Spectral characteristics of deforestation fires in NOAA/AVHRR images

M. C. PEREIRA and A. W. SETZER

Department of Remote Sensing and Satellite Meteorology, Instituto Nacional de Pesquisas Espaciais, INPE/DSM, C. Postal 515, S. J. Campos, SP, Brazil, 12201

(Received 29 April 1991; in final form 10 December 1991)

Abstract. This work presents optical-spectral and radiometric characteristics of fires associated to tropical deforestation as recorded by full resolution AVHRR/NOAA-9 images in the Amazon region during a dry season. Results showed that fires and smoke clouds were spectrally distinct and easily separated from surrounding ground covers by automatic digital processing. Channel 3 (3.55 to 3.93 µm) was the most appropriate to identify active fires whose pixels had digital counts about one order of magnitude higher than common ground covers.

1. Introduction

The use of the AVHRR (Advanced Very High Resolution Radiometer) on-board satellites of the NOAA-series (National Oceanic and Atmospheric Administration) to detect smoke plumes was first reported by Ernst and Matson (1977). They detected forest fire plumes on NOAA-5 images that originated in Canada and spread over the Bering Strait. Dozier (1981), Matson and Dozier (1981) and Matson et al. (1984) demonstrated that channel 3 (3.55 to 3.93 μm) of the NOAA polar orbiters could be used to detect forest fires over extensive regions. They also proposed that sizes of fires and even their temperatures could be obtained combining channels 3 and 4 (10·3–11·3 µm) if the AVHRR pixels were not saturated. Chung and Le (1984) used NOAA-7 imagery to identify forest fire plumes in West Canada in 1981, which were advected for 3000 km or even 5000 km over east North America, and covered areas over 1.2×10^6 km². Svejkovsky (1985) detected in channel 1 (0.55 to 0.68 μ m) and 2 (0.75 to 1.1 µm) of NOAA-6 images large smoke clouds possibly associated with large forest fires in California, some 1100 km away. Flannigan (1985) and Flannigan and Haar (1986) detected forest fires in Alberta, Canada, also with NOAA satellites and stressed the low cost and satisfactory spatial and temporal resolution of the technique. Malingreau (1984) and Malingreau et al. (1985) used NOAA-7 images to detect and map forest fires in Indonesia and Borneo in 1982-83, and showed that 'vegetation indexes' obtained through AVHRR channels 1 and 2 can be used to evaluate the extension and damage of the fires. Muirhead and Cracknell (1985) were able to detect with channel 3 of AVHRR 300-400 fires from straw and stubble burning in Great Britain. Fires near Manaus, in the Brazilian Amazonia, have been located by Matson and Holben (1987) with the same technique, and they suggested the use of AVHRR data to monitor fires on a global scale. Examples of fire detection in many parts of the world are found in Matson et al. (1987). AVHRR data was also used to assess the extensive fires in the Yellowstone Park (EOSAT 1988).

More recently, another example of AVHRR algorithm to detect fires was proposed by Lee and Tag (1990), and an extensive review of orbital remote sensing detection of fire was done by Robinson (1991). Concerning effects of biomass burning in the atmosphere (Crutzen and Andreae 1990), AVHRR has also started to play a significant role. Andreae et al. (1988) were able to show that haze layers over Amazonia originated from deforestation fires detected by AVHRR. Kirchhoff et al. (1989) related the seasonality of ground measurements of ozone concentrations in Central Brazil to emissions from biomass burning detected in AVHRR channel 3, and Setzer et al. (1991) related the number of fires in channel 3 to tropospheric ozone variations measured in an aeroplane during the 'burning season' of Brazil. The amazing amount of such fires, of more than 350,000 in the dry year of 1987, has been estimated with AVHRR (Setzer and Pereira 1991a). Kaufman et al. (1990) discussed more techniques to estimate emissions from biomass burning in Amazonia based on AVHRR images also for 1987.

