4.11) in tropical environments to retrieve vegetation reflectance may lead 

to errors that are at least of the same order of magnitude of the reflectance to be retrieved 

and considerably higher for large values of LST and SZA. Under such conditions, retrieved 

values of reflectance for vegetation may attain those characteristic of charcoal making the 

two types of surface undistinguishable. Use of the KR94 algorithm becomes severely 

impaired and the complete radiative transfer equation, i.e. Eq. (4.2), may be an alternative, 

provided the required auxiliary information is available about the surface (LST) and the 

atmospheric column (temperature and humidity profiles). This aspect will be addressed in 

Chapter 5. 
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Chapter 5  

 

Retrieval of middle-infrared reflectance using 

the Radiative Transfer Equation 

 

5.1. Introduction 

 

Retrieval of middle infrared reflectance may be undertaken by means of approximate 

methods, like that proposed by KR94, which are fast and easy to implement, but may be 

insufficiently accurate under specific surface and atmospheric conditions. For instance, in the 

previous chapter, an assessment was made on the quality and limitations of retrieved MIR 

reflectance by means of KR94's method when applied to discriminate burned areas in 

tropical environments, in particular in the Amazon and Cerrado regions. It was shown that 
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the quality of retrieved values may significantly degrade when the relative contribution of the 

thermal emitted component to the total signal exceeds a threshold of about 75%. In the case 

of surfaces, such as vegetation, characterized by low values of MIR reflectance, the relative 

contribution of the solar component to the total MIR signal tends to be small, especially when 

the surface is hot (i.e. in case of relatively high values of LST). This contribution may be 

further reduced when the solar signal is weak due to low sun elevation angles (i.e. in case of 

high values of SZA). 

The two above-mentioned limitations are especially relevant in tropical environments, 

where high land surface temperatures naturally dominate the scenes and pixels illuminated 

by low sun elevation angles are often present when using data from sensors on-board polar 

orbiters, in particular MODIS on-board Aqua and Terra. Libonati et al. (2010) have concluded 

that using the KR94 algorithm in tropical environments to retrieve vegetation reflectance may 

lead to errors that are at least of the same order of magnitude of the reflectance to be 

retrieved and considerably higher for large values of LST and SZA. In fact, there is a critical 

region in the LST vs. SZA space where the MIR reflectance retrieval is severely impaired. 

Under such conditions, retrieved values of reflectance for vegetation may attain those 

characteristic of charcoal making the two types of surface undistinguishable. Provided 

auxiliary information about the surface (LST) and the atmospheric column (temperature and 

humidity profiles) is available, use of the RTE appears, in this context, as a possible way to 

circumvent the problem or, at least, as a means to improve the estimates provided by KR94 

in the domain where this algorithm is applicable. 

Accordingly, the main purpose of this study is to carry out a systematic comparison 

between the RTE and KR94 approaches taking into account the performance and the need 

for auxiliary data, as well as the required computing resources. The added value that is 

expected from using the complete radiative transfer equation will be assessed, both inside 

and beyond the region where the KR94 produces usable estimates of MIR reflectance and 

paying special attention to their use for discriminating burned areas in tropical environments, 
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namely in the Amazon and Cerrado regions of Brazil. The adequacy of using the RTE will be 

assessed by considering the background error covariance matrix used in the assimilation 

schemes of the Global Circulation Model operated at ECMWF, the radiometric noise in the 

MODIS instrument and the errors associated to the MODIS LST product (MOD11_L2). It may 

be noted that use of the ECMWF background error covariance matrix instead of the 

uncertainties on the MODIS Atmospheric Profile product (MOD07) was justified in Chapter 3.  

 

5.2. Method and data 

 

5.2.1. Radiative Transfer Simulations 

 

Retrieval of MIR reflectance using Eq. (4.2) involves a direct evaluation of all 

components of the MIR signal by means of a radiative transfer model. Besides requiring 

substantial computational means, the operational use of the RTE is limited by other factors, 

namely the need of quantitative information on 1) atmospheric conditions, mainly humidity 

and temperature profiles, which are required to perform the atmospheric corrections, and 2) 

on LST which is required as a boundary condition. The above-mentioned limitations led to 

the development of simpler methods, like the one proposed by KR94, which require neither 

direct knowledge of atmospheric conditions and LST, nor a radiative transfer model. 

 The estimation of the error associated with MIR reflectance as retrieved when using 

either RTE, i.e. Eq. (4.2) or the KR94 method, i.e. Eq. (4.7), will be performed based on a 

large number of simulated TOA radiances. These simulations will be generated by means of 

MODTRAN-4 (see Section 3.3), encompassing a large set of observation conditions. The 

simulations will be performed in the spectral ranges of 3.62 – 3.97 µm and 10 – 12 µm, i.e. 

covering MODIS channels 20 and 31. 

The following cases will be considered: 
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1. Atmospheric Temperature and Humidity Profiles: The database relies upon 

temperature and humidity profiles from three geographical–seasonal model 

atmospheres stored in MODTRAN-4, namely MLW, MLS, and TRO, as 

discussed in Chapter 3. The minimum air temperature at 2-meter is 272.2 K 

(MLW) and the maximum value is 299.7 K (TRO). The water vapor contents 

ranges from 0.85 to 4.11 g·cm-2; 

2. LST: The assigned LST values are based on the 2-m air temperature of each 

profile, varying from Tatm to Tatm+30.0 K in steps of 1.0 K, totalizing 31 different 

values; 

3. LSE/reflectance: Two types of surface cover are considered, namely burned 

and unburned. Both surface types were assumed to be homogeneous and 

Lambertian, the burned and unburned surfaces being characterized 

respectively by charcoal and vegetation spectra, as discussed in Chapter 3. A 

value of 0.24 (0.03) was, accordingly, prescribed for MIR reflectance for the 

burned (unburned) types of surface cover. These values were obtained by 

averaging the MIR spectral signature for the four (25) considered charcoal 

(vegetation) types, which were convolved with the MODIS channel 20 

normalized response function; 

4. SZA and VZA: The sun-view geometry consists of 31 solar zenith angles, from 

0° to 60° in steps of 2°, and of view zenith angles of 0°, 30º and 60º.  

 

5.2.2. Sources of errors in the retrieval of MIR reflectance 

 

Besides the errors inherent to the inversion procedure and those introduced by the 

adopted approximations, the accuracy of Eq. (4.2) will depend essentially on three sources of 

error, namely, i) the uncertainties on the atmospheric profile, which are usually due to the 

errors in temperature and humidity profiles, ii) the error due to instrument performance, which 
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is quantified by the radiometric noise and iii) the error due to uncertainties in the retrieval of 

the LST. Contribution of each source of error will be analyzed separately in the followings 

sections. 

 

5.2.2.1. Radiometric Noise of MODIS channel 20 

 

The radiance measured by a sensor onboard a satellite is affected by an inherent 

uncertainty due to electronic devices involved in the construction of the sensor (Jiménez-

Muñoz and Sobrino, 2006). Levels of noise to be introduced into the MODIS channel were 

based on the noise equivalent temperature (NEΔT) at 300 K of channel 20 (0.05 K) that were 

converted to the respective noise equivalent radiance (NEΔL). The radiance sensitivity of 

channel 20 to small changes in temperature is shown in Figure 5.1. 

 

 

Figure 5.1. Sensitivity of MODIS channel 20 to small changes in temperature. The dashed 

line indicates the values of NEΔT and NEΔL. 
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Randomly generated perturbations were then added to the simulated TOA radiances. 

Added perturbations are normally distributed around zero mean and with standard deviations 

equal to the respective MODIS channel NEΔL (see Figure 5.2). In order to get a statistical 

significantly result, we have generated 1,000 random perturbations. 

 

 

Figure 5.2. Frequency histogram of the satellite radiance perturbations for MODIS channel 

20. 

 

5.2.2.2. Atmospheric Profiles  

 

The effects of uncertainties on the humidity and temperature profiles may be 

analyzed by comparing the radiation at the top of the atmosphere for a given perturbed 

profile with the radiance for the reference profile. Because the results will depend on the 

reference (non-perturbed) profile, the experiment adopts the three standard atmospheres 

stored at MODTRAN-4, namely, TRO, MLS and MLW.  

A possible way to take into account the errors in the atmospheric profiles might 

consist in perturbing each atmospheric profile level with values randomly taken from a 
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normal distribution of zero mean and a standard deviation characteristic of the uncertainty. In 

this case, perturbations on temperature and water vapor are assumed to be independent 

from each other and values of both quantities at a given level are also taken as independent 

from those at the other levels. An extreme opposite procedure would be considering the 

perturbations to be perfectly correlated, e.g., by using perturbed profiles that are offset by 

given amounts (Tjemkes and Schmetz, 1998). Since in our case, we intend to perform a 

sensitivity study reflecting more realistic situations we have followed Peres and DaCamara 

(2004) and have adopted the procedure described in Section 3.3. Figure 5.3 allows making a 

visual comparison between the perturbed profiles and the respective reference profile of 

water vapor mass mixing ratio and of temperature.  

The imposed perturbations on the atmospheric profiles translate into uncertainties on 

the atmospheric parameters in Eq. (4.2), namely, MIR  (one-way total atmospheric 

transmittance), MIRt  (two-way total atmospheric transmittance), MIRatm,L  (upward 

atmospheric radiance) and MIRatm,L  (downward atmospheric radiance). Statistical 

distributions of the uncertainties are shown respectively in Figures 5.4, 5.5 and 5.6. 
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Figure 5.3. Comparison between the perturbed profiles (black curves) and respective 

reference profile (white curve) of water vapor mass mixing ratio (upper panel) and 

temperature (lower panel). Adapted from Peres and DaCamara (2004). 
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Figure 5.4. Distributions of the perturbed atmospheric parameters, namely one-way total 

atmospheric transmittance, two-way total atmospheric transmittance, atmospheric upward 

radiance and atmospheric downward radiance, respecting to MODIS channel 20 for TRO 

standard atmosphere. 

 

 

Figure 5.5. As in Figure 5.4 but for MLS standard atmosphere. 
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Figure 5.6. As in Figure 5.4 but for MLW standard atmosphere. 

 

5.2.2.3. Uncertainty in Surface Temperature 

 

In order to take into account the sensitivity of the MIR reflectance retrieval due to the 

land surface temperature, radiative transfer calculations are performed for the standard 

profiles, and then errors associated to the inaccuracies in LST are introduced into Eq. (4.2). 

The errors are generated based on the accuracy specification for MODIS LST (1 K) at 1 km 

resolution under clear-sky conditions (Wan, 1999). The generated errors are normally 

distributed around zero mean and with standard deviations equal to the respective accuracy 

specification for MODIS LST (Figure 5.7). A set of 1,000 random perturbations was again 

generated in order to guarantee a statistically significant result. 
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Figure 5.7. Frequency histogram of the errors in LST. 

 

5.3. Analysis and Results 

 

5.3.1. Error-free case 

 

The accuracy of the solutions to the inverse problem was assessed by evaluating the 

retrieval errors, defined as the absolute differences between retrieved values of MIR 

reflectance by means of Eq. (4.2) and the corresponding values prescribed as input to 

MODTRAN-4. Although actual retrieved values of MIR reflectance are affected by 

measurement uncertainties, the assessment was initially carried out assuming error-free 

input data, implying that the errors in the MIR reflectance are entirely due to the model 

uncertainty. The reason for first choosing this assumption is because it allows identifying the 

problems that are exclusively due to the inversion procedure under conditions typical of 

tropical environments. Moreover, such approach, usually referred to in the literature as 

inverse method parameter sensitivity (Rodgers, 2000), is particularly adequate in our study, 

not only because it allows evaluating the contribution to the retrieval error due to the inverse 
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method, but especially because it helps establishing a baseline that reveals pitfalls likely to 

occur when retrieving MIR reflectance from real data. 

Figure 5.8 exhibits the accuracy in the retrieval of MIR reflectance using Eq. (4.2), for 

TRO, MLS and MLW, three view angles, three solar zenith angles and for charcoal (full lines) 

and pine tree (dashed lines). The VZA and SZA dependence may be analyzed in Figure 5.8. 

As expected, the VZA dependence reveals a slight degradation in the MIR reflectance 

retrieval with increasing viewing angle, indicating a weak dependence of MIR region on view 

angle variations, both for bright and dark surfaces. These results are in agreement with the 

studies of França and Setzer (1998) and Jiang et al. (2006). The deviation in MIR reflectance 

with solar zenith angle (from 0º to 45º) is weak for low values of LST, and, as the LST 

increases the angular deviations with SZA become more prominent. Figure 5.9, which shows 

the obtained MIR reflectance retrieval errors as a function of LST and SZA, allows 

performing a visual analysis of the dependency of the errors on both LST and SZA. It may be 

noted that in order to enhance the error variation, the retrieval errors are represented in a 

logarithmic scale.  

Large and abrupt fluctuations in the retrieval error may be observed for different 

combinations of SZA and LST along a curved stripe at the upper right corner of Figure 5.9. 

For instance, the logarithm of the retrieval error reaches the value of -0.74, which 

corresponds to the pair SZA=46º and LST=337 K. This value of retrieval error is equivalent to 

a relative error around 25% and it may be observed that, for the same value of LST but with 

SZA=24º, the relative error is as low as 0.38%. The obtained pattern along the curved stripe 

strongly suggests that the solution does not depend continuously on the data and is typical of 

ill-conditioning (Peres and DaCamara, 2006). 

In order to put into evidence the ill-conditioning behavior, Figure 5.10 illustrates the 

dependency on surface temperature of errors in the retrieval of MIR reflectance from 

charcoal for TRO (left panel), MLS (middle panel) and MLW (right panel) for nadir, but for 

four solar zenith angles, including SZA equal to 60º. It may be noted that critical regions 
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where the problem is ill-posed also occur for other types of atmosphere in case of sufficiently 

high values of LST. Nevertheless, for mid-latitude winter atmospheres, it may be found that 

the critical region is located well beyond the range of observed/physical LST values in 

temperate regions. In the case of mid-latitudes, and excepting the case of very low sun 

elevations, large retrieval errors of reflectance are also not to be expected. 

 

 
 

 
 

 
 
Figure 5.8. Accuracy in the retrieval of MIR reflectance using Eq. (4.2), for TRO, MLS and 

MLW, three view angles, three solar zenith angles and for charcoal (full lines) and pine tree 

(dashed lines). 
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Figure 5.9. Dependence of the logarithm of retrieval error on LST and SZA for TRO profile. 

 

 

Figure 5.10. Dependence of land surface temperature of errors in the retrieval of MIR 

reflectance of charcoal for TRO, MLS and MLW for nadir view and four solar zenith angles. 
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It may therefore be concluded that the problem of MIR reflectance retrieval is ill-

conditioned for ranges of LST and SZA that may be observed over tropical regions. Figure 

5.11 depicts the behavior of each term of Eq. (4.2), with the exception of the one concerning 

the total radiance, MIRL  for four values of SZA, namely 0, 20, 40 and 60º. For instance, 

considering SZA between 40º and 60º, the curve corresponding to the term  sMIRMIR ,TB   

crosses that corresponding to the term 0
0MIR

MIR 


E
t  around 325 K. As temperature rises, 

the former term increases up to the magnitude of the latter term (which decreases with the 

increase of SZA) and the denominator of Eq. (4.2) tends to zero, inducing large variations in 

the solution. However it is worth stressing that the problem will not restrict to the single point 

where the curves cross each other and will still be ill-conditioned for all regions where the 

curves are close enough. In addition (and as shown in Figure 5.11 for SZA = 0, 20, 40, 60º), 

the curve representing the term  sMIRMIR ,TB   will cross an infinite number of curves 

0
0MIR

MIR 


E
t  resulting in peaks of error (positive and negative), as those presented in 

Figures 5.9 and 5.10. 

At first sight, it may be argued that the obtained magnitude of retrieval errors is not 

large enough to prevent discriminating between charcoal and vegetation (see Figure 2.2). 

However performed analysis refers to the error-free input data case and therefore the other 

sources of error were not taken into account. In fact, when using real data, the inversion 

problem will certainly become more difficult to solve because the errors related to both 

sensor performance and the meteorological parameters are usually much larger than the 

error due to model uncertainties. 
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Figure 5.11. Dependence on LST of the different terms of Eq. (4.2). 

 

5.3.2. Error case 

 

In this section the performance of the radiative transfer equation is evaluated based 

on the solution to the inversion problem (Rodgers, 2000), which is given by Eq. (4.2). 

Simulations of TOA radiance at MODIS channel 20, as well as the imposed perturbations 

(i.e. noise in the satellite radiances and measurement errors in the atmospheric profiles as 

well as in LST) were generated as described in the previous section.  

Figures 5.12 to 5.17 depict the error in MIR reflectance using Eq. (4.2) as obtained 

from each set of imposed perturbations on TRO, MLS and MLW profiles as a function of four 

solar zenith angles (0º, 30º, 45º and 60º) and three view zenith angles (0º, 30º and 60º), and 

for a charcoal surface (Figures 5.12, 5.14 and 5.16) and for a vegetated surface (Figures 

5.13, 5.15 and 5.17). It may be noted that, for all atmospheres, the instrumental error is weak 
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compared to the others sources of error and may be neglected. The KR94 algorithm was 

also analyzed in terms of the instrumental noise and, although not shown, the results are 

analogous to those obtained with the RTE. The negligible impact of instrumental noise is 

justified (Figure 5.1) by the low sensitivity of MODIS channel 20 radiance to changes in 

temperature.  

It may be observed that, in general, for charcoal surfaces, the measurement errors in 

LST and the inaccuracies in atmospheric profiles have comparable magnitude. In the case of 

vegetation, the measurement errors in LST are the most important source of errors. The 

errors are more pronounced in TRO profile. For instance, in the case of TRO and charcoal, 

for SZA between 0º and 45º the maximum error due to measurement errors in the 

atmospheric profiles is around 0.04, whereas the maximum error due to measurement errors 

in LST s is around 0.035, with mean values around 0.02. In this case of TRO and vegetation, 

the maximum error due to measurement errors in the atmospheric profiles is around 0.035, 

while the maximum error due to measurement errors in LST s is around 0.05.  

In the case of low sun elevations (SZA equal to 60º) the ill-conditioned behavior may 

be observed again such as obtained in the previous chapter for KR94 and it may be noted 

that the measurement errors in LST become the most important source of error.  
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Figure 5.12. Error in MIR reflectance using Eq. (4.2) as obtained from each set of imposed 

perturbations on TRO profile as a function of four solar zenith angles (0º, 30º, 45º and 60º) 

and three view zenith angles (0º, 30º and 60º) in the case of a charcoal surface. 

 

 

Figure 5.13. As in Figure 5.12 but for a vegetated surface. 
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Figure 5.14. As in Figure 5.12 but for the MLS profile. 

 

Figure 5.15. As in Figure 5.13 but for the MLS profile. 
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Figure 5.16. As in Figure 5.12 but for the MLW profile. 

 

Figure 5.17. As in Figure 5.13 but for the MLW profile. 
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Figure 5.18 presents the obtained dependency of retrieval errors on LST and SZA for 

an offset of +1 K in LST. This value of the offset was chosen based on the goal that was set 

for the accuracy of the MODIS LST algorithm (Wan, 1999). The ill-conditioning behavior that 

is present in Figures 5.13 to 5.17 for SZA equal to 60º may now be observed in a continuous 

way. As expected, retrieval errors present similar fluctuations to those previously obtained 

with the sensitivity experiment respecting to the error-free input data case (Figure 5.9). When 

compared to Figure 5.9, the offset of +1 K in LST greatly amplifies the retrieval errors (as 

indicated by the statistics derived from Figures 5.13 to 5.17), leading to unrealistic physical 

solutions in some of the simulations. For instance, relative errors may reach %100.7 4  for 

SZA=46º and LST=336 K. It is worth stressing that Figure 5.18 may be useful to defining a 

critical region in the space SZA vs. LST where the solution does not depend continuously on 

the data and therefore where the retrieval of MIR reflectance is severely impaired. 

 

 

Figure 5.18. As in Figure 5.9, but for an offset of +1 K in LST. 

 

It may be finally noted that critical regions where the problem is ill-posed also occur 
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for other types of atmosphere in case of sufficiently high values of LST. Nevertheless, and as 

already found in the free error case, for mid-latitude winter atmospheres (Figure 5.14) the 

critical region is located well beyond the range of observed/physical LST values in temperate 

regions and, excepting for very low sun elevations, large retrieval errors of reflectance are 

not to be expected. 

 

 

Figure 5.19. As in Figure 5.18, but for the MLW atmosphere. 

 

5.3.3. Total MIR Reflectance Error 

 

Assuming the three sources of errors as independent, the total error in MIR 

reflectance using the RTE (Eq. 4.2) is given by: 

 

  21222 )()()( nTa           (5.1) 
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where a , T  and n  are the errors due to the atmospheric correction, the LST 

uncertainty and the radiometric noise, respectively as obtained in the previous section. 

Figures 5.20-5.22 show the total error in MIR reflectance obtained throughout RTE and the 

respective total error when using KR94 (labeled in the Figures as KFE) for each angle 

considered in this study, in the case of TRO, MLS and MLW profiles and for vegetation (MIR 

reflectance around 0.03) and charcoal (MIR reflectance around 0.24).  

As found in Chapter 4, MIR reflectance errors for charcoal are generally lower than 

reflectance errors for vegetation and the same kind of qualitative remark remains for dry and 

moist atmospheres. Since the MLW profile presents much lower values of moisture together 

with colder temperatures compared to those from TRO profile, in the case of MLW the 

atmosphere will not perturb enough the retrieval of MIR reflectance, when using either KR94 

or RTE, namely when comparing against the case of the tropical atmosphere (TRO). 

Restricting to results when the solar zenith angle lies between 0º and 45º, the maximum 

values of the relative errors varies from 750% (KF94 - vegetation) to 30% (KF94 - charcoal) 

and from 250% (RTE - vegetation) to 18% (RTE- charcoal) in the case of TRO atmosphere 

and from 38% (KF94 - vegetation) to 16% (KF94 - charcoal) and from 38% (RTE - 

vegetation) to 5% (RTE- charcoal) in the case of MLW atmosphere. Results obtained are a 

clear indication that, besides the important role played by moisture (MLW versus TRO), RTE 

works better than KF94 for virtually all atmospheric conditions and geometries. Nevertheless 

an accurate characterization of atmospheric conditions is crucial to ensure appropriate 

estimates of MIR reflectance.  

The retrieval of MIR reflectance is severely contaminated by errors in the case of low 

sun elevations (SZA around 60º), especially for TRO and MLS atmospheres and it may be 

noted that the impact of ill-conditioning is more severe in the case of RTE than when KR94 is 

used. In fact, even if the retrieved values using KR94 are still unusable for high values of 

SZA, it is worth stressing that the errors in MIR reflectance are smaller than the 

corresponding errors when using RTE meaning that the approximations made in the 
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simplified algorithm (i.e. in KR94) tend to smooth the effects of ill-conditioning. This feature 

may reveal to be useful when attempting to develop an algorithm able to produce usable 

estimates of MIR reflectance for high values of SZA. 
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Figure 5.20. Comparison between the total errors when using KR94 (labeled as KFE) and 

RTE in the case of TRO. 



Chapter 5 - Retrieval of middle-infrared reflectance using the Radiative Transfer Equation 

 

114 

 

 

Figure 5.21. As in Figure 5.20 but in the case of MLS. 

 



 

 

115 

 

 

Figure 5.22. As in Figure 5.20 but in the case of MLW. 
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5.4. Concluding remarks 

 

The purpose of this Chapter was to investigate the problem of retrieving MIR 

reflectance in MODIS channel 20, namely when obtained using the full radiative transfer 

equation (given by Eq. (4.2)) or the algorithm proposed by Kaufman and Remer (1994).  

For this purpose the measurement errors that may affect the accuracy of the 

estimated MIR reflectance were characterized, namely those associated to the noise in 

MODIS channels, the errors in the atmospheric profile and the uncertainties in LST. A 

sensitivity study was then performed imposing conditions as close as possible to an 

operational environment. Imposed errors on atmospheric profiles and LST were accordingly 

generated with the aim of reflecting realistic situations. The effect of the atmospheric profile 

source of error was evaluated by perturbing the profiles with values based on the current 

ECWMF background error covariance matrix, whereas errors associated to LST were based 

on the errors from the MODIS LST product (MOD11_L2).  

We have then verified that, for certain atmospheric and geometric conditions, the 

retrieval of MIR reflectance from radiance measurements based on RTE is an ill-posed 

problem because the solution does not depend continuously on the data, i.e. small 

perturbations in measurements (due to e.g. sensor noise, uncertainties in atmospheric 

profiles and in LST) may induce large errors in the solution. We have also verified that this 

occurs for the same combinations of pairs of LST and SZA where KF94 does not lead to a 

proper retrieval of MIR reflectance (as described in the previous Chapter).  

Although in the case of dry and cold atmospheres (e.g. MLW), the increase in 

performance when using the RTE instead of KR94 is not significant, deviations are more 

pronounced for moist and hot atmospheres, like TRO. However, the estimated values of the 

total error when using RTE, point out the need of having accurate atmospheric and LST data, 

the total error being almost completely driven by the uncertainty on these two parameters. 
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Results from this Chapter, together with those from Chapter 4, clearly suggest that 

there are no advantages in using RTE as a surrogate for KR94 when geometric and 

atmospheric conditions turn the inversion into an ill-posed problem. However, the RTE 

approach leads to better estimates than KR94 in virtually all cases, the exception consisting 

of low sun elevations and high LST, where results from KR94 are also not usable. 

Despite the better performance of RTE when compared to KR94, the atmospheric 

correction and the LST estimation are time consuming and there is the additional problem of 

atmospheric and LST data which are not always operationally available and/or accurate. 

Using the method developed by Kaufman and Remer (1994) presents the advantage of not 

requiring any auxiliary datasets (e.g. atmospheric profiles) and major computational means 

(e.g. radiative transfer computations). Besides, as shown in Chapter 4, the errors obtained 

using KR94 are acceptable when the aim is the discrimination of burned and unburned 

areas. In this case, even considering the errors of KR94 (with the exception of low sun 

elevations and high LST values), the discrimination between both surfaces may be achieved 

on reasonably good grounds. There are some cases however (e.g. in the case of LST and 

surface emissivity retrieval), where a precise quantitative value of MIR reflectance is 

required, e and in such cases the more accurate estimates provided by RTE should be used 

instead.  

It may be finally noted that the use of the RTE equation in order to retrieve MIR 

reflectance aiming at burned area discrimination is further impaired by a drawback found in 

the MODIS LST product, in particular in the MODIS/Aqua LST/E 5-Minute L2 Swath 1 km 

data set (MYD11_L2). As already mentioned, LST is a required parameter in order to solve 

RTE and retrieve MIR reflectances. We have found, however, that burned areas are flagged 

as “Not a Number” (NaN) in the MODIS LST product, and the lack of LST data over such 

areas naturally prevents using the RTE for burned area discrimination. 
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Figure 5.23. MODIS images (02/28/2001) over Los llanos, Venezuela/Colombia, South 

America: a) MODIS channel 20 radiance; b) MODIS LST product cloud mask; c) RGB from 

MODIS channels 7, 2 and 1; d), e) and f) zooms of a burned scar (red square) of a), b) and 

c), respectively. Black pixels denote NaN.  

a) 

b) 

c) 

d) 

e) 

f) 
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An example of the drawback, which seems to be related to the cloud mask algorithm 

used in MODIS LST product, is given in Figure 5.23 that shows MODIS images from the 

region of Los llanos, Venezuela/Colombia in 02/28/2001. It may be observed that, although 

there are no clouds around the burned scar, the MODIS LST product masks the scar as 

NaN. The same problem may be identified over other burned scars present in the scene.  

We have therefore decided to use the KR94 algorithm (instead of RTE) when 

retrieving MIR reflectance from MODIS in order to validate with real imagery the indices that 

will be derived in Chapter 6.  
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Chapter 6  

 

On a new coordinate system for optimal 

discrimination of vegetation and burned areas 

using MIR/NIR information 

 

6.1. Introduction 

 

As mentioned in the previous Chapters, several studies have demonstrated the 

effectiveness of the reflectance of MIR for discriminating among different types of vegetation 

(Holben and Shimabukuro, 1993; Shimabukuro et al., 1994; Kaufman and Remer, 1994; 

Goita et al., 1997); estimating total and leaf biomass of several forest ecosystems (Boyd et 
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al., 1999; 2000); and monitoring intra- and inter-annual climate-induced changes in 

vegetation (Boyd and Duane, 2001; Boyd et al., 2002). MIR reflectance has also proven to 

be useful when applied to burned area discrimination (e.g. Roy et al., 1999; Barbosa et al., 

1999; Pereira, 1999). It may be nevertheless noted that, when used to indentify vegetation 

and detect its changes, the MIR band is commonly used together with the NIR, given the 

strong contrast between the two bands, green vegetation displaying high reflectance in the 

latter and low reflectance in the former (Pereira et al., 1997). In fact, vegetation reflectance in 

the NIR, around 0.8 µm, is affected primarily by leaf structure (Slaton et al., 2001); green 

vegetation exhibits high reflectance values but, after the leaf matures, the cells enlarge, 

crowd together, reducing the intercellular space and leading to a decrease in reflectance 

(Gates et al., 1965). On the other hand, MIR is often employed as a surrogate of the 

traditional R band (around 0.6 µm), based on the fact that MIR reflectance is well correlated 

to the R one, but is not sensitive to most aerosols, namely to those associated with smoke 

from biomass burning events (Libonati et al., 2010). Kaufman and Remer (1994) showed that 

the correlation between MIR and R is due to the simultaneous occurrence of processes that 

darken the surface in these two bands. Whereas in the visible wavelengths, the pigmentation 

of leaves, especially by active chlorophyll, absorbs the solar radiation, reducing the 

reflectivity, in the MIR domain (around 3.7 - 3.9 µm) the cellular water content, present in 

green vegetation, causes a strong absorption, reducing the reflectance at these wavelengths 

(Gates et al., 1965; Salisbury and D’Aria, 1994). As green leaves become senescent due to 

the decrease of the levels of chlorophyll and water content, the absorption of solar radiation 

drops off in both R and MIR regions, increasing reflectance at the two bands. 

Within the framework of the above described context, substantial efforts have been 

spent by the research community in the development of vegetation indices (Verstraete and 

Pinty, 1996). For instance, the development of optimal vegetation indices in the R/NIR 

spectral domain has greatly benefited from the so-called soil line concept (Rondeaux et al., 

1996). Introduced by Richardson and Wiegand (1977), the soil line concept is a linear 



 

 

123 

relationship between NIR and R reflectances of bare soil, where changes in soil reflectance 

are associated to moisture and organic matter (Baret, et al., 1993), and departures from the 

soil line are in turn strongly related to biophysical parameters such as the Fraction of Green 

Vegetation, FGV, or the Fraction of Absorbed Photosynthetically Active Radiation, FAPAR 

(Pinty and Verstraete, 1992). The soil line is therefore a constraint in the R/NIR spectral 

space that greatly contributes to the design of new vegetation indices that are insensitive to 

the soil background while remaining responsive to vegetation. Examples of improved 

alternatives to the traditional NDVI (Rouse et al., 1973) are the Perpendicular Vegetation 

Index, PVI (Richardson and Wiegand, 1977), the Soil-Adjusted Vegetation Index, SAVI 

(Huete, 1988) and the GEMI (Pinty and Verstraete, 1992). 

However, to the best of our knowledge, no similar constraint has been found in the 

MIR/NIR space, a circumstance that may have impaired the design of optimal vegetation 

indices, which have been heuristically derived from indices already developed in the R/NIR 

domain. This is the case of VI3 (Kaufman and Remer, 1994), a modification of NDVI, as well 

as of GEMI3 (Pereira, 1999) that directly resulted from GEMI. As pointed out by the 

developers of VI3 and GEMI3, the derivation of the indices was primarily based on the fact 

that MIR and R reflectance are strongly correlated. On the other hand, as also stressed by 

the authors, the processes that govern reflectance in R and MIR are not expected to lead to 

similar results and the existence of other processes that may change reflectance in the two 

channels cannot be ignored. 

The aim of the present Chapter is to investigate the possibility of defining a 

transformation in the MIR/NIR space that leads to an enhancement of the spectral 

information about vegetation. For this purpose, and taking into account the methodology 

suggested by Verstraete and Pinty (1996) to design optimal indices, a new space is 

proposed and an appropriate coordinate system is then defined that is appropriate to 

discriminate vegetation and is sensitive to its water stress. The rationale adopted may be 

viewed as comparable to that followed to derive the tasseled cap transformation (Crist and 
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Cicone, 1984; Kauth and Thomas, 1976; Cohen et al., 1995), where a new coordinate 

system is introduced in order to optimize data for vegetation studies. Using satellite imagery, 

it will be then shown that the proposed coordinate system is particularly appropriate to 

operationally monitor vegetation stress and to detect vegetation changes, in particular those 

caused by droughts and fire events. 

 

6.2. Data 

 

The present Chapter relies on data from remotely-sensed observations, as well as 

from laboratory measurements. Remotely-sensed observations were gathered over two main 

Brazilian biomes, namely the Amazon Forest and the Cerrado region (see Figure 3.3 and 

Table 3.3) as covered by 16 Landsat ETM+ images. Data consist of TOA values of MIR 

radiance, NIR reflectance and TIR brightness temperature, acquired by the MODIS 

instrument on-board Terra satellite during the year of 2002, together with the respective SZA. 

Data were obtained from the Terra/MODIS Level 1B 1 km V5 product, MOD021 (MCST, 

2006) and correspond to channels 2 (centered at 0.858 µm), 20 (centered at 3.785 µm), and 

31 (centered at 11.017 µm). Surface values of MIR reflectance were then retrieved by 

applying the methodology developed by Kaufman and Remer (1994), paying special 

attention to the possible drawbacks previously pointed out by Libonati et al. (2010). 

Validation of results from the analysis performed on MODIS images was mainly 

carried out based on ETM+ imagery. Direct validation of results in the MIR domain is, 

however, a difficult task because of the lack of “in-situ” (direct) measurements of MIR 

reflectance. This limitation may be partially circumvented by laboratory measurements of 

MIR reflectance. In this respect, spectral libraries are currently available that may provide 

useful information about the spectral features and ranges of the reflectance for natural and 

manmade materials. Spectral libraries are, in fact, commonly used as reference sources for 

the identification of surfaces in remote sensing imagery, but the spectral range currently 
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covered differs from library to library. For instance, the MODIS-UCSB spectral library 

provides information in thermal infrared domain (from 3 to 14 µm), whereas the ASTER 

spectral library (Baldridge et al., 2009) makes available spectral reflectance data from the 

visible to the thermal infrared domain (from 0.4 to 15.4 µm). We restricted the analysis to 

materials belonging to vegetation, water, and soil classes from the ASTER spectral library 

because of data accessibility constraints in both NIR and MIR regions (see Chapter 3, 

Section 3.2.2.1).  

For each laboratory spectral data described above, the MODIS channel equivalent 

reflectance was computed by convolving the laboratory spectral reflectance signatures with 

the MODIS channels normalized response function (see Chapter 3, Figure 3.10). Finally, for 

the sake of simplicity, MODIS channels 1, 2 and 20 will be hereafter referred to as R, NIR 

and MIR, respectively. 

 

6.3. Methods 

 

6.3.1. Rationale 

 

It is well apparent from Figure 3.10 that the different materials tend to form clusters on 

the MIR/NIR space and that there is an overall displacement from vegetation (top left corner), 

to burned materials (bottom right corner) across the soil surfaces located along the diagonal 

of the graph. Both features provide an indication that radiative signature of natural surfaces 

may be characterized in MIR/NIR space by means of appropriate spectral indices. 

Aiming at the identification of dark, dense vegetation, Kaufman and Remer (1994) 

proposed a new vegetation index, the so-called VI3, which is a modified version of the 

traditional NDVI, the red reflectance being simply replaced by the reflective part of the 

middle-infrared signal (channel 3 from AVHRR sensor). VI3 was heuristically derived from 
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NDVI taking into account the fact that MIR reflectance tends to correlated well with red 

reflectance. Accordingly, the index is defined as follows: 
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where MIR  and RED  are the MIR and red reflectance, respectively. The restriction 

REDNIR    prevents the index from being erroneously applied to water surfaces where it is 

ill defined (Kaufman and Remer, 1994). 

Adopting a similar strategy for burned area identification, Pereira (1999) proposed 

GEMI3 for mapping fire-affected areas, by replacing AVHRR channel 1 (red) by channel 3 in 

GEMI, an optimized index in the R/NIR space, originally proposed by Pinty and Verstraete 

(1992) and designed to minimize contamination of the vegetation signal by extraneous 

factors, such as the atmosphere and the soil background. A similar procedure may be 

applied to the so-called Burned Area Index (BAI) (Martín, 1998), which was specifically 

designed for burned area discrimination in AVHRR R/NIR imagery over Mediterranean 

environments. The index is defined as the inverse spectral distance to a previously fixed 

convergence point, given by the minimum (maximum) reflectance of burned vegetation in the 

NIR (R) bands. Therefore, the corresponding index in the MIR/NIR space may be 

heuristically defined as: 
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where CNIR  and CMIR  are the coordinates of the above-mentioned convergence point, 

given by the NIR minimum  and MIR maximum values of reflectance for burned vegetation. 

Using the same rationale for MODIS, the two following indices will be adopted here: 

 

   2
0

2
0 yyxx                     (6.3a) 

 

yx                       (6.3b) 

 

where x  and y  are the reflectance of MODIS NIR and MIR channels, and 0x  and 0y  are 

the respective reflectances of the convergence point. It may be noted that indices  and   

contain the relevant characteristics of BAI3 and VI3, namely, the distance to a pre-defined 

convergence point and the difference between MIR and NIR reflectances. Figure 6.1 is a plot 

of values obtained from samples of recently burned pixels as extracted from 12 burned scars 

in MODIS images, six of them over the Amazon and the remaining six over Cerrado. The 

identification of recent burned pixels in MODIS images was based on burned area polygons, 

as derived from visual classification of Landsat ETM+ images (Table 3.3). 

Taking into account that burned areas correspond to the upper (lower) range of 

values of MIR (NIR) reflectance that are observed in natural surfaces, the values of 0.24 and 

0.05 were assigned to 0x  and 0y . Moreover, both NIR and MIR reflectance of charcoal, as 

obtained from laboratory measurements present lower (higher) values than 0x  ( 0y ) (Figure 

3.10) and are therefore in very good agreement with the prescribed values for the upper and 

lower bounds in MIR and NIR.  
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Figure 6.1. MIR and NIR reflectance bi-spectral space showing the reflectance convergence 

point of recently burned areas samples extracted from MODIS imagery covering the north, 

northwest and midwest of Brazil. Dashed-dot lines delimit the upper and lower bounds in MIR 

and NIR and their intersection is the convergence point. 

 

Figure 6.2 shows the location of the pre- and post-fire mean values of MIR and NIR 

reflectance corresponding to the selected 12 scars. Changes of reflectance from pre- to post-

fire are indicated by line segments and it may be noted that those corresponding to forests 

are almost normal to the contour lines of  , whereas those associated to Cerrado are almost 

normal to the contour lines of  . As pointed out by Verstraete and Pinty (1996), the more 

perpendicular a displacement vector is to the contour lines of a given index, the better the 

sensitivity of the index to the observed change at the surface. Despite the small sample size, 

it seems that  ( ) is especially sensitive to burning events in the Amazon forest (Cerrado). 

Following Liang (2004), it may, therefore, be useful to compare the two indices in a single 

plot, in an analysis of the  /  space  
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Figure 6.2. Pre- (open symbols) and post-fire (black symbols) mean values of MIR and NIR 

over 12 selected scars in the Amazon (circles) and Cerrado (squares). Displacement vectors 

and contour lines of   (left panel) and   (right panel) are represented by solid and dotted 

lines, respectively.  

 

6.3.2. The  /  space 

 

Let U be the unit square in the MIR/NIR space and let U’ be the corresponding image 

in the  /  space by means of the transformation defined by Eq. (6.3a) and Eq. (6.3b). The 

domains U and U’ are shown in Figure 6.3, together with a set of points in U and the 

respective images in U’. Because of its shape, the domain U’ will be hereafter referred to as 

the kite domain. 