The objective of the present work was to determine optical-spectral and radiometric characteristics of fires associated to tropical deforestation in Brazil as registered by the AVHRR imaging instrument of the NOAA-series satellites. These fires do not occur naturally in the Amazon forest, and they only burn what was cut a few months before and let dry. Information about such fires is needed considering alarming rates of forest conversion in the tropics and the urgency to detect and monitor deforestation, fires and their emissions. Operational programmes to detect fires already exist (Setzer and Pereira 1991b) or are being proposed (Frederiksen et al. 1990, Malingreau 1990) and spectral studies of the targets will certainly improve the methods in use or under consideration.

2. Materials

Full spatial resolution Advanced Very High Resolution Radiometer (AVHRR) images on channels 1, 2 and 3 from the NOAA-9 Sun-synchronous satellite (Kidwell 1985) were recorded from 26 July to 9 August 1985, at the HRPT (High Resolution Picture Transmission) tracking and receiving station of the Brazilian National Institute for Space Research (INPE) located at Cachoeira Paulista, SP (Lat 22°40'S Long 45°01'W), see table 1.

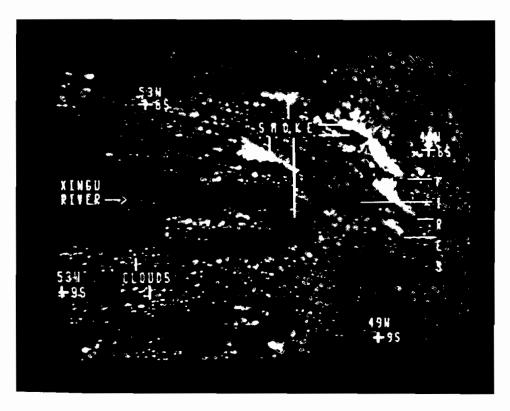
Date	0.17	Equatorial crossing			
	Orbit no.	Hour, GMT	Longitude		
19 July	3094	18 h18′43″	57·62°W		
20 July	3108	18 h07′55″	54.91°W		
21 July	3122	17 h57'06"	52·19°W		
26 July	3193	18 h45'09"	64·15°W		
27 July	3207	18 h34'20"	61·04°W		
29 July	3235	18 h12'43"	55.96°W		
31 July	3263	17 h51'06"	50·52°W		
5 August	3334	18 h38′06″	65·61°W		
6 August	3348	18 h28′11"	57·79°W		
7 August	3362	18 h17'22"	57·07°W		
9 August	3390	17 h55'45"	51·64°W		

Table 1. NOAA-9/AVHRR images of 1985 used in the study.

Picture element (pixel) sizes vary from the nominal nadir resolution of 1·1 km by 1·1 km to a maximum of about 2·4 km by 6·9 km at the off-nadir border of the image, when the scan angle reaches the maximum of 55.4° for the 1024th pixel. The channels recorded covered the optical spectrum in the 0.58-0.68 μ m (visible light), 0.72-1.1 µm (near-infrared) and 3.55 to 3.93 µm (medium-infrared). Digital recording was made using only the eight most significant bits out the ten existing in the radiometric resolution. Channel 4 (10·3 to 11·3 μ m) and 5 (11·5 to 12·4 μ m) were not recorded due to technical limitations of the station at that time. The information in these channels is probably not relevant for this study since they detect little energy from fires as pointed by Matson et al. (1984), and also because detection of regular clouds is possible also in channel 2. A strip of 100 pixels on each border of the images was disregarded to avoid analysis of highly geometrically distorted pixels. No atmospheric correction was made to account for different viewing angles of the AVHRR. The ascending orbit images used are listed in table 1 and were part of the images recorded for the fire detection programme of INPE (Setzer and Pereira 1991 b). Full resolution image processing was carried out in an 'Image-100' ('I-100') multi-spectral image analyser (GE 1975). The images were analysed in sectors of 512 by 512 pixels to match the I-100 maximum resolution and avoid sampling or repetition of pixels in the digital processing. The softwares used were 'histogram' to obtain distribution of digital counts, 'cluster synthesis' to allocate pixels in predetermined multi-spectral classes and the 'single cell' classifier to obtain statistics for classes of interest. 'Stretching' was used to produce enhanced images for visual interpretation and for photographing.

3. Results and discussion

Figure 1 shows digital counts in a scale of 256 levels for pixels in three AVHRR channels for a region near Carajas, PA, as registered in the 7 August image. The area limited by the continuous line in the centre corresponds to a site burning when the image was obtained; this area is also shown in the pair of pictures in figure 2, at about 9° S and 50·75° W. The evidence considered to associate active fires to this area was the presence of smoke in channels 1 and 2 originating from the same area. This same evidence was found for all other areas classified as burning sites. The digital counts for the hot or 'fire pixels' in thermal channel 3, from 1 to 12 (1 corresponding to the hottest possible temperature), are about one order of magnitude smaller than surrounding pixels associated to vegetation, with counts up to 149. Counts between 39 and about 100 possibly correspond to areas already burned or starting to burn at the time the image was acquired.


In channels 1 and 2 the pixels in the site can also be distinguished from the surrounding pixels, but not as evidently as in channel 3. In channel 2 pixels in the burning site, not covered by too much smoke, had counts between 30-37, only about 20 per cent less than pixels in the surrounding areas. Pixels covered by dense smoke had counts of 50-78 inside the site, and up to 126 to the west of the site, and therefore above the counts of the vegetation. Correspondingly, for channel 1 the values were 30-35, or 25 per cent higher for pixels with not much smoke, 45-81 for pixels with smoke in the site and up to 134 outside the site.

The above situation results largely from the high emission of energy by fires and by the transparency of smoke and of the atmosphere in the wavelengths of channel 3 in comparison to channels 1 and 2. As calculated by Robinson (1991), fires between 825-1000 K have the peak of spectral emission from $3.5-2.9 \mu m$, with an energy