Let A( 0x , 0y ) be the convergence point so that A’(0, 0x - 0y ) is the corresponding 

image according to the transformation given by Eq. (6.3a) and Eq. (6.3b). The curve [A’ B’ C’] 

([A´F´E’]) that defines the upper (lower) limit of U’ will be the set of points that, for each value 

of 00 yx   ( 00 yx  ), have the minimum value of  . The respective equations of the 
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curves may accordingly be obtained by replacing Eq. (6.3b) into Eq. (6.3a) and then 

computing 0












x

, leading to: 

 

  .02 00  yxx          (6.4) 

 

Replacing Eq. (6.3b) into Eq. (6.4) leads to: 

 

 .00 yxxy            (6.5) 

 

Given the limits of U, the straight line defined by Eq. (6.5) will go from point B( 0x + 0y , 

0) to point F(0, 0x + 0y ). The image of segment BF  may therefore be obtained by replacing 

Eq. (6.5) into Eq. (6.3b) leading to 
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i.e., to: 
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It may be noted that the straight line with positive slope goes from A’(0, 0x - 0y ) to 

B’( 2 0y , 0x + 0y ), whereas the straight line with negative slope goes from F’( 2 0x , -

( 0x + 0y )) to A’(0, 0x - 0y ). Beyond point B (point F), the minimum distances to point A, for a 
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given value of  , will be located along segment BC  (segment FE ). Since 

    1,,0,BC 00 yxxx  , then x  along the respective image and, taking Eq. (6.3a) 

into account,   will be given by: 

 

   1,, 00
2
0

2
0 yxyx   .      (6.8) 

 

In an analogous way, y  along the image of     1,,,0FE 00 yxyy   and 

therefore:  
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0
2
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Point D(1,1) is the point in domain U with maximum value of   and its image, 

D’( 2
0

2
0 )1()1( yx  ,0), is readily obtained  by means of Eq. (6.3a) and Eq. (6.3b). 

The right limits of the kite domain U’ are defined by the images of segments 

    1,0,1,ED  xx  and     1,0,,1CD  yy . Taking into account that 1x  along 

ED , the respective image will be given by: 
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2
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The image of CD  may be finally obtained in a similar way by noting that 1y  

along the segment, leading to: 
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Figure 6.3. The unit square U in the x-y space and the kite domain U’ in the  /  space, 

together with a set of points in U and the respective images in U’. 
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Table 6.1 presents the coordinates (x,y) of all above considered points as well as the 

coordinates ( , ) of the respective images. For further reference, the inverse forms of 

Equations (6.7) - (6.9) are given below. 
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Bottom boundary [A’F’E’] 
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Table 6.1. Coordinates (x,y) of the considered points in Figure 6.3 (upper panel) and 

coordinates ( , ) of the respective images (lower panel). 

U domain  U’ domain 
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Figure 6.4 is a plot in space  /  of the points shown in Figure 3.10. It may be noted 

that the materials corresponding to vegetation and charcoal, as well as part of the samples 

corresponding to soil tend to lie along the bottom boundary line, as given by Eq. (6.12). On 

the other hand, three samples of charcoal lie along the top boundary line, as defined by Eq. 

(6.11).  

As shown in Figure 6.5, a similar behavior may be observed with the pixels of mean 

pre- and post-fire reflectance values from the 12 selected scars (Figure 6.2), which all lie 

along the bottom boundary line of the kite domain. This consistent behavior strongly 

suggests defining an adequate coordinate system in space  / .  

 

 

Figure 6.4. Location in the  /  space of laboratory measurements respecting to five types 

of materials. 
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Figure 6.5. Images in the space  /  of the points shown in Figure 6.2.  

 

6.3.3. The V-W coordinate system 

 

The kite domain U’ being limited, and taking into account the fact that vegetated and 

burned surfaces tend to lie along the top and bottom boundaries of U’, it will be 

advantageous to define a system of coordinates (V, W) such that the boundaries of the 

domain (Figure 6.3) are coordinate curves, e.g. V remaining constant along [A’B’C’] as well 

as along [A’F’E’], and W being constant along [C’D’E’]. 

The coordinate V will accordingly be defined such that 1V  along [A’B’C’] and 

1V  along [A’F’E’], i.e. 
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where ),(1 Vf , ),(2 Vf , )(Vp  and )(Vq will have to fulfill the boundary conditions as 

defined by Eq. (6.11) and Eq. (6.12), respectively for 1V  and for 1V . In the case of 

1f  and p  this may be easily achieved by defining the coordinate curves 1f  as straight lines 

with slope proportional to V  and by assuming that )(Vp  is the straight line bmV   such 

that 02y  for 1V  and 02x  for 1V . Accordingly: 
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A similar approach may be used in the case of 2f leading to: 
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which fulfills the boundary conditions given by Eq. (6.11) and Eq. (6.12), respectively for 

1V  and for 1V . Besides, since by construction    )(2)(1 VpfVpf  , the condition of 

continuity of f at each point )(Vp  is also fulfilled. 
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Finally, )(Vq  may be obtained by solving for   the system formed by Eq. (6.10a,b) 

and Eq. (6.16), i.e. by computing the coordinate max  of the point of intersection of the 

coordinate curve V  with the right boundary curve [E’D’C’]. This system may be solved 

numerically in a straightforward manner by successively halving the interval of solutions. 

Finally, Eq. (6.13) may be inverted leading to: 
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where   ,2F  may be again evaluated by successive halving. 

The second coordinate, W, will now be defined in such a way that 0W  at point 

A’(0, 0x - 0y ) and 1W  along the curve [C’ D’ E’]. Let P’ be a generic point within the kite 

domain U’ and let *V  be the coordinate curve V that contains P’ and intersects the right 

boundary curve [E’D’C’] at point R’. Coordinate W of point P’ will be accordingly given by: 
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where  '',* YXV   is the arc length, along coordinate curve *V , from point X’ to point Y’.  

Taking into account Equations (6.13), (6.14) and (6.16), Eq. (6.17) may be written as 

follows: 
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where the integral given by: 
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may be evaluated by gaussian quadrature. 

Figure 6.6 presents the coordinate curves (V, W) as obtained by applying Eq. (6.17) 

and Eq. (6.19) over the kite domain U’. Finally, Figure 6.7 presents the system of coordinates 

(V, W) as defined in the original domain U in the MIR/NIR space. The “spider web” was 

obtained by successively applying Eq. (6.3a) and Eq. (6.3b) to the original unit square U in 

the MIR/NIR space and then by applying Eq. (6.17) and Eq. (6.19). 
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Figure 6.6. Coordinate lines V=const (from -1 to 1 with intervals of 0.2) and W=const (from 0 

to 1 with intervals of 0.2) over the kite domain U’. 

 

Figure 6.7. The spider web (V, W) in the MIR/NIR space. Contour lines of V from -1 to 1 (with 

intervals of 0.2) and contour lines of W from 0 to 1 (with intervals of 0.1). 
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Figure 6.8 (left panel) presents the coordinates V and W of the laboratory 

measurements shown in Figure 6.4, but with discrimination among the different types of soil. 

It is worth noting that vegetation samples and some soil types containing organic matter (e.g. 

Inceptisol, Mollisol, Entisol and Alfisol) are in close alignment with the coordinate curve 

1V . On the other hand, dry vegetation, water, charcoal and the remaining soil types, in 

particular Aridisol, do not lie near 1V . It should be noted that Aridisols, which never fall 

close to 1V , are the dominant soil types in deserts and xeric shrublands, and have a very 

low concentration of organic matter. The other soil types nevertheless present a less stable 

behavior; for instance Mollisols, which tend to have high organic matter content, fall close to 

1V  in the case of the Cryoboroll sub-class but the same does not happen with the other 

sub-classes. This may be attributed to the fact that the overall soil reflectance is controlled by 

carbonate and quartz rather than by organic matter (Salisbury and D’Aria, 1994). It is also 

worth pointing out that, besides tending to lie along the contour line 1V , vegetated and 

burned surfaces as well as soils containing organic matter tend to organize themselves 

according to water stress, with green vegetation, soils and burned vegetation being 

respectively associated to large (~ 0.6), moderate ( ~ 0.2-0.4) and low values (~ 0) of W. 

Figure 6.8 (right panel) presents the corresponding distribution of points and V-W 

coordinates in the more familiar MIR/NIR space, allowing for a better understanding of the 

role of the proposed system of coordinates. The spider web is in fact able to delimit a sector 

in the MIR/NIR space associated to organic matter, which is then subdivided in subsectors 

according to their water content. The sector associated to organic matter may be viewed as 

roughly defined by the coordinate line V=0.8 and the efficacy of coordinate V to qualitatively 

define the sector is mainly due to the steep increase of the gradient of V for larger values. On 

the other hand, the rather uniform gradient of W allows an effective quantification of the 

water contents of surfaces with organic matter. 
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Figure 6.8. As in Figure 6.4 (left panel) and in Figure 3.10 (right panel) but with 

representation of coordinate curves of V (thin lines) and of W (thick lines) on spaces  / and 

MIR/NIR, respectively. Laboratory measurements include discrimination among soil types.  

 

 

Figure 6.9. As in Figure 6.8 but respecting to pre- and post-fire pixels as shown in Figure 6.5 

(left panel) and in Figure 6.2 (right panel). 
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The above-described behavior of vegetated surfaces according to water stress is 

confirmed by the results shown in Figure 6.9 corresponding to the V and W coordinates of 

the pre- and post-fire samples shown in Figures 6.2 and 6.5. All vegetated and burned 

surfaces are accordingly located along coordinate curve 1V , pre-fire (post-fire) pixels, with 

green, dry and burned vegetation being associated to decreasing values of W.  

An application to real data is given in Figure 6.10, which shows a comparison of an 

RGB (721) image from MODIS sensor and corresponding to scene number 3 (Table 3.3) with 

two false color images respectively representing V and W coordinates as derived from the 

corresponding MIR and NIR MODIS images. The ability of coordinate V to discriminate 

between green vegetation, stressed and dry vegetation, soil, and burned surfaces, on the 

one hand, and other types of surfaces (e.g. clouds), on the other, is well apparent. The 

sensitivity of coordinate W to water stress is also conspicuous, green vegetation presenting 

the higher values which progressively decrease to drier surfaces and finally to burnt areas.  

V and W have different properties regarding the scatter of values; whereas the former 

coordinate has a very small scatter for pixels associated with surfaces containing organic 

matter (values concentrating between 0.8 and 1), coordinate W has a much wider range of 

values (between 0 for burned surfaces up to 0.8 for very green vegetated surfaces). As 

pointed out by Verstraete and Pinty (1996), the complementary character of coordinates V 

and W is especially appropriate for application purposes since the strict scale character of V 

makes it a good classifier (of biomass) and the large scale character of W makes it a good 

quantifier (of water content or water stress). 
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Figure 6.10. Comparison between RBG (721) from MODIS showing scene number 3 and two 

false color images respectively from V and W coordinates. 

 

6.4. Results and discussion  

 

An assessment on the potential of coordinates V and W to discriminate vegetated 

surfaces and to ascribe their water stress will be performed by analyzing the set of 16 

images that was described in Chapter 3 (Section 3.2.3.1, Table 3.3). For that purpose a 

supervised validation of results will be first undertaken by choosing several types of surfaces 

and by then comparing the respective representations in the  /  space with those in the 
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traditional MIR/NIR and R/NIR spaces. This study is then followed by an unsupervised 

validation that will help evaluating the discriminating ability of V and the sensitivity of W, i.e. 

the usefulness of V as a classifier and of W as a quantifier. 

 

6.4.1.   Supervised validation  

 

As shown in Figures 6.11-6.13 corresponding to scenes 3, 4, 6 and 8, respectively 

(see Table 3.3), different classes of surfaces (namely dense vegetation, sparse vegetation, 

soil, burned vegetation, water, clouds and cloud shadows) were selected by visual inspection 

of the respective high resolution Landsat ETM+ images. The corresponding MODIS data 

were then used to represent the chosen surfaces in the R/NIR, MIR/NIR and  /  spaces. 

As expected, the representation of the different surfaces in the three spaces are topologically 

equivalent in the sense that each representation may be continuously transformed into the 

other by means of translations, rotations and deformations. The advantages of the  /  

space together with the associated system of coordinates (V, W) are nevertheless 

conspicuous. Whereas vegetation, soil and burned pixels tend to lie along the coordinate 

curve 1V , the position of the remaining pixels is always displaced off the curve. In fact, the 

trend for surfaces with (without) organic matter to lie close to (away from) 1V  was found in 

all 16 scenes analyzed, with no exception for any surface. On the other hand, the two 

extreme values of W are associated with opposite characteristics of vegetated surfaces; 

whereas burned surfaces tend to have values of W close to zero, especially shortly after the 

fire event; green vegetation tends to be characterized by high values (~ 0.8) of W. 

Intermediate values of W generally correspond to a decreased density of vegetation and/or 

to the emergence of the soil background. 

It may be finally noted that the alignment of vegetated surfaces with the coordinate 

curve 1V  is mainly due to the already mentioned strict scale character of that coordinate, 
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whereas the large scale character of W allows estimating the water content of vegetated 

surfaces. It is therefore to be expected that such characteristics will enable the use of 

coordinates (V, W) to discriminate vegetated surfaces and to estimate the water content. 

This will be investigated in the next subsection. 

 

 

Figure 6.11. Scatter plot (gray points) of MODIS pixels corresponding to scene 3 in the 

R/NIR space (left panel), in the MIR/NIR space (middle panel) and in the  /  space and 

respective coordinate lines of V and W (right panel). Selected pixels corresponding to burned 

surfaces, soil, vegetation and clouds are respectively represented by red, yellow, green and 

cyan crosses. 

 

Figure 6.12. As in Figure 6.11 but corresponding to scene 4. Selected pixels representative 
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of burned surfaces, soil, vegetation and water are respectively represented by red yellow, 

green and blue crosses. 

 

Figure 6.13. As in Figure 6.11 but respecting to scene 6. Selected pixels corresponding to 

burned surfaces, soil, vegetation, sparse vegetation and cloud shadows are respectively 

represented by red yellow, green brown and black crosses. 

 

Figure 6.14. As in Figure 6.11 but corresponding to scene 8. Selected pixels representative 

of burned surfaces, soil and vegetation are respectively represented by red, yellow, and 

green crosses. 
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6.4.2.  Unsupervised validation 

 

The performance of coordinates V and W respectively as a classifier of vegetated 

surfaces and as a quantifier of water stress may be assessed by means of an unsupervised 

approach, which as pointed out e.g. by Lillesand and Kiefer (1994) allows distinguishing 

among classes according to their own characteristics, even if there is the need to 

subsequently interpret the information in order to make use of it. Because of its simplicity and 

wide use the k-means algorithm was successively applied to coordinates V and W of several 

MODIS images; first, two cluster centers were estimated from the V sample and then four 

clusters were derived from the W sample restricted to those pixels belonging to the centre 

with higher V. Results obtained from the unsupervised classification of each image were 

finally compared against the respective Landsat ETM+ high resolution image (see Table 3.3).  

Figures 6.15 and 6.16 present the results obtained after applying k-means to scenes 

3 and 4, respectively. Regarding to the  /  space (left panel), gray points correspond to the 

first of the two clusters obtained applying k-means to V whereas colored points represent the 

second cluster. This second cluster was then used as input to k-means regarding to W. Thus 

each colored cluster denotes the clusters derived from the k-means from W, and the isolines 

values denote the limits between these clusters. It is worth noting that colors in the left and 

central panels correspond to the same clusters. Taking for reference the RGB (543) of the 

high resolution images (Figures 6.15 and 6.16, right panels), it is well apparent that, when 

applied to the V samples, the k-means algorithm is able to discriminate between pixels 

associated to green vegetation, stressed vegetation, and burned surfaces, on the one hand 

and to the other types (e.g. water bodies and clouds), on the other, whose centroids 

respectively present a high and a low value of V. The two clusters will be hereafter referred 

to as the “biomass” and the “non-biomass”, respectively and it may be noted that the latter 

cluster corresponds to the gray points in the left panels of Figures 6.15 and 6.16, whereas 

the remaining colors identify the “biomass” cluster. When k-means is further applied to the 
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latter pixels (i.e. to those belonging to “biomass”), the obtained four clusters in W appear to 

be related respectively to one class of green vegetation (represented in green), two classes 

of soil or stressed vegetation or sparsely vegetated areas (represented in dark green and 

dark brown) and one class of burned surfaces (represented in black). A close agreement is 

well apparent between the spatial patterns of the above-referred five classes (central panels) 

and the spatial distribution of RGB (543) pixels (right panels). For instance, the “non-

biomass” cluster corresponds to clouds in case of scene number 3 (Figure 6.15) and to water 

in case of scene 4 (Figure 6.16); the green vegetation class corresponds to the greener 

patches in both scenes, the soil-stressed/sparse vegetation may be identified as the pinkish 

and purple areas; finally, the burned surfaces are readily identifiable as the very dark or black 

pixels of the ETM+ images. As expected, in the  /  space, pixels belonging to the “non-

biomass” cluster (grey pixels) do not stand close to coordinate curve 1V , as opposed to 

the “biomass” cluster, whose pixels lie along that coordinate curve. 

A summary of results of k-means for all 16 scenes is presented in Table 6.2 and the 

obtained overall consistency is evident. 

 

 

Figure 6.15. Comparison of results of k-means corresponding to scene 3 in the  /  (left 

panel) and the geographical (central panel) spaces with the RGB (543) of the corresponding 

high resolution ETM+ image (right panel). See main text for color codes of clusters.  
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Figure 6.16. As in Figure 6.15, but corresponding to scene 4.  

 

In fact, in all 16 scenes analyzed the V cluster with centroid around 0.97 to 0.99 is 

associated with surfaces containing organic matter. As expected, the other V cluster is less 

stable, since it considerably depends upon the type of “non-biomass” surface (e.g. clouds or 

water bodies) that is present in the image. The centroids of the W clusters also depend on 

the types of landcover in each scene and, for this reason; results have to be compared 

against the respective high resolution image. Accordingly, scenes 1, 2, 3, 4, 5, 6, 7, 10 and 

14, that contain burned areas always have the cluster with lowest centroid with values close 

to 0.1. On the other hand, scenes mostly covered by vegetation, usually have the cluster with 

the highest centroid with values about 0.23. Finally, soil and sparsely vegetated areas are 

associated to clusters with centroids between 0.15 and 0.22. 

 

Table 6.2. Centroids of clusters as obtained from applying k-means to coordinates V and W 

of the 16 scenes described in Table 3.3. 

Scene 
number 

V 
Cluster 
centre 1 

V 
Cluster 
centre 2 

W 
Cluster 
centre 1 

W 
Cluster 
centre 2 

W 
Cluster 
centre 3 

W 
Cluster 
centre 4 

1 0.99 0.77 0.11 0.15 0.17 0.19 
2 0.99 0.72 0.14 0.17 0.19 0.20 
3 0.99 0.87 0.12 0.16 0.18 0.20 
4 0.99 0.66 0.12 0.16 0.18 0.20 
5 0.98 0.66 0.14 0.21 0.22 0.24 
6 0.99 0.42 0.13 0.20 0.23 0.27 
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7 0.99 0.49 0.10 0.16 0.20 0.24 
8 0.99 0.90 0.16 0.20 0.23 0.27 
9 0.99 0.57 0.22 0.25 0.28 0.30 
10 0.99 0.51 0.13 0.20 0.24 0.28 
11 0.97 0.87 0.23 0.27 0.29 0.31 
12 0.99 0.98 0.23 0.28 0.30 0.31 
13 0.99 0.97 0.25 0.28 0.31 0.32 
14 0.99 0.93 0.14 0.18 0.22 0.26 
15 0.99 0.89 0.22 0.24 0.26 0.28 
16 0.99 0.84 0.21 0.26 0.29 0.46 
 

6.5. Concluding remarks 

 

A transformation was defined on the MIR/NIR space of reflectances with the aim of 

enhancing the spectral information in such a way that vegetated surfaces may be effectively 

discriminated and that its water stress of vegetation may be adequately estimated, leading to 

the distinction among green vegetation, stressed and dry vegetation, and burned surfaces. 

The transformation was in fact designed to make a synergic use of advantages of indices, 

like BAI, that rely on the concept of distances to a fixed point and of indices, like NDVI and 

VI, which incorporate differences between channels. 

When the defined transformation was applied to the unit square of reflectance in the 

MIR/NIR space, the resulting “kite” domain revealed the property that laboratory materials 

and land surfaces corresponding to green vegetation, stressed vegetation and burned 

vegetation tended to lie along the bottom boundary line. A coordinate system was therefore 

defined in the “kite” domain in such a way that the boundaries of the domain were coordinate 

curves. The proposed coordinate system presented the two following properties; 1) one of 

the coordinates, the so-called V coordinate, had a very small dispersion for pixels associated 

to surfaces containing organic matter (e.g. green vegetation, sparse vegetation, some types 

of organic soil and incompletely burned surfaces), whereas 2) the other coordinate, the so-

called W coordinate, covered a wide range of values according to the water content of 

vegetated surfaces. These two properties are extremely convenient for application purposes 
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since, as pointed out by Verstraete and Pinty (1996), the strict scale character of V makes it 

a good classifier (of biomass) whereas the large scale character of W makes it a good 

quantifier of water stress. The new coordinate revealed therefore the ability to provide more 

information than ratio or modified ratio indices (like most vegetation indices), which also rely 

on a pair of spectral bands. 

A validation exercise was performed with the aim of assessing the potential of 

coordinate V to discriminate vegetated surfaces and of coordinate W to ascribe their water 

stress. For that purpose a set of 16 scenes were used covering the two main Brazilian 

biomes, namely the Amazon Forest and the Cerrado region during the year of 2002. Data 

consisted of information from Landsat ETM+ and of MIR radiance, NIR reflectance and TIR 

brightness temperature as acquired by the MODIS instrument. 

A supervised validation was first carried out by selecting, in the scenes, different 

classes of surfaces (namely vegetation, sparsely vegetated, soil, burned vegetation, water, 

clouds and cloud shadows). Results obtained allowed understanding the two properties of 

the (V, W) coordinate system. In fact, the representation of the surfaces in the space  /  

may be viewed as resulting from the MIR/NIR space by means of translations, rotations and 

deformations leading to a compression in V and a dilation in W that determine the above-

mentioned strict scale character of V and  large character of W. Surfaces containing any kind 

of biomass tended to lie close to and along the coordinate line 1V , whereas “non-

biomass” surfaces, such as clouds, water bodies, mineral soil and completely burned 

surfaces (i.e. charcoal only) were mainly located away from that contour line. Nevertheless, 

burned surfaces in MODIS imagery always fell close to 1V  because it is virtually 

impossible to find a MODIS pixel completely covered by charcoal and without any trace of 

biomass. On the other hand, values of W from low to high values were associated with 

different levels of water content, from full coverage of green vegetation, going across 

sparsely or senescent vegetation up to burned areas, which are very dry. 
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The robustness of the coordinate system was then tested by using an unsupervised 

validation approach, where no a priori knowledge was assumed about V and W data. For 

instance, it was shown that even when using a simple unsupervised clustering algorithm, 

such as k-means, appropriate and consistent clusters could be found in all the 16 scenes in 

what regards to the biomass/non-biomass character of the surfaces and their water content. 

It seems reasonable to conclude that the (V, W) coordinate system is optimal to discriminate 

biomass (by means of V) and to assess biomass water content interclass variability (by 

means of W). 

The concept behind the (V, W) coordinate system presents some similarities with the 

tasseled cap transformation, where a new coordinate system is used in order to emphasize 

vegetation properties. On the other hand, the properties of the  /  space and of the 

associated (V, W) coordinate system open interesting perspectives for applications like 

drought monitoring and burned area discrimination using remotely-sensed information. 

Finally, it is worth emphasizing that, although tested with the MODIS sensor, the proposed 

transformation may be straightforwardly adapted to other sensors, such as the AVHRR, 

working in the MIR and NIR bands. The approach may be further extended to other 

combination of bands, e.g. SWIR/NIR according to the purpose of study and to the 

availability of remotely-sensed information. 
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Chapter 7  

 

Concluding remarks 

 

A strategy was presented that allows deriving a new index aiming at burned area 

discrimination. The index relies on information provided by the NIR and MIR channels of the 

MODIS sensor and was especially developed for the Amazon and Cerrado regions of Brazil. 

In order to develop the new index, and taking into account the characteristics of the 

MIR signal, a thorough review was undertaken of existing methods for retrieving MIR 

reflectance. Particular attention was devoted to assess the performance of the method based 

on, the complete radiative transfer equation and a comparison was made against the mostly 

used procedure in the context of burned area studies, namely the KR94 methodology. 

Our results show that the quality of the retrieved values of MIR reflectance by means 

of KR94 may significantly degrade when the relative contribution of the thermal emitted 
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component to the total signal exceeds a threshold of about 75%. Use of KR94 algorithm in 

tropical environments to retrieve vegetation reflectance may lead to errors that are at least of 

the same order of magnitude of the reflectance to be retrieved and considerably higher for 

large values of LST and SZA. In fact, there is a critical region in the LST vs. SZA space 

where the MIR reflectance retrieval is severely impaired. Under such conditions, retrieved 

values of reflectance for vegetation may attain those characteristic of charcoal making the 

two types of surface undistinguishable. We have also shown that use of the complete 

radiative transfer equation does not bring any significant advantages (as compared to using 

KR94) when geometric and atmospheric conditions turn the inversion into an ill-posed 

problem. However, the RTE approach leads to better estimates than KR94 in virtually all 

cases, the exception consisting of low sun elevations and high LST, where results from KR94 

are nevertheless also not usable. 

Another drawback, of an operational nature, was also found in what respects to using 

RTE with MODIS data. As already mentioned, LST is a required parameter in order to solve 

RTE and retrieve MIR reflectance. We have found, however, that burned areas are flagged 

as Not a Number (NaN) in MODIS LST product, which completely impaired the use of RTE 

for MIR reflectance retrieval aiming burned area discrimination. 

Obtained results, even when based on synthetic data, allowed establishing a baseline 

that may help avoiding pitfalls when retrieving MIR reflectance from real data. This is an 

especially relevant issue when relying on algorithms based on MIR reflectance (as retrieved 

from the total signal) in order to perform a continuous monitoring of burned areas. A proper 

delineation of regions of ill-conditioning is also critical when attempting to derive indices 

(based on the reflective part of MIR radiance) aiming to discriminate burned areas in tropical 

environments. 

In order to design a spectral index aiming at specifically discriminating burned areas 

we have defined a transformation in the MIR/NIR space that leads to an enhancement of the 

spectral information about vegetation. The transformation consisted of 1) the distance,  , of 
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each point in MIR/NIR to a pre-defined convergence point, representative of a given target 

(e.g. a totally burned surface), and 2) the difference,  , between the respective MIR and NIR 

reflectance of each point. A coordinate system was then defined which presented the two 

following properties; 1) one of the coordinates, the so-called V coordinate, had a very small 

dispersion for pixels associated to surfaces containing organic matter, whereas 2) the other 

coordinate, the so-called W coordinate, covered a wide range of values according to the 

water content of vegetated surfaces.  

The developed new pair of indices (V,W) open interesting perspectives for 

applications e.g. drought monitoring and burned area discrimination using remotely-sensed 

information. The potential of the new pair of indices to be operationally used to discriminate 

burned areas in the Amazon and Cerrado regions of Brazil is currently being assessed with 

very encouraging preliminary results. Some of these results are presented in Table 7.1, 

which shows a comparison of the ability in discriminating burned and unburned surfaces 

when using traditional indices and the new proposed (V,W) index for three regions over 

Amazon and Cerrado (as defined in Table 3.3). The discriminating ability is assessed by 

means of the M index, as defined in Eq. (2.11)). Values of M larger than one indicate good 

separability, whereas values smaller than one represent large degrees of histogram overlap 

between the two classes. The new proposed (V,W) index works better than the traditional 

indices in all three cases analyzed, with the advantage of not requiring either cloud or 

land/water masks, which is not true for the remaining traditional indices shown in Table 7.1. 

Besides the (V,W) index has the advantage of not having been heuristically derived as 

opposed to VI20 (or more precisely VI3, suggested by Kaufman and Remer, 1994) and 

GEMI20 (or more precisely GEMI3, suggested by Pereira, 1999). Moreover by exploiting the 

temporal and spatial characteristics of the (V,W) index will certainly improve the 

discrimination performance of the new index among burned and unburned surfaces. 
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Table 7.1. Comparison of the discriminating ability between burned and unburned surfaces 

(M index) by means of traditional indices and using the new proposed (V,W) index for three 

regions over Amazon and Cerrado (see Table 3.3). 

 M index 

 Cerrado  
(scene 3) 

Cerrado  
(scene 4) 

Amazon Forest  
(scene 6) 

(V,W) 2.08 2.40 2.72 
NDVI 0.20 0.65 1.27 
VI20 0.96 1.65 2.65 
BAI20 1.73 1.68 2.09 
GEMI 0.24 1.55 1.90 
GEMI20 0.75 1.80 2.70 

 

The main contribution and the originality of the work developed with respect to the 

use of MIR reflectance data for burned area identification in tropical regions may be 

summarized as follows: 

 

 Performance of a quality assessment of MIR reflectance when retrieved using the 

algorithm proposed by KR94, for a wide range of atmospheric, geometric and surface 

conditions when applied to burned area discrimination, in particular in the Amazon 

and Cerrado regions using MODIS data; 

 

 Collection of samples of charcoal from tropical regions and measurement of its 

spectral signatures in the vicinity of 3.9 µm, being currently the only available 

information in literature about the behavior of burned materials in this spectral 

domain; 

 

 A systematic comparison between RTE and KR94 approaches taking into account 

the performance and the need for auxiliary data, as well as the required computing 

resources aiming burned area studies; 
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 Evaluation of the effect of the atmospheric profile, LST and instrument noise sources 

of error on the retrieval of MIR reflectance by means of the radiative transfer 

equation; 

 

 A proper delineation of regions of ill-conditioning when retrieving MIR reflectance 

from MODIS sensor in tropical environments.  

 

 Definition of a transformation on the MIR/NIR space of reflectances leading to an 

enhancement of the spectral information about vegetation; 

 

 Development of a new set of indices based on the above mentioned transformation, 

providing more information than traditional ratio or modified ratio indices, and 

revealing to be appropriate to operationally monitor vegetation stress and to detect 

vegetation changes, in particular those caused by fire events. 

 

It is expected that the improvements in burned area quantification that may be 

achieved using the results from this thesis, may contribute to a better understanding of 

biomass emissions, and therefore to an improvement in climate changes studies. Results are 

also expected to reveal useful to assess the economic value of the damage area by fires, 

namely in the Amazon and Cerrado regions of Brazil, an issue that is becoming more and 

more relevant nowadays.  
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The ephemeral character of the radiative signal together with the presence of aerosols imposes severe
limitations on the use of classical approaches, e.g. based on red and near-infrared, to discriminate between
burned and unburned surfaces in tropical environments. Surface reflectance in the middle-infrared (MIR)
has been used to circumvent these difficulties because the signal is virtually unaffected by the presence of
aerosols associated to biomass burning. Retrieval of the MIR reflected component from the total signal is,
however, a difficult problem because of the presence of a diversity of radiance sources, namely the surface
reflected solar irradiance and the surface emitted radiance that may reach comparable magnitude during
daytime. The method proposed by Kaufman and Remer (1994) to retrieve surface MIR reflectance presents
the advantage of not requiring auxiliary datasets (e.g. atmospheric profiles) nor major computational means
(e.g. for solving radiative transfer models). Nevertheless, the method was specifically designed to retrieve
MIR reflectance over dense dark forests in the middle latitudes and, as shown in the present study, severe
problems may arise when applying it beyond the range of validity, namely for burned area mapping in
tropical environments. The present study consists of an assessment of the performance of the method for a
wide range of atmospheric, geometric and surface conditions and of the usefulness of extracted surface
reflectances for burned area discrimination. Results show that, in the case of tropical environments, there is a
significant decrease in performance of the method for high values of land surface temperature, especially
when associated with low sun elevation angles. Burned area discrimination is virtually impaired in such
conditions, which are often present when using data from instruments on-board polar orbiters, namely
MODIS in Aqua and Terra, to map burned surfaces over the Amazon forest and “cerrado” savanna regions.
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1. Introduction

Over the last decade continuous monitoring of vegetation fires
from space has greatly contributed to an increased recognition of the
major role played by biomass burning in climate change. In fact,
biomass burning is a global source of greenhouse gases (e.g. CO2 and
CH4) as well as of CO, NO2, NOx, CH3Br and hydrocarbons involved in
the formation of acid rain, in the photochemical production of
tropospheric ozone and in the destruction of stratospheric ozone (e.g.
Crutzen & Andreae, 1990; Penner et al., 1992). At the regional level,
biomass burning may induce changes in atmospheric stability and
associated vertical motions, leading to alterations of the hydrologic
cycle with significant impacts on regional climate (e.g. Rosenfeld,
1999; Menon et al., 2002; Koren et al., 2004). Teleconnection
processes may also take place, inducing changes e.g. of rainfall and
surface temperature patterns across distant parts of the world (Chase
et al., 2000; Zhao et al., 2001; Pielke et al., 2002). In particular, the
study by Evangelista et al. (2007) suggests that almost half of the
aerosol black carbon in the South-West Atlantic may derive from
South American biomass burning. In addition, vegetation fires are one
of the most important causes of land use/cover dynamics (Lambin &
Geist, 2006), destroying and altering vegetation structure and
depositing charcoal and ash on the surface. Such changes may, in
turn, lead to modifications in the physical properties of the surface
such as the ratio of latent to sensible heat flux, the transfer of
momentum from the atmosphere and the flux of moisture through
evaporation and transpiration (Sellers et al., 1996; Jin & Roy, 2005).

Accordingly, a considerable number of environmental studies and
Earth resources management activities require an accurate identifi-
cation of burned areas. However, due to the very broad spatial extent
and the limited accessibility of some of the largest areas affected by
fire, instruments on-board satellites are currently the only available
operational systems capable to collect cost-effective burned area
information at adequate spatial and temporal resolutions (Pereira,
1999). This is especially true in the tropics, where most burning take
place every year (Le Page et al., 2007). For instance, the Amazon

mailto:rlsantos@fc.ul.pt
http://dx.doi.org/10.1016/j.rse.2009.11.018
http://www.sciencedirect.com/science/journal/00344257
http://www.elsevier.com/locate/rse


Fig. 1. Spectral signatures of four charcoal samples (solid curves) and of three
vegetation samples (dot–dashed curves). Gray boxes delimit the SWIR (between 2.0
and 2.5 μm) and MIR (between 3.5 and 4 μm) spectral regions in order to emphasize
their contrast. Charcoal and vegetation signatures were respectively obtained from
samples of fire residues from Alta Floresta, state of Mato Grosso, Brazil and from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral
library (Baldridge et al., 2009).
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region together with the adjacent savanna (“cerrado”) presents one of
the highest numbers of occurrences of fire events (Prins et al., 1998).

Over the Amazon region the traditional use of red (R) and near-
infrared (NIR) channels for detecting burned areas is severely
impaired by the presence of heavy smoke layers due to biomass
burning, since both channels are very sensitive to aerosol scattering
and absorption in the atmosphere (Fraser & Kaufman, 1985; Holben
et al., 1992; França & Setzer, 1998). A possible way to mitigate the
aerosol effects associated to biomass burning on Earth observation
from space is by using the middle-infrared (MIR) region (between 3.5
and 4.1 μm), since this part of the spectrum is also sensitive to
vegetation changes but is virtually unaffected by the presence of most
aerosols. However, Boyd and Duane (2001) pointed out that the use of
MIR for studying the Earth's surface properties at and beyond the
regional scale may be unreliable. They further suggest that, in the case
of tropical forests at regional to global scales, it may be preferable to
only rely on the reflected component of MIR, since the emitted
component of the signal may be subject to additional confounding
variables, rather than representing intrinsic surface properties (Kauf-
man & Remer, 1994). Though related to tropical forest canopy
properties, emitted radiation may also be influenced by a wide
range of factors that include; i) localized atmospheric conditions such
as wind speed and water vapor conductance (Price, 1989), ii) site-
specific factors such as topography (Florinsky et al., 1994) and iii) soil
moisture conditions (Luvall & Holbo, 1991; Nemani et al., 1993).

A large number of studies have shown that use of MIR reflectance
is promising for a variety of applications such as discriminating among
different vegetation types (Holben & Shimabukuro, 1993; Shimabu-
kuro et al., 1994; Goita & Royer, 1997); estimating the total biomass
and leaf biomass of several forest ecosystems (Boyd, 1999; Boyd et al.,
2000); and monitoring the intra- and inter-annual changes in
vegetation induced by climatic factors (Boyd & Duane, 2001). In
particular, the work of Pereira (1999) showed that spectral vegetation
indices using the R and NIR allow for improved burned/unburned area
discrimination when the R channel is replaced by the reflected
component of the MIR channel. Although use of the reflected
component of MIR appears very attractive, its retrieval poses several
challenging problems due to the presence, in a singlemeasurement, of
a diversity of radiance sources, namely linked to the thermal emission
and the solar reflection from the atmosphere and by the surface. For
instance, during daytime, the MIR surface reflected solar irradiance
and the surface emitted radiance in MIR have comparable magnitude
(Li & Becker, 1993).

Several methods have been proposed to solve the difficult problem
of retrieving MIR reflectance from the total signal measured by a
remote sensing instrument (e.g. Schutt & Holben, 1991; Li & Becker,
1993; Goita & Royer, 1997; Nerry et al., 1998; Roger & Vermote, 1998;
Petitcolin & Vermote, 2002). All mentioned methods allow for the
retrieval of MIR reflectance with acceptable accuracy, but most are
time consuming, and normally require auxiliary datasets (e.g.
atmospheric profiles) as well as intensive computational means (e.g.
for solving radiative transfer computations). Kaufman and Remer
(1994) proposed a different approach for retrieving MIR reflectance
without direct knowledge of the atmospheric state and with no need
for a radiative transfer model. Their method was originally designed
to identify dense, dark vegetation areas in mid-latitude environments
and the authors specifically stressed the need for further studies
under different atmospheric conditions, as well as for other types of
surface. Themethod has been applied in a number of studies involving
both temperate and tropical conditions (e.g. Holben & Shimabukuro,
1993; Boyd, 1999; Boyd & Duane, 2001; Cihlar et al., 2004).

In particular, the approach proposed by Kaufman and Remer
(1994), hereafter referred to as KR94, has been applied for burned
area discrimination, since the MIR spectral domain may contribute to
solving certain ambiguities between burned and unburned surfaces.
These occur, for example, when using information from other parts of
the electromagnetic spectrum, namely the short-wave infrared
(SWIR), especially between 2.0 and 2.5 μm (França & Setzer, 2001).
As shown in Fig. (1), the increase in reflectance over burned surfaces
is higher in MIR than in SWIR, allowing a better discrimination
between both surfaces. For instance, Pereira (1999) showed the added
value of the method developed by KR94 in a pioneering study aiming
to assess the ability of various vegetation indices to discriminate
between burned and unburned surfaces in Portugal. The same
methodology was used by Barbosa et al. (1999) and by Roy et al.
(1999) to extract the reflective part of Advanced Very High Resolution
Radiometer (AVHRR) channel 3, for input to algorithms aiming tomap
burned areas in Africa.

Results from the above-mentioned studies are certainly relevant,
useful and promising; nevertheless, to the best of our knowledge, no
assessment has discussed in depth the accuracy of the methodology
proposed by KR94 when used to discriminate burned areas in tropical
environments. Approximate solutions, like that proposed by KR94, are
fast and easy to implement, but may be insufficiently accurate under
specific surface and atmospheric conditions. The aim of the present
study is to assess the quality and limitations of the retrieved MIR
reflectance by means of KR94's method when applied to discriminate
burned areas in tropical environments.

Accordingly, the main objectives of the analysis are twofold:

1. To perform a quality assessment of MIR reflectance when retrieved
using the algorithm proposed by KR94, for a wide range of
atmospheric, geometric and surface conditions;

2. To assess the adequacy and limitations of the above-mentioned
algorithm when applied to burned area discrimination, in
particular in the Amazon and “cerrado” regions. Special attention
will be devoted to the Moderate Resolution Imaging Spectrometer
(MODIS) sensor, because of its widespread use in operational
applications at the Brazilian National Institute for Space Research
(INPE).

2. Rationale

One of the major difficulties encountered in the tropics when
discriminating burned areas relates to the ephemeral character of
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spectral signatures, in contrast with temperate and boreal regions,
where one may wait until the end of the fire season to map scars from
previous months (Pereira, 2003). This procedure is not feasible in
tropical savannas, where combustion products are easily scattered by
wind, and the charcoal spectral signal quickly fades out. Burning of
converted tropical forest produces a short-lived signal, since fire in
this region is closely related to pasture and agriculture practices,
which disturb the soil surface. In tropical regions, mapping burned
areas with remote sensing data has, therefore, to be performed during
the dry season, i.e. simultaneously with the fire episodes. Results will
be, in general, largely affected by smoke aerosols, which contaminate
surface observation and reduce the spectral contrast between distinct
land cover types. According to Kaufman (1995), most of these
particles may remain in the atmosphere for around a week. In
addition, from July to October, i.e. during the Amazon fire season, a
large high pressure system tends to dominate the region, inhibiting
precipitation and reducing relative humidity due to the subsidence of
dry air from the upper levels of the atmosphere (Nobre et al., 1998).
The associated atmospheric circulation favors the retention over a
large horizontal area of smoke emitted by fires, reducing visibility to
the point of closing airports during, even up to two or three weeks
after the end of the fire season (Reinhardt et al., 2001).

Under such circumstances, the MIR spectral band appears
especially adequate for monitoring the land surface during fire
episodes, because it is largely unaffected by the presence of most
aerosols. This feature of MIR becomes well apparent when atmo-
spheric transmittance attenuation is computed over the visible (VIS)
to MIR bands, for different levels of smoke contamination due to
biomass burning. Transmittance attenuation is defined here as the
difference between the transmittance from an aerosol-free atmo-
sphere and that from an atmosphere with a given level of smoke
contamination. Fig. (2) shows the impact on MODIS VIS to MIR
channels resulting from increasing the aerosol optical depth (AOD)
associated to biomass burning. Values of transmittance attenuation
were obtained from radiative transfer simulations performed with
MODTRAN-4 (see Section 3.3). The model was run using a Tropical
atmospheric profile (see Table 2) perturbed with aerosols associated
to biomass burning, based on cloud-screened level 2.0 AOD at 440 nm
(τa(0.44)) data from the Abracos Hill station. The station is located in
Rondonia, Brazil, an area with high fire activity and is part of the
Fig. 2. Atmospheric transmittance attenuation [%] onMODIS VIS toMIR channels for three
different levels of smoke contamination due to biomass burning. τa(0.44) indicates the
AOD at 0.44 μm and α denotes the Ängstrom parameter, which characterizes aerosol
particle size distribution.
Aerosol Robotic Network (AERONET), a global sun/sky radiometer
network for aerosol monitoring (Holben et al., 1998).

During the dry season, in an atmosphere heavily contaminated by
smoke (e.g. with an AOD at 0.44 μm for about 2.73), the VIS and NIR
channels (0.4–1.0 μm) are inadequate for surface observation. Even at
lower levels of contamination by smoke (with an AOD at 0.44 μm lower
than 0.72) VIS channels remain strongly affected. Although less
sensitive to smoke aerosol, atmospheric transmittance in the SWIR
(1.2–2.5 μm) spectral region is still markedly attenuated. In striking
contrast, the MIR domain is practically unaffected by smoke, allowing
for almost undisturbed surface observation. The atmospheric transmit-
tance attenuation displays almost constantly low values of atmospheric
contamination by smoke in all three cases analyzed, including under
extremeAOD conditions. This is amajor reason to favor theMIR spectral
domain for monitoring and mapping burned areas.

3. Data and methods

3.1. Theoretical background

Top of the atmosphere (TOA) radiance measured by a sensor in the
MIR region results from the contribution of the reflective and thermal
emissive components. In case of clear sky conditions, radiation balance
is translated by the so-called radiative transfer equation (RTE):

LMIR = tMIRρMIR
E0MIR

π
μ0 + τMIRεMIRBðλMIR; TSÞ

+ τMIRρMIR

P

Latm;MIR↓ + Latm;MIR↑ + LS:

ð1Þ

In the previous equation tMIR is the two-way atmospheric
transmittance (sun–surface–sensor); ρMIR is the surface reflectance;
E0MIR is the exo-atmospheric irradiance; μ0 is the cosine of the solar
zenith angle (SZA); τMIR is the one-way atmospheric transmittance
(surface–sensor); ɛMIR is the surface emissivity; B(λMIR, TS) is the
emitted radiance given by Planck's function for surface temperature
TS and central wavelength λMIR; L a̅tm,MIR↓ is the hemispherical aver-
age of the atmospheric downward emission; and Latm,MIR ↑ is the
atmospheric upward emission; and LS is the term associated with
atmospheric scattering.

The first term on the right-hand side of Eq. (1) represents the solar
radiance that is attenuated by the atmosphere in its downward path,
then reflected by the surface and again attenuated in its upward path
to the sensor. The second term represents the radiance emitted by the
surface that is attenuated by the atmosphere. The third term denotes
the downward atmospheric radiance that is reflected by the surface
and then attenuated in its upward path to the sensor. The fourth term
represents the radiance emitted by the atmosphere towards the
sensor. The last term is associated with atmospheric scattering.

Since the Earth surface is opaque and assuming it behaves as a
Lambertian emitter–reflector, surface reflectance and emissivity are
related as:

ρMIR = 1−εMIR: ð2Þ

Using Eq. (2) and neglecting the atmospheric scattering term, LS,
the solution to Eq. (1) is given by:

ρMIR =
LMIR−τMIRBðλMIR; TSÞ−Latm;MIR↑

tMIR
E0MIR
π μ0−τMIRBðλMIR; TSÞ + τMIRLatm;MIR↓

: ð3Þ

3.2. Retrieval of MIR reflectance

Eq. (3) lays the grounds for the so-called physically-based
methods, which involve a direct evaluation of all constituents of the
MIR signal by means of a radiative transfer model, requiring



Table 2
Effects of water vapor content [g cm−2] on atmospheric terms for the three profiles
analyzed, considering nadir view and a SZA of 0°.

Profile Water vapour
content
[g cm−2]

τMIR tMIR Latm,MIR ↑
[W m−2 μm−1 sr−1]

L ̅atm,MIR ↓
[W m−2 μm−1 sr−1]

MLW 0.85 0.91 0.81 0.006 0.012
MLS 2.92 0.83 0.70 0.038 0.068
TRO 4.11 0.79 0.65 0.057 0.104
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substantial computational means. Operational use of physically-based
methods is limited by other factors, namely the need of quantitative
information on atmospheric conditions, mainly humidity and tem-
perature profiles, in order to perform the atmospheric corrections.

The above-mentioned limitations led to the development of
simpler methods, like the one proposed by KR94, which require
neither direct knowledge of atmospheric conditions, nor a radiative
transfer model. The approach is based on the studies of Gesell (1989)
and Ruff and Gruber (1983), who pointed out the existence of a
mutual compensation between attenuation and thermal emission
terms, so that both atmospheric transmittances (i.e. tMIR and τMIR)
may be assumed as equal to unity, and both the atmospheric
downward and upward thermal emission terms may be neglected.
The validity of these assumptions may be assessed by simplifying
Eq. (3) and then justifying the performed simplifications using typical
values of the relevant terms of Eq. (3) for surface and atmospheric
conditions associated to dense, dark vegetation areas in mid-latitude
environments. Typical values are given in Table 1 for nadir view and
three different values of SZA, respectively 0, 15 and 45°, where a Mid-
Latitude Winter atmospheric profile (see Table 2) and a surface
temperature TS of 290 K are assumed. Accordingly, after some
algebraic manipulations, Eq. (3) may be rewritten as:

ρMIR =
LMIR−BðλMIR; TSÞ−Δ1

E0MIR
π μ0−BðλMIR; TSÞ

h i
½1 + Δ2�

ð4Þ

where:

Δ1 = ðτMIR−1ÞBðλMIR; TSÞ + Latm;MIR↑ ð5Þ

Δ2 =
ðτMIR−1Þ E0MIR

π μ0−ðτMIR−1ÞBðλMIR; TSÞ + τMIR Latm;MIR↓
E0MIR
π μ0−BðλMIR; TSÞ

ð6Þ

Since Δ2≪1 according to the values in Table 1, the factor 1
1+Δ2

�
in Eq. (4) may be expanded in a Taylor series up to the first order
leading to:

ρMIR =
LMIR−BðλMIR; TSÞ−Δ1
E0MIR
π μ0−BðλMIR; TSÞ

h i ½1 + Δ2�: ð7Þ

Taking further into account that Δ1≪LMIR−B(λMIR, TS), terms Δ1

and Δ2 may be neglected in Eq. (7) leading to the following simplified
form:

ρMIR =
LMIR−BðλMIR; TSÞ

E0MIR
π μ0−BðλMIR; TSÞ

: ð8Þ

The above described mathematical procedure may be also viewed
from a physical point of view. First, consider the numerator of the
second hand term of Eq. (3), and suppose the atmospheric upward
emission term (Latm,MIR ↑) is neglected. Since LMIR is fixed, the only
way to compensate the neglected term is by increasing the
contribution of the remaining term, τMIRB(λMIR, TS). This is only
possible by increasing the atmospheric transmittance τMIR, in
particular by setting it equal to unity. Now, taking into consideration
Table 1
Typical values of the different terms of Eq. (3) in the case of nadir view and for three differen
TS, equal to 290 K.

SZA τMIR tMIR LMIR
a B(λMIR, TS)a

45° 0.912 0.794 0.700 0.315
15° 0.912 0.813 0.872 0.315
0° 0.912 0.816 0.899 0.315

a [W m−2 μm−1 sr−1].
the denominator, suppose the atmospheric downward emission term
(L ̅atm,MIR ↓) is neglected. Then, in order to compensate the neglected
term, either the contribution of term τMIRB(λMIR, TS), or the
contribution of term tMIR

E0MIR
π μ0 have to be increased. However, the

first possibility is ruled out by the fact that it was already assumed that
τMIR=1. Therefore, the contribution of the tMIR

E0MIR
π μ0 term has to be

raised by increasing tMIR, in particular by setting it equal to unity.
Setting both tMIR and τMIR to unity does lead to the required increase
that compensates for neglecting the L ̅atm,MIR ↓ term. This is due to the
fact that, in general, tbτ and therefore the assumption tMIR=τMIR=1
leads to a greater increase in the contribution of tMIR

E0MIR
π μ0 term than

in τMIRB(λMIR, TS) term.
KR94 introduced another approximation for Eq. (8), that consists

of using the brightness temperature, TB,TIR, from a thermal infrared
(TIR) band (10–12 µm) as a surrogate for the land surface temper-
ature (LST), TS. In fact, as pointed out by Prata et al. (1995), brightness
temperature is usually lower than surface temperature, the difference
typically ranging from1 to 5 K in TIR.

Following a procedure similar to the one above-described, Eq. (8)
may be approximated (up to the first order) as:

ρMIR =
LMIR−BðλMIR; TB;TIRÞ−Δ3
E0MIR
π μ0−BðλMIR; TB;TIRÞ

1− Δ3
E0MIR
π μ0−BðλMIR; TB;TIRÞ

" #
: ð9Þ

Since, according to results in Table 1, Δ3=B(λMIR, TS)−B(λMIR,
TB,TIR)≪LMIR−B(λMIR, TB,TIR) and Δ3

E0MIR
π μ0−BðλMIR ;TB;TIRÞ

≪1, Eq. (3) may

be approximated by the following equation, that represents the final
form of the KR94 algorithm:

ρMIR =
LMIR−BðλMIR; TB;TIRÞ

E0MIR
π μ0−BðλMIR; TB;TIRÞ

: ð10Þ

3.3. Radiative transfer simulations

As pointed out in the Introduction, the aim of the present paper is
to perform a systematic assessment of the performance of the KR94
algorithm when applied to burned area discrimination under a wide
range of atmospheric, surface and geometry conditions, paying special
attention to those expected when applying the algorithm to the
Amazon and “cerrado” regions.

For this purpose, estimation of the error associated with MIR
reflectance as retrieved using Eq. (10) will be performed based on a
t SZA considering a Mid-LatitudeWinter atmospheric profile and a surface temperature,

B(λMIR, TB,TIR)a Latm,MIR ↑ a E0MIR
π μ0

a L ̅atm,MIR ↓a

0.212 0.006 2.46 0.011
0.212 0.006 3.29 0.011
0.212 0.006 3.42 0.011
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large number of simulated top of atmosphere (TOA) radiances. These
simulations are generated with MODTRAN-4, a widely used radiative
transfer model (Berk et al., 2000) encompassing a large set of
observation conditions. The simulations are performed in the spectral
ranges of 3.62 μm–3.97 μm and 10 μm–12 μm, i.e. covering MODIS
channels 20 and 31. Brightness temperature from MODIS channel 31
is also required as input to Eq. (10).

The atmospheric contribution is computed for three geographical–
seasonal model atmospheres stored in MODTRAN-4, namely Mid-
Latitude Winter (MLW), Mid-Latitude Summer (MLS), and Tropical
(TRO). Use of mid-latitude profiles (i.e. MLW and MLS) is required to
establish a baseline of performance of KR94 when subject to atmo-
spheric, surface and geometric conditions for which the algorithm
was specifically designed. Such baseline will then serve to assess the
limitations of KR94 when employed beyond specifications, namely in
case of tropical environments (e.g. as described by the TRO profile).

The three standard atmospheres cover a wide range of atmo-
spheric conditions, with water vapor content of 0.85, 2.92 and
4.11 gcm−2 and 2-m air temperature (Tatm) of 272.2, 294.2 and
299.7 K, for MLW, MLS, and TRO respectively. The assigned LST values
are based on the 2-m air temperature of each profile, varying from
Tatm to Tatm+30.0 K in steps of 1.0 K, totalizing 31 different values.
The sun-view geometry consists of 31 solar zenith angles, from 0° to
60° in steps of 2°, and of a single view zenith angle of 0°. Although
nadir viewing is limited along the tropics when using polar orbiting
instruments (such as MODIS), choice of a nadir view corresponds to
the most favorable surface observation conditions. If problems arise
when simulating nadir viewing (i.e. the most favorable case), then
performance is expected to degrade for less favorable observation
conditions. In fact, simulations were also performed for off-nadir
viewing angles and, as expected, results (not shown) revealed a slight
degradation in performance of the KR94 algorithm with increasing
viewing angle, a feature consistent with former studies (França &
Fig. 3. Monthly values of P75 of LST during August, 2008 over B
Setzer, 1998; Jiang et al., 2006) that demonstrate weak dependence of
MIR region on view angle variations.

The ranges of SZA and LST are set to be representative of the
observed geometric and surface conditions characteristic of regions
associated to each atmospheric profile. For instance, Fig. 3 depicts
pixel values of the third quartile (P75) of LST during August 2008,
retrieved over Brazil using the Spinning Enhanced Visible and Infra-
Red Imager (SEVIRI) on-board METEOSAT-8. Fig. 4 presents monthly
P75 values, throughout the year, of SZA as obtained from a large
sample of pixels from MODIS imagery that has been operationally
used for burned area discrimination over Brazil. During the fire season
(from June to October) very high values of LST are observed over
Amazonia and especially over the adjacent “cerrado”, region, where a
large area may be found that presents values of P75 larger than 320 K.
In addition, more than 25% of the pixels are associated to values of SZA
greater than 40°, i.e. to low values of the solar signal.

Two types of surface cover were considered, namely burned and
unburned. Both surface types were assumed to be homogeneous and
Lambertian, the burned and unburned surfaces being characterized
respectively by charcoal and vegetation spectra. Spectral libraries like
ASTER and MODIS-UCSB supply reliable reflectance data for different
types of materials, such as vegetation, water, soil, rocks and man-
made. However, to the best of our knowledge, no reflectance
measurements are currently available for charcoal, ash or any burned
plant material, in the spectral region accounted for in this study.
Therefore, four fire residue samples were collected at Alta Floresta,
state of Mato Grosso, Brazil. Charcoal spectra were measured at the
NASA Jet Propulsion Laboratory and may be viewed as typical of
tropical environments. Mean values of the four charcoal spectra were
then used to prescribe the surface reflectance of the burned surface as
input to MODTRAN-4. Regarding the unburned surface, prescribed
reflectance values were obtained from a set of 25 surfaces from the
MODIS-UCSB spectral library. The set includes most vegetation types
razil. Data were retrieved from METEOSAT-8/SEVIRI data.



Fig. 4. Monthly values of P75 of SZA as obtained from samples of AQUA/MODIS and TERRA/MODIS imagery along the year of 2007 over Brazil. The threshold of 40° for SZA is
highlighted by the dotted horizontal line. Dotted vertical lines delimit the fire season in Amazonia (June to October).
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(Salisbury & D'Aria, 1994; Peres & DaCamara, 2004), with reflectance
values varying from 0.01 to 0.04, in the MIR region. A value of 0.24
(0.03) was, accordingly, prescribed for MIR reflectance for the burned
(unburned) types of surface cover. These values were obtained by
averaging the MIR spectral signature for the four (25) considered
charcoal (vegetation) types, which were convolved with the MODIS
channel 20 normalized response function. Results ought to be
applicable to other sensors having spectral windows similar to that
used in this work.

4. Analysis and results

4.1. MODTRAN-4 simulations

As discussed in the previous section, the method developed by
KR94 relies on a number of simplifying assumptions regarding
atmospheric transmittances and atmospheric downward and upward
thermal emission radiances. All these terms are correlated and
depend essentially on atmospheric water vapor content. When
atmospheric water vapor increases, atmospheric transmittances
decrease, whereas the atmospheric downward and upward thermal
emission radiances increase. Table 2 shows the range of atmospheric
terms that may typically be found in the MIR region, in the case of the
three geographical–seasonal model atmospheres considered, i.e.,
when varying from ‘dry’ to ‘moist’ conditions. For instance, whereas
high transmittances and low path-radiances values characterize the
MLW atmospheric profile, the TRO profile is associated to lower
transmittances and relatively high path-radiance values. It is therefore
to be expected that use of Eq. (10) in retrieving MIR reflectance may
introduce systematic deviations, especially in the case of ‘moist’
atmospheres. For example, in the case of TRO, the relative error
associated to the assumption of τMIR=1 (instead of the realistic value
τMIR=0.79) is about 27% but drops to 10% in the case of MLW (taking
into account that τMIR=0.91). In the case of the two-way atmospheric
transmittance, the relative error associated to the assumption of
tMIR=1 (instead of tMIR=0.65) in the case of TRO is about 54% but
drops to 24% in the case of MLW (where tMIR=0.81). In a similar
fashion, neglecting the atmospheric downward emission term leads
to a relative error of 17% for the TRO profile, in contrast with MLW
where the corresponding error decreases to 3%. Finally, neglecting the
atmospheric upward emission term leads to a relative error of 9% for
the TRO profile and just to an error of 2% in the case of MLW.

Accuracy of the solutions provided by Eq. (10) may be assessed by
evaluating the corresponding relative errors, defined as the differ-
ences between retrieved values using Eq. (3) and the corresponding
prescribed values as input to MODTRAN-4, divided by the latter
values. Figs. 5–7 present the obtained values of relative errors of MIR
reflectance as a function of LST and SZA. The curves correspond to
nadir viewing conditions and represent charcoal (left panels) and
vegetation (right panels) surfaces for MLW (Fig. 5), MLS (Fig. 6) and
TRO (Fig. 7). It is worth stressing that ranges of LST considered are
different for each profile (as discussed in Section 3.3) and reflect the
surface conditions typically associated to each type of atmosphere.

It is well apparent that relative errors strongly depend on the
surface type, for all three atmospheric profiles. In particular, it may be
noted that the magnitude of relative errors is considerably larger for
vegetation than for charcoal, and increases with moisture content,
MLW showing the lowest values and TRO the highest. For instance,
the lower values obtained in the case of MLW are in close agreement
with results found by KR94, who estimated the accuracy of Eq. (10) to
lie in the range of 0.01–0.02 (absolute errors) for a mid-latitude
atmosphere and for the range of reflectance to be expected from a
variety of vegetation and soils (0.01–0.06). In strong contrast,
vegetation surfaces present extremely large relative errors, ranging
from 100% to 1200% for LST values to be expected in tropical regions.
Taking the value of 0.03 as reference for reflectance of vegetation, the
obtained range corresponds to absolute errors of 0.06–0.4. In the case
of charcoal, relative errors are one order of magnitude smaller,
ranging from −20%–80%, i.e. from about −0.05–0.2 in terms of
absolute error, and taking a reference value of 0.24 for charcoal
reflectance. Dependence of the relative error on LST is stronger than
on SZA, especially for values of SZA lower than 30°, a feature clearly
revealed by the low slope of the error curves in Figs. 5–7.

Performance of the KR94 algorithm is closely linked to the
magnitude of the relative contribution of thermal emitted radiance,
Le, to the total TOA MIR radiance, LMIR, given by Eq. (1). It may be



Fig. 5. Relative error [%] onMIR reflectance (retrieved minus prescribed values) as a function of LST and SZA in the case of MLW profile for charcoal (left panel) and vegetation (right
panel) surfaces. Solid (dotted) curves indicate positive (negative) errors and the thick curve highlights the no-error line.

Fig. 6. As in Fig. 5 but in the case of MLS.

Fig. 7. As in Fig. 5 but in the case of TRO.
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noted that Le is given by the second, third and fourth terms of the
right-hand side of Eq. (1), i.e.

Le = τMIRεMIRBðλMIR; TSÞ + τMIRρMIR

P

Latm;MIR↓ + Latm;MIR↑: ð11Þ
When the ratio Le/LMIR exceeds a threshold of about 0.75 the
solutions provided by Eq. (10) are contaminated by unacceptably
large relative errors, on the order of 100%. The magnitude of Le/LMIR,
and therefore the range of validity of Eq. (10), mainly depends on the
type of the surface considered, as well as on its temperature,
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atmospheric profile, and sun elevation angle. Fig. 8 presents the
dependence of Le/LMIR on LST for vegetation (circles) and charcoal
(squares) under two extreme illumination angles, respectively an SZA
of 0° (open symbols) and of 60° (black symbols), and for the two
extreme cases of atmospheric moisture content, respectively MLW
(left panel) and TRO (right panel) profiles. The contrasting behavior of
charcoal and vegetation is well apparent. In the case of charcoal, high
values of MIR reflectance (about 0.24) lead to a major contribution of
the reflected component and, therefore, the ratio Le/LMIR will be below
50% (75%) in the case of MLW (TRO), except for large values of LST,
above 289 K (293 K) for MLW (TRO), associated to very low sun
elevation angles (SZA=60°). Acceptable estimates of charcoal
reflectance are therefore to be expected from Eq. (10), the sole
exception being cases of high LST values (larger than 320 K), co-
occurring with high SZA values (larger than 50°), which may lead to
relative errors in excess of 25%. Because of the very low vegetation
reflectance (about 0.03, i.e. eight times lower than that of charcoal),
total TOA MIR radiance, LMIR, will be primarily due to the thermal
emitted component, and a deeply contrasting behavior is to be ex-
pected between charcoal and vegetation. In the latter type of sur-
face, the ratio Le/LMIR is always larger that 75% in the case of TRO, and
in the case of MLW for low solar elevation (SZA=60°). Even for solar
zenith conditions (SZA=0°) the ratio Le/LMIR exceeds 75% in the
case of MLW, for LST values as low as 288 K. Implications of the
solutions provided by Eq. (10) on relative errors are well depicted in
the left panels of Figs. 5 and 7; in the case of TRO, relative errors are
unacceptably large (exceeding 50%) over the entire domain consid-
ered, whereas in the case of MLW relative errors are larger than 25%
for values of LST beyond 290 K, whenever SZA surpasses 50°.

The above-discussed limitations of the KR94 algorithm may give
rise to serious difficulties when attempting to discriminate between
burned and unburned surfaces, in particular in the case of tropical
environments. For instance, an absolute error of 0.2 in a typical
vegetation reflectance of about 0.03 leads to a retrieved value of about
Fig. 8. Plot of the ratio Le/LMIR[%] as a function of LST in the case of MLW (left panel) and TR
open (black) symbols characterizes SZA of 0° (60°).
0.23which reaches the range characteristic of charcoal. The problem is
illustrated in Fig. 9, which presents results obtained when using
Eq. (10) to retrieve the reflectance of vegetation (with the prescribed
value of 0.03) and of charcoal (with the prescribed value of 0.24) in the
three considered cases of MLW,MLS and TRO, for values of SZA from 0
to 60° and for ranges of typical values of LST for each profile. It is well
apparent that the accuracy of retrieved values of reflectance is much
more sensitive to LST and SZA in the case of vegetation than for
charcoal. For instance, the reference contour line of 0.03 (for
vegetation) is displaced out of the considered domain in the case of
MLS and TRO and, even forMLW, it is located at the bottom, almost out
of the domain. The displacement of the reference contour line of 0.24
for charcoal is much smaller and is barely noticeable in the case of
MLW.However, the robustness of Eq. (10) in the case of charcoal is not
enough to discriminate burned from unburned surfaces, because
values of reflectance for vegetation attain those characteristics of
charcoal for sufficiently high values of LST and SZA. As shown in Fig. 9,
in the case of MLS, even if the discontinuities observed along the band
separating the two considered surfaces indicate the possibility of
discriminating between them, values of the contour lines on both sides
are larger than 0.20. Therefore, it is not possible to label either type as
the unburned surface. The situation is even worse for TRO where, for
values of LST greater than 315 K and SZA larger than 30°, both surfaces
reach similar reflectance values, becoming undistinguishable.

4.2. Case study

A more realistic assessment of the implications of using Eq. (10)
for burned area discrimination in tropical environments may be
achieved by means of a case study based on satellite imagery.
However, as pointed out by Roger and Vermote (1998), any attempt
to validate retrieved values of MIR reflectance from satellite data is
virtually impaired by the absence of “in-situ” (direct) measurements.
This limitationmay be circumvented by creating a reference dataset of
O (right panel). Square (circle) symbols denotes charcoal (vegetation) surface whereas



Fig. 9. Diagram of values of reflectance for vegetation and charcoal surfaces for different atmospheric profiles, LST and SZA; a) the two surfaces with prescribed constant values of
0.03 and 0.24 for vegetation (green) and charcoal (orange); b) to d) retrieved values of reflectance using Eq. (10) as a function of SZA and LST for MLW, MLS and TRO profiles.
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MIR reflectance based on information from a real satellite image. The
adopted approach consists of the following steps: (1) collect
information about land surface temperature, land surface emissivity,
atmospheric profiles and view/solar angles for the selected scene; (2)
use a radiative transfer model (MODTRAN-4 in the present study) to
compute the respective values of transmittance and atmospheric
parameters; and (3) use Eq. (3) with values obtained in the previous
steps to retrieve MIR reflectance from the total signal. The generated
reference dataset of MIR reflectance may then be used to validate the
corresponding MIR reflectance as retrieved by means of KR94.

Taking into account the described procedure, it seems appropriate
to select an image where the atmospheric conditions are particularly
favorable, e.g. with low values of the water vapor column, and a low
amount of aerosols (i.e. with a clear sky surrounding). Since results
from simulations (Section 4.1) showed that the accuracy of retrieved
values of reflectance is very sensitive to high values of LST, it seems
also appropriate to select an image with moderate values of LST.

All the above-mentioned favorable characteristics are met in the
case of the large fire event that took place from April 30 to May 12,
2006 and affected the entire area of the Ilha Grande National Park,
located between the states of Paraná and Mato Grosso do Sul, Brazil.
The burned is about 200 km2, as estimated by INPE based on
information from LANDSAT TM imagery (Fig. 10). A total of 413
active fires during the above-mentioned period were also identified
by INPE, using data from GOES, NOAA, Aqua and Terra satellites.

Performance of Eq. (10) was assessed using TOA values of MIR
radiance and TIR brightness temperature as acquired on May 12, 2006
by theMODIS instrument on-boardAqua. Datawere obtained from the
Aqua/MODIS Level 1B 1 km V5 product, MYD021 (MCST, 2006) and
correspond to channels 20 (centered at 3.785 µm) and 31 (centered at
11.017 µm). Surface values of MIR reflectance were then retrieved by
solving Eq. (3) using MODTRAN-4, using information about surface
temperature and sun elevation together with data of temperature and
humidity for the atmospheric column. Pixels values of LST and of SZA,
varying from 295 to 315 K and from 48.5 to 51°, respectively were
obtained from Land Surface Temperature/Emissivity Daily 5-Min L2
Swath 1 km product, MYD11_L2 (Wang, 1999). Atmospheric profiles
of temperature and humidity were obtained from the Atmosphere
Profile Level 2.0 product, MYD07_L2 (Seemann et al., 2006), the water
vapor content over the selected area varying from 1.3 to 2.3 g cm−2, a
quite lowamountwhen comparedwith the value of 4.11 g cm−2 of the
TRO profile stored inMODTRAN-4. Fig. 11 represents theMODISmean
profiles of temperature and humidity together with the TRO profile
that will be used to generate synthetic imagery with characteristics to
be expected over tropical environments.

Retrieved values of surface MIR reflectance and values of LST are
shown in Fig. 12. Higher values of MIR reflectance and LST over the
burned area are particularly conspicuous, especially because of the
contrasting behavior of the surrounding vegetated areas, which
present a large spatial variability of reflectance and temperature.

Values of retrieved surface MIR reflectance and of LST (Fig. 12) were
input to MODTRAN-4, to produce synthetic images of TOAMIR radiance
and TIR brightness temperature. These images correspond to the
following two environments, characterized by atmospheric and surface
conditions expected in tropical regions; i) the TRO environment,
obtained using the TRO profile and the LST of May 12 ,2006 and ii)
the TRO–HOT environment, obtained using the TRO profile and LST+
20 K. The KR94 algorithm was then used to retrieve values of surface

http://www.mcst.ssai.biz/mcstweb/documents/M1054.pdf
http://www.icess.ucsb.edu/modis/atbd-mod-11.pdf
http://modis-atmos.gsfc.nasa.gov/_docs/MOD07:MYD07_ATBD_C005.pdf


Fig. 10. Location of the Ilha Grande National Park, between the states of Paraná and Mato Grosso do Sul (upper right panel) in southwestern Brazil (upper left panel) and LANDSAT
TM image (RGB 543) of the National park before the fire episode, on April 26, 2006 (lower left panel) and after the fire episode onMay 12, 2006 (lower right panel). The outline of the
National Park is shown in red.

Fig. 11. MODIS mean profiles (bold curves) of temperature (left panel) and humidity (right panel) over Ilha Grande National Park on May 12, 2006. The TRO profile stored at
MODTRAN-4 is also represented (thin curves).
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Fig. 12. Retrieved values of surface MIR reflectance (left panel) and LST (right panel) over the Ilha Grande National Park on May 12, 2006.
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reflectance from TOA MIR radiance and TIR brightness temperature of
the original images (May-12 environment) and of the synthetic ones
(TRO and TRO–HOT environments).

The impact of using retrieved values to discriminate between
burned and unburned surfaces for the three considered environments
was evaluated by comparing the values of reflectance as retrieved by
Eq. (10) over two sets of pixels representative of the two classes to be
discriminated and then checking whether the respective statistical
distributions allow distinguishing between the surfaces.

A set of 133 burned pixels, hereafter referred to as the burned class,
was therefore selected from the scene, togetherwith a set of 262 pixels
that included the remaining land cover types (namely green
vegetation, crop fields and water bodies), hereafter referred to as the
Fig. 13.Histograms of MIR reflectance for burned (black) and unburned (gray) classes as retr
(lower panel) environments.
unburned class. Choice of pixels was made by visual comparison
between two LANDSAT TM scenes (path/row 224/76) acquired on
April 24 and May 12, 2006. Hot spots detected by INPE were also used
in the process of selecting pixels associated to burned surfaces.

According to Kaufman and Remer (1994), a quantitative assessment
of the effectiveness of the KR94 algorithm to discriminate between
burnedandunburned surfacesmaybeobtainedwith the following index:

M =
jμu−μb j
σu + σb

: ð12Þ

where μu(μb) is the mean value and σu(σb) is the standard deviation
for the unburned (burned) class. It is worth noting that index M may
ieved bymeans of Eq. (10) for May-12 (upper panel), TRO (middle panel) and TRO–HOT



Table 3
Mean values, μu(μb), and standard deviation, σu(σb), of unburned (burned) surfaces
and discrimination indices, M, for retrieved values of surface reflectance in the case of
May-12, TRO and TRO–HOT environments.

μu σu μb σb M

May-12 0.02 0.021 0.11 0.032 1.76
TRO 0.03 0.024 0.12 0.027 1.58
TRO–HOT 0.17 0.046 0.18 0.033 0.53
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be viewed as an estimator of signal-to-noise ratio, the absolute
difference between the mean values of the two classes representing
the signal (associated to between-group variability) and the sum of
the standard deviations representing noise (associated to within-
group variability). Values of M larger than one indicate good
separability, whereas values smaller than one represent a large
degree of overlap between the values associated to the two classes.

Results are shown in Fig. 13 and Table 3. In the case of unburned
surfaces, and when going from May-12 to TRO–HOT environments,
there is a progressive shift of the histograms towards larger values of
reflectance, accompanied by an increase of dispersion. Both shift and
increase are especially pronounced from TRO to TRO–HOT. In strong
contrast, in the case of burned surfaces, histograms of reflectance
remain virtually unchanged when comparing May-12 to TRO
environments, and there is a moderate shift when going from TRO to
TRO–HOT environments. Moreover, the dispersion is virtually unaf-
fected by injection of water vapor in the atmosphere and by surface
temperature increase. The different sensitivity of the two types of
surface leads to a progressive overlap of the histograms, which is
translated by the decrease of M, from May-12 to TRO–HOT, and
especially from TRO to TRO–HOT. In the latter type of environment M
reaches a value of 0.53, an indication of very poor discriminant ability.

Results obtained for the fire event at the Ilha Grande National Park
confirm those previously obtained with MODTRAN-4 simulations,
namely that discrimination between burned and unburned surface
basedonvaluesof surface reflectance retrievedwith theKR94algorithm
is virtually impaired in the case of tropical regions for high values of
surface temperature, especially when associated to low sun elevation
angles. Since such circumstances are often present when using data
from instruments on-board polar-orbiters (namely MODIS in Aqua and
Terra) to identify burned areas over the Amazon and the adjacent
“cerrado”, special care is required when using the KR94 algorithm.
5. Concluding remarks

Identification of burned areas over the Amazon and “cerrado”
regions is a challenging task because of the ephemeral character of the
radiative signal and the presence of aerosols that prevent using
classical approaches e.g. based on red and near-infrared information.
Middle-infrared (MIR) presents the advantage of being virtually
unaffected by the presence of most types of aerosols, in particular
those associated to biomass burning. In this respect the reflected
component of MIR has proven to be especially adequate to discrim-
inate between burned and unburned surfaces in mid-latitude regions
(e.g. Pereira, 1999).

Kaufman and Remer (1994) proposed a methodology that
presents the advantage of enabling for the retrieval of MIR reflectance
with no need for auxiliary datasets or major computational means.
The so-called KR94 algorithm, given by Eq. (10), has been specifically
designed to retrieve MIR reflectance over dense dark forests in the
middle latitudes. It has been also successfully applied to other types of
surfaces and atmospheric environments, in particular for burned area
discrimination (e.g. Barbosa et al., 1999; Roy et al., 1999). However,
the quality of the retrieved values of MIR reflectance by Eq. (10) may
significantly degrade when the relative contribution of the thermal
emitted component to the total signal exceeds a threshold of about
75%. In the case of surfaces, such as vegetation, characterized by low
values of MIR reflectance, the relative contribution of the solar
component to the total MIR signal tends to be small, especially when
the surface is hot (i.e. in case of relatively high values of LST). This
contribution may be further reduced when the solar signal is weak
due to low sun elevation angles (i.e. in case of high values of SZA). The
above-mentioned aspects are especially relevant in tropical environ-
ments, where high land surface temperatures naturally dominate the
scenes and pixels illuminated by low sun elevation angles are often
present when using data from sensors on-board polar orbiters, in
particular MODIS on-board Aqua and Terra.

Use of Eq. (10) in tropical environments to retrieve vegetation
reflectance may lead to errors that are at least of the same order of
magnitude of the reflectance to be retrieved and considerably higher
for large values of LST and SZA. Under such conditions, retrieved values
of reflectance for vegetationmay attain those characteristic of charcoal
making the two types of surface undistinguishable. Use of the KR94
algorithm becomes severely impaired and the complete radiative
transfer equation, i.e. Eq. (3), should be used instead, provided the
required auxiliary information is available about the surface (LST) and
the atmospheric column (temperature and humidity profiles).
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Abstract. This paper presents results of the AQL2004 project, which has been developed
within the GOFC-GOLD Latin American network of remote sensing and forest fires
(RedLatif). The project intended to obtain monthly burned-land maps of the entire region,
from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer)
reflectance data. The project has been organized in three different phases: acquisition and
preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the
first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data
generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College
Park, Maryland, USA) were collected and processed. The discrimination of burned areas was
addressed in two steps: searching for ‘‘burned core’’ pixels using postfire spectral indices and
multitemporal change detection and mapping of burned scars using contextual techniques.
The validation phase was based on visual analysis of Landsat and CBERS (China–Brazil
Earth Resources Satellite) images. Validation of the burned-land category showed an
agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species
present. The total burned area for the entire year was estimated to be 153 215 km2. The most
affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela.
Burned areas were found in most land covers; herbaceous vegetation (savannas and
grasslands) presented the highest proportions of burned area, while perennial forest had the
lowest proportions. The importance of croplands in the total burned area should be taken with
reserve, since this cover presented the highest commission errors. The importance of
generating systematic products of burned land areas for different ecological processes is
emphasized.

Key words: biomass burning; burn area index; burn scars; burned area; forest fires; Latin America;
MODIS; normalized burn ratio; remote sensing.

INTRODUCTION

Forest fires have an important role in global

ecological and climate systems, being responsible for a

significant part of greenhouse gas emissions to the

atmosphere (van der Werf et al. 2004) and for land

degradation and soil erosion processes (Levine 1996).

Additionally, many studies have identified wildland fires

as the most comprehensive tool for forest clearing in the

tropical regions (Roberts 2000), and therefore the

importance of studying global patterns of fire occur-

rence increases. According to Liousse et al. (2004), the

amount of CO2 emissions derived from biomass burning

in Latin America is eight times larger than its emissions

derived from fossil fuel combustion (see Plate 1).

Therefore, it is critical to improve current estimations

of burned land areas in the region, from both an

ecological and management point of view.

Statistics on wildland fire are generally available in

developed countries, while in other areas the estimations

Manuscript received 31 December 2006; revised 24 April
2007; accepted 2 August 2007. Corresponding Editor: E.
Cuevas.

13 E-mail: emilio.chuvieco@uah.es

64

mailto:chuvieco@uah.es


are generally poor or not available. According to the

latest Food and Agriculture Organization of the United

Nations (FAO) statistics (FAO 2006) from 1998 to 2002

more than 3 million ha were burned in Latin America.

These estimates are very low compared to other projects

based on satellite data for the same region (Boschetti et

al. 2004) and could be related to the lack of consistent

assessment of burned areas in most countries.

The use of remotely sensed data is a sound alternative

to traditional field methods for estimating burned-land

areas. Satellite observation data of Earth provide timely,

cost effective, and spatially comprehensive views of fire-

affected areas and fire occurrence patterns (Di Bella et

al. 2006). The use of these data for fire effects assessment

has grown notably in the last decades, using both high

and low resolution satellite sensors (Ahern et al. 2001).

Global approaches to map burn areas were based on

NOAA-AVHRR images during the 1990s, and multi-

temporal comparisons between spectral vegetation

indices was a common technique used (Kasischke and

French 1995, Martı́n and Chuvieco 1995, Barbosa et al.

1999, Pereira 1999), although some combinations of

thermal infrared and shortwave channels were also used

(Fraser et al. 2000).

More recently, other sensors with greater sensitivity to

discriminate burn scars have been used to create a global

inventory of burned areas. In 2000, two worldwide

projects were developed: the GBA2000 (Tansey et al.

2004) and the GLOBSCAR (Simon et al. 2004). The

former was based on SPOT-Vegetation data and it was

coordinated by the Joint Research Center of the

European Union. The latter was an initiative of the

European Space Agency, and it was based on ERS-2

ATSR images. Finally, the MODIS program soon plans

to release a standard product on burned land areas at

the global scale, which will be based on a multitemporal

change detection approach to analyze differences

between modeled and actual reflectance, and to take

into account bidirectional reflectance distribution func-

tion (BRDF) corrections (Roy et al. 2005b). Other

authors have used active fire detections derived from

thermal channels to obtain global estimates of burned

areas (Giglio et al. 2006), but the accuracy of this

approach strongly varies in different ecozones.

One of the bottlenecks of these global approaches is

the assessment of results, which is very complex and

costly. However, proper assessment of global products is

becoming increasingly important in order to reduce

uncertainties when using them as an input to other

estimation models (Boschetti et al. 2004).

The critical need to assess global products has led to

the creation of regional networks, which can take

advantage of local expertise to fine tune global

algorithms and make them more suitable for specific

ecosystems. The Global Observation of Forest and Land

Cover Dynamics (GOFC-GOLD) program is a coordi-

nated international effort working to provide ongoing

space-based and in situ observations of forests and other

vegetation cover for the sustainable management of

terrestrial resources and to obtain an accurate, reliable,

quantitative understanding of the terrestrial carbon

budget (information available online).14 Inside this

program, the Fire Implementation Team has encour-

aged the creation of regional networks, which provide a

mechanism for the sharing of resources and expertise.

Within this framework, a Latin American GOFC-

GOLD network (named RedLatif) was created in

2002. RedLatif intended to foster the relationships

between scientists working in remote sensing and fire

applications throughout the region. One of the first

objectives of this network was the creation of a burned

land map of the region, which could be used to assess the

spatial and temporal patterns of fire occurrence at the

continental scale.

The importance of Latin America in the context of fire

occurrence and global deforestation is evident. A recent

report from the FAO (2006), which focused on the

evolution of forested areas between 2000 and 2005,

emphasized the importance of Latin America in global

deforestation rates. In fact, this region has the highest

rate of annual forest conversion, with almost 5 million

ha per year, which accounts for 67% of the world’s

deforestation. A great amount of this deforestation is

caused by wildland fires (Cochrane et al. 1999), and

therefore it is critical to better understand fire occur-

rence patterns in the region. Additionally, Latin

American biomass burning is a very important source

of global gas emissions, around 16% according to recent

studies (van der Werf et al. 2006).

The main goal of this paper is to present methods to

generate a monthly map of burned areas in Latin

America for 2004 and to analyze the spatial and

temporal patterns of fire occurrence derived from this

product. This project, developed within the RedLatif

network, was named AQL2004 (Area Quemada en

Latinoamerica, the Spanish translation of Burned Land

Areas in Latin America for 2004). The project was

intended to improve current estimations of burned areas

in the region, thus providing input to global analysis of

ecological impacts of fires, to better understand the

relations between fire occurrence and biodiversity, and

to improve the assessment of atmospheric emissions

derived from wildland fires. The extension of the area

should facilitate the creation of a global perspective of

spatial and temporal patterns of fire occurrence that

may be applicable to other regions. Considering the

limitations of the input data available for the project, a

burn patch size of 250 hectares was selected as the

minimum mapping unit.

The AQL2004 project was proposed on a volunteer

basis as part of the RedLatif network activity, and

without specific funding. Therefore, input data for

generation and validation of the product were restricted

14 hhttp://www.fao.org/gtos/gofc-gold/index.htmli
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to satellite data that was publicly available. As we will

comment later, this limitation has impacted the results

of the project, but it has also provided a good

cooperation scenario that might be useful for other

active networks. External funds were limited to coordi-

nation activities (three meetings) and were obtained

from the NASA-START program (information avail-

able online).15

METHODS

Image acquisition and preprocessing

Moderate-resolution imaging spectroradiometer

(MODIS) images were selected for the project, since

they provided a good spatial, spectral and temporal

resolution while being freely downloadable (available

online).16 The MODIS program offers a wide range of

standard products covering land, atmospheric, and

water applications (information available online).17 The

standard reflectance product MOD09 is an 8-day

composite of atmospherically corrected and calibrated

surface reflectances at 500 3 500 m pixel size, covering

the whole Earth in tiles of 1200 3 1200 km using a

Sinusoidal Projection system. Additionally, the MODIS

program offers another reflectance product (MOD43)

that includes a correction of the observation and

illumination effects (BRDF). This product includes the

same bands as the MOD09, but with lower spatial (1000

3 1000 m) and temporal (16-day) resolution. Finally, the

University of Maryland’s Global Land Cover Facility

(GLCF) compiled 32-day composites of the MOD09

product. This is not a standard product of the MODIS

program, but it has been used for land cover analysis,

and it is also freely available (Townshend et al. 2003).

The product has the same spatial and spectral resolution

as MOD09 and chooses for each pixel the second lowest

albedo value among the four 8-day composites that

formed a single 32-day product (available online).18 This

criterion is used to reduce clouds and cloud shadows in

the final composites. The product includes the seven

reflectance bands of MODIS with 5003 500 m pixel size

(Table 1). This product is joined together by continents

as a mosaic and uses the Goode Interrupted Homolosine

projection. After analyzing the advantages and disad-

vantages of the different products, the 32-day compos-

ites produced by GLCF were selected, since they

provided an adequate temporal resolution for our

project (monthly burn-area estimations) and reduced

the effects of cloud and cloud shadow contamination of

the 8-day composites. In addition, this product does not

require the user to perform geometric transformations to

obtain continental mosaics, while the standard MODIS

products are offered in 1200 3 1200 km tiles.

Twelve 32-day composites were downloaded from the

GLCF site, covering the period from December 2003

through December 2004. The complete mosaic of North

and South America was divided in 12 subregions, which

were assigned to each of the participant groups. The aim

of each group was to develop a basic discrimination

algorithm for the study area that could be later

compared with other areas for deriving a burned land

algorithm that could be used for the entire region.

In spite of the temporal compositing of daily data,

cloud contamination was still observed in the 32-day

composites, especially in some tropical regions of the

Amazon Basin and Central Venezuela. A cloud screen-

ing was performed with three reflectance bands using the

following criteria: if (band 2 . 25 AND band 3 . 60

AND band 5/band 3 . 0.7) then label as cloud, where

bands 2, 3, and 5 are MODIS reflectance in percentage.

To avoid confusion between burn scars and low

reflectance over some non-vegetated areas, such as dark

soils or water, a vegetation mask was derived from the

Vegetation Continuous Fields (VCF) data set (Hansen

et al. 2002). The product was produced by the GLCF at

the University of Maryland from the same 32-day

MODIS composite data used in our project and it was

generated from spectral unmixing analysis (Hansen et al.

2005). The VCF product was downloaded from the

GLCF web site and included three data files, with

percentage of trees, bare soil, and herbaceous vegeta-

tion, covering the period between November 2000 and

November 2001 (available online).19 The values are

scaled between 1 and 100 and the sum of the three

layers estimates 100% of ground cover.

For the AQL2004 project, the ‘‘non-burnable’’ cate-

gory was defined as pixels that had .80% of bare soil, or

alternatively those that met two conditions: ,70%

herbaceous and ,10% trees. Otherwise, they were

considered areas that could be burned. Considering the

great variety of ecosystems in Latin America, this

criterion was not applied at the beginning of the process

to avoid potential errors in areas of low vegetation

coverage. It was used as a filter at the final stages, but

regional thresholds were also applied in the semi-arid

regions of Argentina and Chile.

TABLE 1. MODIS (moderate-resolution imaging spectroradi-
ometer) spectral bands of the 32-day reflectance composite.

Band number Wavelength (nm) Spectral region

1 620–670 red
2 841–876 near infrared
3 459–479 blue
4 545–565 green
5 1230–1250 SWIR
6 1628–1652 SWIR
7 2105–2155 SWIR

Note: SWIR is short-wave infrared reflectance.

15 hhttp://www.start.org/Program/GOFC.htmli
16 hhttp://modis.gsfc.nasa.gov/about/i
17 hhttp://modis.gsfc.nasa.gov/data/dataprod/index.phpi
18 hhttp://glcfapp.umiacs.umd.edu:8080/esdi/index/jspi 19 hhttp://glcf.umiacs.umd.edu/data/vcf/i

EMILIO CHUVIECO ET AL.66 Ecological Applications
Vol. 18, No. 1

hhttp://www.start.org/Program/GOFC.htmli
hhttp://www.start.org/Program/GOFC.htmli
hhttp://www.start.org/Program/GOFC.htmli
hhttp://modis.gsfc.nasa.gov/about/i
hhttp://modis.gsfc.nasa.gov/about/i
hhttp://modis.gsfc.nasa.gov/about/i
hhttp://modis.gsfc.nasa.gov/data/dataprod/index.phpi
hhttp://modis.gsfc.nasa.gov/data/dataprod/index.phpi
hhttp://modis.gsfc.nasa.gov/data/dataprod/index.phpi
hhttp://glcfapp.umiacs.umd.edu:8080/esdi/index/jspi
hhttp://glcfapp.umiacs.umd.edu:8080/esdi/index/jspi
hhttp://glcfapp.umiacs.umd.edu:8080/esdi/index/jspi
hhttp://glcf.umiacs.umd.edu/data/vcf/i
hhttp://glcf.umiacs.umd.edu/data/vcf/i
hhttp://glcf.umiacs.umd.edu/data/vcf/i


Burned-land discrimination methods

Mapping of burn scars was based on a two-step

approach. The first step was dedicated to selecting the

most severely burned pixels in each burn scar. The second

step was aimed at improving the mapping of each burned

area by including the neighboring pixels of those

previously identified. The goal of the first phase was to

reduce, as much as possible, the commission errors (pixels

labeled as burned areas that were not actually burned),

while the objective of the second phase was to reduce the

omission error (pixels that were indeed burned and were

not classified as such; Chuvieco et al. 2002). This two-step

burned-land mapping approach should produce better

results than trying to classify all the burn scars in a single

algorithm, since it was expected to find a great diversity

of spectral signatures in such a large territory.

Discrimination of ‘‘core’’ burned pixels.—The first

phase of our discrimination algorithm was based on

applying multiple thresholds to the postfire images as

well as on multitemporal change detection. From the

original 32-day reflectance products, two vegetation

indices were computed to improve the separability of

burned and unburned areas. The normalized burn ratio

(NBR) was proposed in the 1990s to discriminate burned

areas (López Garcı́a and Caselles 1991, Key and Benson

2006) based on the contrast between near-infrared (NIR)

and short-wave infrared (SWIR) reflectance:

NBR ¼ qSWIR � qNIR

qNIR þ qSWIR

ð1Þ

where qSWIR and qNIR are NIR (generally from 700 to

900 nm) and SWIR (from 2100 to 2300 nm), respective-

ly. The index has a range from�1 to 1, with the largest

number being the most severe burn. Recently, this index

has been extensively used in the framework of the

FIREMON (Fire Effects Monitoring and Inventory

System) project (Key and Benson 2006) and will be the

basis for mapping burn severity in the United States

from Landsat-TM/ETM þ data (available online).20 We

should clarify that, for this paper, the NBR has been

formulated after changing the sign of the numerator

(qSWIR� qNIR instead of qNIR� qSWIR) to keep the scale

consistent with the index definition, since reflectance in

the SWIR is higher than in the NIR for most recently

burned areas. Since this index is intended to discriminate

burn severity, only high values of the index should be of

interest for the first phase of the project, leaving the

intermediate values to be classified in the second phase.

In addition to the NBR, a burned area index (BAI) was

also used in this project to confirm that the pixels selected

in the first phase were as close as possible to charcoal

signal, thus avoiding false alarms with other potential

mixtures of dark reflectance objects. The BAI was

developed initially for NOAA-AVHRR images (Martı́n

1998) and was recently adapted to MODIS data, also

using the NIR and SWIR bands (Martı́n et al. 2005). This

index is defined as the inverse quadratic distance of every
pixel to the convergence point of charcoal:

BAI ¼ 1

ðPcSWIR � qSWIRÞ2 þ ðPcNIR � qNIRÞ2
ð2Þ

where qSWIR and qNIR have the same meaning as in Eq.

1, and PcSWIR and PcNIR are the convergence points in
the same bands. After an analysis of sampled burned
pixels in different types of fires, they were fixed as 0.2 and

0.08, respectively.
The thresholds for discriminating burned pixels were

based on NBR and BAI values of the postfire image, as

well as the multitemporal comparisons of these indices
with previous images. These images were computed by
postfire (t) minus prefire (t � 1) values. The prefire

conditions were taken from the 32-day composite
previous to the one that was being analyzed, starting
in January 2004, which was the first target composite

and was compared to December 2003 and ending in
December 2004.

The specific threshold values were obtained from a

sample of 485 MODIS pixels extracted from burn scars
in Argentina, Colombia, and Brazil and covering
different months of the year. As said previously, the

main goal of the first phase was to reduce commission
errors to a minimum, and therefore the selection of
thresholds was based on a low percentile of the total

pixels classified as burned areas in the sampling sites.
The percentile was changed iteratively to test which
value provided consistent classification in all study sites

and land-cover types being analyzed. The final values
are included in Table 2. With these values, 12% of the
sampled pixels were detected as burn areas. This implies

a large omission error, but our main goal in this phase
was to avoid confusion with other covers.

The final step of the first phase was to eliminate small

clusters of pixels. Since the minimum target burn scar
was 250 ha, small groups of pixels were not very
reasonable and would have created severe noise.

Therefore all patches with fewer than five pixels (125
ha) were eliminated. It was expected that the final
patches would be greater than this size after the

contextual algorithm was applied.

TABLE 2. Thresholds to determine burned-land core pixels in
the first phase of the mapping algorithm.

Variable Threshold value

Postfire image

BAI MODIS .99
NBR .0

Multitemporal change

BAI MODISt – BAI MODISt–1 .1.74
NBRt – NBRt–1 .0.35

Note: BAI is burned area index; NBR is the normalized burn
ratio, which discriminates burned areas based on the contrast
between near-infrared (NIR) and short-wave infrared (SWIR)
reflectance.

20 hhttp://burnseverity.cr.usgs.gov/fire_main.aspi
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Contextual algorithm.—The second step in our

processing method was intended to refine the discrim-

ination of burn scars from those areas previously

detected as ‘‘core’’ burned pixels. In order to do this, a

contextual algorithm was developed to take into account

the similarity of neighboring pixels to those previously

labeled as burned areas. In this case, the goal was to

reduce omission errors by including those pixels that

might be less severely burned or those with a weaker

charcoal signal.

The criteria to extend the core pixels to their

surroundings were based on the geographical and

spectral similarity of targeted pixels with those already

identified as burned areas. As a criterion of geographical

similarity, a maximum distance for inclusion was

established, while the spectral criterion to add a pixel

to the burned area was based on comparing the BAI

values of that pixel with those in the vicinity. The

comparison of pixel values with the local neighborhood

has been previously used in burned land mapping

(Fernández et al. 1997), and it is routinely used in fire

detection algorithms (Martı́n et al. 1999). For this

project, the BAI was used as a measure of charcoal

similarity, and the criterion to include a pixel was based

on whether that pixel had a BAI value above the mean

of the surroundings, as defined by a certain window size

centered in that pixel. In summary, a pixel would be

added to a burn scar when its distance to any pixel in the

burn scar was below a certain threshold and when its

BAI value was above the mean BAI of the vicinity.

Several maximum distances to the core pixels were

analyzed (from 3 to 11 km) studying their performance

against sampled burned areas from which burn perim-

eters were available. A similar approach was applied to

find out the most convenient window size to extract

mean BAI value for estimating the neighborhood

patterns. Window sizes from 3 3 3 pixels to 21 3 21

pixels were tested (Fig. 1). The effects of different

window sizes were not evident, although larger windows

tended to be more consistent in patchy areas. Therefore,

a window of 21 3 21 pixels was finally selected.

Analysis

Geographical patterns of the results were based on

latitude and longitude fringes on one hand and land

cover types on the other. The former was aimed at

providing a zoning analysis of fire occurrence, while the

latter was intended to offer a global view of the most

affected ecosystems. The land cover layer was extracted

from the MOD12Q1 (v.4) standard MODIS product,

generated by the University of Boston (available on-

line).21 This product was generated from MODIS data

from the period 1 January 2001 to 31 December 2001,

and it is based on reflectance data, spectral vegetation

indices and surface texture information. The product is

offered for different land-cover classification systems.

We selected the classification system defined by the

International Geosphere Biosphere Program (IGBP)

land cover project (Belward 1996), which includes 17

global land cover categories. The product was available

in Interrupted Goode Homolosine projection, thus

facilitating the comparison with the AQL2004 results.

The world mosaic was downloaded, and the Latin

FIG. 1. Effect of changing window size in the regional context algorithm: (a) 3 3 3 pixels, (b) 21 3 21 pixels. The area shown
covers a MODIS image of central Brazil.

21 hhttp://www-modis.bu.edu/landcover/userguidelc/intro.
htmli
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American region was extracted for further analysis

(available online).22

Assessment

Accuracy assessment is a critical component of any

method to generate spatial information, but it has been

greatly emphasized in studies based on remotely sensed

images (Congalton and Green 1999). Most local studies

include sound procedures to validate the results, based

on field sampling or higher spatial resolution imagery.

However, this task is especially complex when generat-

ing global products since it involves covering large areas

with a wide diversity of potential errors. However, the

importance of validating global variables is acknowl-

edged by most global scope projects, and networks of

scientists are built upon those projects to ensure

accuracy assessment. For instance, the MODIS program

has a specific task group dedicated to product validation

(Morisette et al. 2002), and the team involved in the

MODIS burned-land product has already produced an

extensive validation protocol for some study sites within

the SAFARI campaign (Roy et al. 2005a). In burned-

land mapping, neither the GBA2000 nor the GLOBS-

CAR project have undertaken a full validation strategy,

although some efforts have been proposed for retro-

spective validation (Boschetti et al. 2006).

The AQL2004 project was designed by a network of

local scientists, therefore product validation was con-

sidered a priority from the beginning of the project.

Considering the financial constraints of the project, the

validation was based on high-resolution satellite images

that were donated by regional space agencies. The

Argentinean agency CONAE (Comisión Nacional de

Actividades Espaciales), the Brazilian agency INPE

(Instituto Nacional de Pesquisas Espaciaes), and the

Mexican agency CONABIO (Comisión Nacional para el

Conocimiento y Uso de la Biodiversidad) provided

Landsat-TM/ETMþ (30-m pixel size), CBERS (China–

Brazil Earth Resources Satellite; 20 m), and SPOT (20

m) images, respectively, for the validation of the burn-

scar product. Fig. 2 shows the images that were used for

validation of the whole project.

FIG. 2. Validation sites where high-resolution satellite data were processed. Dark boxes refer to Landsat-TM/ETMþdata; gray
boxes are CBERS images.

22 hhttp://duckwater.bu.edu/lc/mod12q1.htmli

January 2008 69BURNED-LAND ESTIMATION FROM MODIS DATA

hhttp://duckwater.bu.edu/lc/mod12q1.htmli
hhttp://duckwater.bu.edu/lc/mod12q1.htmli
hhttp://duckwater.bu.edu/lc/mod12q1.htmli


The validation itself was based on visual interpreta-

tion of those higher resolution images from which fire

perimeters were derived. The images were previously

converted to the Goode Homolosine Projection, to

match the MODIS input data. Visual analysis has been

widely used for discriminating burn scars (Roy et al.

2005a), since burned areas generally have a distinct color

and shape pattern. Visual interpretation was digitized on

screen, and vector files were extracted to cross tabulate

with results from our burned land algorithm to generate

confusion matrices (agreement between the results and

the high-resolution data). Common measures of accu-

racy and error (omission and commission errors, and

global accuracies; Congalton and Green 1999) were

computed.

Considering the great differences in spatial resolution

between the two sets of images (MODIS, 500 m and

TM/ETM/CBERS 20–30 m), the interpretation of the

omission and commission errors from this cross

tabulation must be done cautiously, since some of them

should in fact be associated to misregistration or

differences in spatial coverage of both data sets. To

reduce the impact of these problems, other validation

techniques were carried out. An alternative to validate

our burned area results was to extract the proportion of

burned area in both MODIS and high-resolution images

for a grid of regular cells (in this case, a 5 3 5 km grid

was selected). This approach has been suggested by

other authors (Roy et al. 2005a) and facilitates a spatial

statistical assessment that is less affected by registration

problems or differences in pixel size. This approach was

restricted to those images with a significant proportion

of burned area. Otherwise, the comparison is statistically

meaningless.

Additionally, to test the effect of fire size on the

quality of discrimination, a global comparison between

the number of burn patches detected by MODIS and

those detected by high-resolution images was performed.

In this case, we completed that analysis only for the

validation sites that have a great number and diversity of

burn scars. Also, we considered that a burn patch was

detected when at least 10% of its area was identified in

the MODIS images.

Finally, our results were also compared to the active

fires detected by the MODIS program. Although they

are produced by the same sensor, active-fire products are

independent from burned-land products because they

are based on a completely different physical principle

(Justice et al. 2002). Active fire detection is based on

middle infrared bands (3–5 lm wavelength), which are

the most sensitive to detect high-temperature targets,

and therefore the fires are only detectable when they are

active, while burned-land maps are based on postfire

conditions. Therefore, since the two products are

independent, their agreement indicates a greater likeli-

hood of accuracy (Roy et al. 2005b). For this project, all

active fires detected by the MODIS program (Giglio et

al. 2003) for 2004 were downloaded and grouped in 253

25 km cell sizes (data available online).23 The number of

active fires per month was compared with the total

burned area discriminated by our algorithm. A total

number of 29 175 cells was obtained for South America

and 5174 for Mexico and Central America, after

removing those where water covered more than 95% of

the cell area.

RESULTS

Geographical analysis of burned areas

Fig. 3 includes the summary of the project results,

with the geographical distribution of burned areas

discriminated in the different periods of the MODIS

32-day composites. A total number of 14 446 burned

land polygons were identified by the AQL2004 algo-

rithm, which covered an area of 153 215 km2. The most

affected countries were Argentina, Brazil, Colombia,

Bolivia, and Venezuela, which make up 90% of the total

area burned. In relative terms, the AQL2004 results

show that the most affected countries were Cuba,

Colombia, Bolivia, Venezuela, and Argentina, all of

which had .1.2% of the national territory burned

(Table 3). The most continuous areas affected by

biomass burnings are the savanna regions of Colombia

and Venezuela, the boundaries of the evergreen forest in

Brazil and Bolivia, and the Central and Northern

provinces of Argentina. Central Cuba and the southern

part of Guatemala were also noticeable. Scattered

patches were observed in Mexico and Chile.

The burned areas affected a wide variety of land-cover

types, but the herbaceous areas presented a much higher

impact. In fact, grasslands, woody savannas, and

savannas accounted for 63% of the total burned area

detected in this project. For these categories the fire

affected around 1.5% of the total area they cover in the

region. Only croplands represented a higher proportion,

with more than 2%.

The evergreen forest showed the higher ratio between

the percentage of total area covered in the region and the

percentage of total burned area (36%:7.22%), while the

lower ratio was found for croplands and grasslands

(8.04%:17.21%). This ratio implied that the percentage

of burned area in evergreen forest was much lower than

the total percentage of area covered by this category,

being the opposite in the case of grasslands. In other

words, according to our results, biomass burning had

much less impact in evergreen forests than in grasslands.

However, from a fire-emissions point of view, the

importance of evergreen forests is obviously greater

because they have much higher biomass loads.

Seasonal trends

Biomass burning followed seasonal dry periods in

2004, as it might be expected. Grasslands and herba-

ceous areas in the Northern Hemisphere were burned

23 hhttp://maps.geog.umd.edu/firms/shapes.htmi
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mainly between January and the middle of March, while

in the Southern Hemisphere the peak of fire occurrence

was observed between July and September (Fig. 3).

Seasonal distribution of burned areas for the most

affected countries can be observed in Fig. 4. A clear

burn-land peak during the dry season was observed for

Colombia and Venezuela in the Northern Hemisphere

(February), and Brazil and Bolivia in the Southern

Hemisphere (September–October). Mexico had low fire

occurrence in 2004, and the most affected months do not

clearly match the driest periods. Argentina presented an

unexpected pattern, too, since most burned areas were

detected between March and June.

The most common land covers in burned areas are

shown in Fig. 5 for the different periods of analysis. The

impact of fire on herbaceous vegetation was distributed

throughout the year, although in the dry season

(February in the Northern Hemisphere and August–

September in the Southern Hemisphere) it accounted for

an even larger percentage. An important percentage of

FIG. 3. Geographical distribution of burn scars for the different MODIS 32-day composites, December 2003 through
December 2004.
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the burned land was found in agricultural areas (17%).

Shrubs were the dominant land cover in 8% of the

burned area and they were distributed evenly through-

out the year. The forested areas covered almost 10% of

the burn scars. From those areas, evergreen forests

burned more than deciduous forest, although important

proportions of deciduous forest were also burned in

June/July and September.

TABLE 3. Burned areas mapped in the AQL2004 project in the different 32-day periods.

Country

Burned area (km2)

27 Dec–
1 Feb

2 Feb–
4 Mar

5 Mar–
5 Apr

6 Apr–
7 May

8 May–
8 Jun

9 Jun–
10 Jul

11 Jul–
11 Aug

12 Aug–
12 Sep

13 Sep–
14 Oct

15 Oct–
15 Nov

16 Nov–
25 Dec

Total,
all periods

Argentina 542 1357 2953 6851 6803 7285 2701 1700 3321 667 1000 35 178
Belize 0 0 0 0 0 0 0 0 0 11 0 11
Bolivia 42 156 29 107 98 265 2139 5632 6453 1274 80 16 274
Brazil 298 332 2135 2012 2010 5233 9744 12 510 12 687 4611 1560 53 131
Chile 56 256 671 312 109 66 18 80 223 62 69 1921
Colombia 4532 12 789 1602 0 0 86 32 85 134 10 180 19 449
Costa Rica 0 15 34 0 0 0 0 0 0 0 0 48
Cuba 1261 645 1052 54 0 0 19 0 0 120 170 3320
Dominican
Republic

23 0 0 0 0 0 0 0 0 0 0 23

Ecuador 18 0 13 12 0 0 14 0 31 28 0 116
El Salvador 30 0 0 0 0 0 0 0 0 0 21 51
Guatemala 263 159 40 0 0 0 0 0 0 24 182 668
Guyana 54 26 0 0 0 0 0 11 0 83 159 332
Haiti 0 0 0 0 0 0 0 0 0 17 0 17
Honduras 23 0 20 0 0 0 0 24 0 0 42 107
Mexico 234 89 262 161 19 32 106 62 1907 1295 664 4829
Nicaragua 223 40 19 0 0 0 26 0 0 9 30 347
Panama 0 0 0 0 0 13 0 0 0 0 0 13
Paraguay 46 753 877 24 24 162 57 518 1411 461 0 4333
Peru 28 12 23 16 15 14 9 20 28 19 5 188
Suriname 0 12 10 0 0 0 0 0 39 8 14 81
Trinidad and
Tobago

0 8 8 0 0 0 0 0 0 0 0 16

Uruguay 6 12 67 9 9 7 37 30 34 24 27 260
Venezuela 3567 6384 2041 0 0 41 0 0 0 55 414 12 501
Total 11 246 23 041 11 854 9557 9087 13 203 14 901 20 670 26 266 8777 4613 153 215

Notes:Dates (32-day measured periods) are shown as initial day and month through final day and month, beginning in December
2003 and ending December 2004. AQL2004 is Area Quemada en Latinoamerica (burned land areas in Latin America) for 2004.

FIG. 4. Seasonal distribution of burned areas for different Latin American countries, December 2003 through December 2004.
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Assessment

Validation of the AQL2004 algorithm results were

performed with both higher resolution data and active

fires detected by the thermal channels of the MODIS

instrument. We have used the term agreement, instead of

accuracy, since the disagreements between reference data

(high-resolution images or active fire detections) can not

always be considered errors, as it will be explained in the

Discussion section, although they provided an initial

assessment of the project performance.

The first assessment was based on cross-tabulation

analysis of MODIS and high-resolution images. Fig. 6

FIG. 5. Monthly burned areas for different land covers, December 2003 through December 2004.

FIG. 6. Validation results by study site. Total percentage agreement (black line) refers to both burned and unburned classes,
while bars refer to omission and commission percentage disagreements of the burned area (BA) exclusively.
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includes total agreement between the two sources, as well

as commission and omission disagreements for burned

land discrimination as a proportion of areas observed in

high resolution images (Landsat or CBERS).

Total agreement, as defined by both the burned and

unburned area discrimination, was very high in all study

sites, since in most validation sites the vast part was

covered by unburned areas that were properly discrim-

inated as such. Values were generally higher than 95%,

with a global value of 96% for all validation sites.

However, burned-land discrimination showed high

omission and commission disagreements in most vali-

dation sites, with a total value of 47% commission and

63% of omission with respect to high-resolution burned

areas. The disagreements between the two sources were

especially high between 88 S and 148 S of the Southern

Hemisphere, and central and Southern regions of

Argentina (Fig. 6). The lower omission errors were

found for Mexico and the border between Brazil and

Bolivia. It is important to remark that omission and

commission disagreements were generally balanced in

the different study areas, which made it possible to

obtain more confident area estimations from our results.

Areas covered by herbaceous vegetation offered the

lowest agreement across all validation sites, although

they were also the most frequent (Fig. 7). We observed

87% of all omission and 89% of commission disagree-

ments in herbaceous covers (grass and crops), mostly

associated with croplands in the latter case. Grasslands

offered higher agreement in tropical regions of Colom-

bia and Brazil than in temperate areas of Argentina;

although the amount of burned area in herbaceous

vegetation was also lower in this latter region. Forest

showed a higher proportion of well discriminated

unburned areas and had a significant, lower ratio of

omission and commission errors.

An alternative view of validation can be observed in

Fig. 8, which shows two examples of the spatial

validation procedure. A cross tabulation between burn

scars discriminated in the MODIS and the high-

resolution images made it possible to analyze the spatial

distribution of agreements and disagreements between

the two sources As it can be observed in Fig. 8a, c, the

disagreements are spatially contiguous with the matched

pixels, and therefore they should be more related to

boundary effects than to an incorrect discrimination.

The scatter plots with the proportion of burned areas in

both high and low resolution data for different 53 5 km

cells (Fig. 8b, d) provided a complementary view of the

spatial agreements between the two data sources. In

both cases, the correlations between the two sources are

highly significant, but the slope is closer to 1 in the

Brazilian site, mainly covered by forested areas.

Table 4 classifies the performance of burn-scars

detection by the AQL algorithm considering fire size.

As it could be expected, small patches have a low

detection rate. Below 1500 ha, the rate fluctuates from

75% to just 50% of all burn patches. Above that

threshold the detections significantly improve, going up

to 100% in most cases. The differences in area detected

between MODIS and high-resolution images are nota-

ble, but it is important to emphasize that the algorithm

provides a good spatial assessment of burns in the

region, at least for medium-to-large fire sizes.

The final validation exercise was focused on compar-

ing burn scars and active fires. A 25 3 25 km grid cell

was used in this case for extracting both sources of fire

information. The proportion of pixels within each cell in

both sources was correlated for the entire region. Table

5 offers the results for South America and Mexico. The

trends show a global tendency of agreement between the

two data sources with positive correlations for most

periods. The mean correlation between the two sources

of data was 0.229 (P , 0.001). The peaks of fire

occurrence, in January–February and August–Septem-

ber, also offered the highest correlations, especially the

former. In Central America, the correlations were

generally lower. Differences in agreement values were

observed between different land covers. Grasslands

presented the highest correlations in the dry periods of

both hemispheres, while forested areas and crops offered

FIG. 7. Validation results by main land covers (upper panel)
as a percentage of total area in different agreement conditions
and (lower panel) as a percentage of total area of different land
covers. Burned and unburned categories refer to areas that were
well detected as burned or unburned.
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low accuracy at the beginning of the year, but the

correlations increase from February to August. Shrubs

showed better r correlation at the beginning of the time

series, but show poor agreement for the months of

March–October.

DISCUSSION AND CONCLUSIONS

The AQL2004 project generated a burned land map of

Latin America for 32-day periods covering 2004. The

total estimation of burned area for the region (153 215

km2) was close to that obtained from similar projects for

2000, when the GBA2000 project estimated 137 000 km2

and GLOBSCAR 162 774 km2, as well as with the mean

burned area calculated for the 1997–2004 period from

active fire detections (200 000 km2; van der Werf et al.

2006). To obtain similar estimations, in spite of using

very different sensors (SPOT/VEGETATION for the

GBA2000 project and ATSR for GLOBSCAR) or

different data sources (active fires in the van der Werf

et al. [2006] study), confirms the robustness of the

burned-area estimations.

At a local scale, the estimations should be taken with

more caution, according to the results of our assessment

exercise and the work of other authors. For instance,

Armenteras et al. (2005) found the burned area to be

about one-third of the AQL2004 results in their 2000

and 2001 analysis of the Colombian savannas using

Landsat images, although their data do not refer to the

whole country, as AQL2004 does. In any case, their

study showed a similar temporal pattern to the one

found for AQL2004 data. Conversely, according to

deforestation rates of Brazil and its close association to

burnings, as well as the use of fire for some crops (sugar

cane), the estimation of burned areas for the AQL2004

project should be considered very conservative, since

some sources estimate the annual burned area in this

country up to more than 500 000 km2 (A. Setzer,

personal observation).

FIG. 8. Two examples of the validation procedure: panels (a) and (c) show cross-tabulated images of burned areas in Landsat
and MODIS; panels (b) and (d) are scatter graphs derived from 5 3 5 km grids with the percentages of burned area identified by
both sources. The site in panels (a) and (b) is eastern Colombia; the site for panels (b) and (d) is western Brazil.
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The case of Mexico requires a further examination,

since it offered a very low percentage of burned areas

compared to the size of the country. Although national

statistics do not match AQL2004 estimations in absolute

numbers, they clearly show a decrease in fire activity for

2004. In fact, that year had the lowest fire occurrence in

Mexico in the period 1998–2005 according to the

Mexican Forest Service. This was caused by humid

conditions, especially at the beginning of the year. The

seasonal trends of expected fire occurrence did not agree

with the observed trends, since in Mexico the burned

land areas were mainly detected during the fall, which is

ordinarily wetter than early spring, although the

particular weather patterns of 2004 were not available

for validation of this hypothesis. Confusion between

agricultural crops and wildland fires may explain this

temporal trend since many burn scars were located in

agricultural areas. However, there is not much informa-

tion on agricultural burnings in the country.

The validation of the results was done with four

different methods that generally agreed, although

various uncertainties in the reference data preclude

deriving definitive conclusions. On one hand, the

comparison of high resolution data (Landsat or

CBERS) with MODIS data implies potential problems

caused by misregistration or boundary effects related to

the great difference of pixel sizes between the two

sources. In this regard, the comparison between burn

patches in our results and high-resolution data shows

very adequate agreement, especially when fires are larger

than 1500 ha.

Another source of discrepancy between MODIS and

high-resolution images was associated with the different

time periods they refer to. Our input data were 32-day

composite periods. Therefore, when using a Landsat

image from after the end of the composite period, it was

difficult to assess whether, for instance, the burned areas

not detected by the AQL algorithm were in fact

omission errors or rather fires that occurred between

the end of the 32-day composite period and the time of

Landsat image acquisition. An opposite situation would

occur when the Landsat image was acquired within the

32-day composite period, but in this case it would affect

the commission errors.

Finally, the relation between hot spots and burn scars

improved the spatial analysis of errors, but it can not be

TABLE 5. Pearson r correlation values between burn scars and active fires for the different 32-day study periods.

Period

South America Mexico

Forest Shrubs Grasslands Crops All covers All covers

27 Dec–1 Feb 0.045 0.376 0.492 0.035 0.367 0.020
2 Feb–4 Mar 0.265 0.450 0.453 0.423 0.383 0.236
5 Mar–5 Apr 0.071 0.119 0.309 0.096 0.233 0.069
6 Apr–7 May 0.033 �0.002 0.103 �0.042 0.022 0.056
8 May–8 Jun 0.173 0.173 0.131 �0.027 0.042 0.077
9 Jun–10 Jul 0.203 0.137 0.273 0.368 0.195 0.057
11 Jul–11 Aug 0.227 0.062 0.293 0.301 0.170 0.000
12 Aug–12 Sep 0.331 �0.032 0.404 0.083 0.149 0.119
13 Sep–14 Oct 0.190 0.048 0.221 0.054 0.184 0.240
15 Oct–15 Nov 0.130 �0.002 0.062 0.015 0.066 0.160
16 Nov–25 Dec 0.119 0.130 0.069 0.040 0.065 0.237

Note: Study periods are shown as initial day and month through final day and month.

TABLE 4. Number of burn patches detected by the AQL algorithm vs. those observed in high-resolution (HR) images.

Fire size (ha)

No. burn patches

HR estimation (ha) AQL estimation (ha) Detected fires (%)Observed Detected

250–500 54 27 20 515 6078 50.0
500–750 30 20 17 885 7043 66.7
750–1000 28 23 23 480 12 686 82.1
1000–1250 16 9 17 713 6455 56.3
1250–1500 16 12 21 016 8940 75.0
1500–1750 13 12 20 152 10 994 92.3
1750–2000 8 6 13 892 4505 75.0
2000–2250 11 9 22 061 11 614 81.8
2250–2500 9 8 19 823 5727 88.9
2500–2750 7 7 16 397 7895 100.0
2750–3000 9 8 23 571 9630 88.9
3000–3500 12 10 35 243 14 034 83.3
3500–4000 8 8 26 934 10 748 100.0
4000–10 000 15 14 98 215 36 917 93.3

.10 000 14 14 493 586 252 200 100.0

Total 250 187 870 483 405 466 74.8
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properly considered a reliable validation, as detected

active fires refer to the specific time of the satellite

overpass, and it may miss those that occurred at other

day or night periods.

The agreements between our results and both sets of

data can be globally considered as acceptable, consider-

ing the project constraints. Global agreement (both

burned and unburned areas) was very high, and omission

and commission disagreements were generally balanced

in the different validation sites. The most spatially

comprehensive validation of our results was based on

comparing active fire detections and burned area,

although these two products are conceptually different

(Giglio et al. 2006). The global correlation between these

two sources (r ¼ 0.229) was very significant, showing

common spatial patterns of fire occurrence. This Pearson

r correlation is higher than those measured for similar

global burned-land products. For instance, Boschetti et

al. (2004) computed for the Latin American region a

Pearson r value of 0.013 between the results of the

GBA2000 burned land areas and the active fires derived

from ATSR sensor on board the ERS satellite. The r

value was even lower for the relationship between

GLOBSCAR and active fires (�0.003), in spite of being

derived from the same ATSR sensor.

However, for local regions, our assessment exercise

also showed that additional efforts are required to adapt

the global algorithm to specific land cover or climatic

regions, as well as to explore potential improvements

with other standard MODIS products. The main

potential sources of errors for the AQL2004 project

can be related to the limitations of input data, the global

character of the algorithm, and the great ecological

diversity of the region.

One of the most important limitations of our input

data for burned-land mapping is the length of 32-day

MODIS composites. In fact, the herbaceous vegetation

showed the lower agreement with high-resolution data,

on one hand because commission problems were

observed because of changes from green areas to dark

soils after harvesting. When referring to omission errors,

the postfire char signal of grasslands is the less

permanent among land covers, and therefore the use

of long compositing periods, such as the 32 days used in

this project, may be responsible for lower agreements

with observed burn scars in high-resolution images. This

effect of image frequency on discrimination of burn

scars has been observed in other studies from tropical

regions, where the carbon signal has almost disappeared

within a few weeks after the fire (Trigg and Flasse 2000,

Armenteras et al. 2005). Regarding the angular effects

on the 32-day MODIS composite, the use of the

MOD43 product, which includes a BRDF correction,

may be more advisable as it has already observed by

other authors (Roy et al. 2005b).

Development of local algorithms is another line of

potential improvement of the AQL2004 project. The

results from Mexico and Patagonia, for instance, show

promising opportunities for developing thresholds or

new spectral indices that may be better adapted to the

particular soils or vegetation characteristics of the

region. Preliminary analysis in Patagonia and Central

Buenos Aires in Argentina with ‘‘local tuned’’ algo-

rithms showed better results that those obtained with the

global AQL2004 algorithm, but they could not be easily

generalized.

We have already commented on the importance of

having a systematic evaluation of burned areas in the

region. From a global emission estimation point of view,

Latin America during the period of 1997–2004 account-

ed for 5.81% of the total burned area and 15.77% of the

total biomass burning carbon emissions, and it had an

emission ratio more than three times higher than Africa

for the same period (van der Werf et al. 2006).

On the other hand, wildland fires are still the main

factor of land-use change in the region. Fire is used to

remove vegetation in the first phase or after logging,

PLATE 1. (Top) Recent fires in the Ecuadorian Andes. Burn
areas in wet zones of the tropical Andes region tend to have
small sizes and create a patchy mosaic. Photo credit: E.
Chuvieco, December 2005. (Bottom) Active fires in the interior
sierras of Cordoba Province (Argentina). A mixture of pine
plantations and natural forest was affected by this fire, in one of
the driest summer seasons on record. Photo credit: E. Chuvieco,
November 2003.
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then causing a permanent degradation in many areas

previously covered by evergreen forest (Cochrane et al.

1999).

Finally, the ecological impacts of fire need to be

addressed at global and local scales by improving

current fire history estimates and spatial distribution of

burned areas. The effects of fire on biodiversity and soil

degradation have been emphasized by several authors

(Siegert et al. 2001, van Nieuwstadt et al. 2001),

especially when the natural fire regimes are shortened.

Fire regimes are a combination of many different

aspects (fire frequency, size, length, seasonality, severity,

and so on), and burned land products should be

considered an important component of their analysis,

including monitoring changes to the regimes and

developing better understandings of the role of fire in

current landscape spatial structure (Vega-Garcia and

Chuvieco 2006). The AQL2004 project has shown a

great potential to provide input data to undertake this

ecological analysis.
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Pérez-Cabello, and E. Chuvieco, editors. Proceedings of the
Fifth International Workshop on Remote Sensing and GIS
applications to Forest Fire Management: Fire Effects
Assessment. Universidad de Zaragoza, GOFC-GOLD,
EARSeL, Paris, France.

Morisette, J. T., J. L. Privette, and C. O. Justice. 2002. A
framework for the validation of MODIS Land products.
Remote Sensing of Environment 83:77–96.

Pereira, J. M. C. 1999. A comparative evaluation of
NOAA/AVHRR vegetation indexes for burned surface
detection and mapping. IEEE Transactions on Geoscience
and Remote Sensing 37:217–226.

Roberts, S. J. 2000. Tropical fire ecology. Progress in Physical
Geography 24:281–288.

Roy, D., et al. 2005a. The Southern Africa Fire Network
(SAFNet) regional burned area product validation protocol.
International Journal of Remote Sensing 26:4265–4292.

Roy, D., Y. Jin, P. Lewis, and C. Justice. 2005b. Prototyping a
global algorithm for systematic fire-affected area mapping
using MODIS time series data. Remote Sensing of Environ-
ment 97:137–162.
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