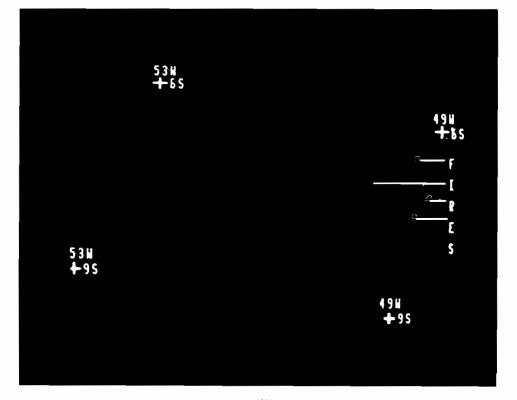

```
CHANNEL
             43 32 42 43
                             33
                                   31
                                       31
                                           29
                                                27
                                                    25
                                                         24
 58 68
              51
                  54 89
                          85
                                       33
                                                29
                                                    24
                                                             27
                                                                 29
                                                                      29
                              65
                                   44
                                           38
                                                         24
 72 110 110
                                       92 104
              59
                  66 112 121 103
                                   69
                                                48
                                                    28
                                                         36
                                                             37
                                                                      26
                                                                 28
102 134 107
              64
                  75 117
                          130
                               93
                                   71
                                       93
                                            55
                                                30
                                                    27
                                                         29
                                                             26
                                                                 24
                                                                      25
 82 105
              78
                      71
                           76
                               54
                                   48
                                                33
                                                    29
                                                         24
                                                             24
                                                                      37
                  64
                                        50
                                            35
                                                                 28
 67
     72
         64
              70
                  62
                      74
                           78
                               55
                                   58
                                       60
                                            36
                                                33
                                                    30
                                                         26
                                                             28
                                                                 43
                                                                      67
                                                    49
     รถ
         57
              52
                  67
                      93
                          81
                               52
                                       57
                                            35
                                                42
                                                         39
                                                             34
                                                                 32
                                                                      44
 46
                                   64
 43
         42
              39 53
                          45
                                        27
                                                37 40
                                                             28
                                                                 27
                                                                      32
     46
                      63
                               33
                                   32
                                            26
                                                         32
 35
     34
         31
              30
                  30
                      28
                           26
                               26
                                   26
                                        25
                                            27
                                                29
                                                     38
                                                         38
                                                             28
                                                                 30
                                                                      33
        30
             30
                  30
                      29
                          28
                               28
                                   28
                                        27
                                            25
                                                24
                                                    23
                                                         23
                                                             26
             34
                  31
                      29
                          29
                               31
                                   33
                                        27
                                            24
                                                23
                                                    23
                                                         24
                                                             28
CHANNEL
 52 47 44
             41
                  46
                      56
                           57
                               48
                                        42
                                           39
                                                40
                                                    40
                                                        40
                                                             47
                                                                 53
                                                                      49
                                   46
              55
                  58 87
                           84
                               69
                                   52
                                        43
                                            47
                                                42
                                                     38
                                                         40
                                                             44
                                                                      49
 66 102 104
              59
                  64 105 115
                               99
                                   70
                                        91 102
                                                 57
                                                     41
                                                         48
                                                             49
              62
                  71 110 121
                               87
                                   57
                                        87
                                            55
                                                 38
                                                         40
                                                             37
                                                                      44
 76
     98
          77
              74
                           71
                               48
                                   42
                                        45
                                                     35
                                                         37
                                                             41
                  60
                      65
                                            32
                                                 33
                                                                  48
                                                                      52
                           73
                  56
                               50
 62
     66
          58
              65
                      68
                                   53
                                        57
                                            34
                                                 34
                                                     38
                                                         43
                                                             45
                                                                  56
                                                                      73
 43
     45
          52
              47
                  62
                       90
                           78
                               48
                                   59
                                        56
                                            36
                                                 45
                                                     56
                                                         52
                                                             49
                                                                  45
                                                                      50
              35
                  50
 42
     42
          39
                       60
                           41
                                30
                                   30
                                        26
                                            30
                                                 42
                                                     46
                                                         44
                                                             42
                                                                  39
                                                                      40
 37
     34
          30
              31
                   31
                       26
                           26
                               31
                                    33
                                        33
                                            40
                                                 41
                                                     46
                                                         49
                                                             44
                                                                  46
                                                                      47
 40
     33
          34
              39
                  39
                               39
                                   40
                                        41
                                            43
                                                42
                                                         34
                                                             40
                                                                      49
                       36
                           36
                                                     36
                                                                  46
          43
             44
                  41
                       30
                           30
                               41
                                   44
                                        43
                                           42
                                                41
                                                     40
                                                         41
CHANNEL
137 144 149 147 136 120 123 127 119 122 135 133 133 131 124 129 136
133 118 102 136 116 82
                          94 96 117 122 120 127 132 126 124 132 121
          93 135 115
                           83 103 109
                       84
                                        67
                                             77
                                                109
                                                    104
                                                         85 105 135 135
     85 111 130 109
                       89
                           91
                                97
                                    67
                                        39
                                             8
                                                  8
                                                      8
                                                         42 124 133 132
112 107 126 106 108 109 129
                                я
                                         В
                                                     12
                                                          41
                                                             121 120 107
                                     В
                                             В
                                                  \mathcal{E}
                       78
                                                          5 100 91 100
121 130 128 111 105
                            5
                                 8
                                                  8
                                                      B
                                     8
                                         8
                                             8
                       71
134 133 122 133
                  95
                                 8
                                     8
                                         ય
                                             8
                                                  3
                                                      1 76 103 120 121
129 132 140 134 2
                        8
                             8
                                 8
                                     8
                                         8
                                             8
                                                 12
                                                     82
                                                        108 126 131 133
115 122 133 116
                   49
                       47 102
                              100
                                    90
                                        98
                                            97
                                                 97 90 109 132 132 132
109 107 109 110 97
                       99 91
                                        94 113 122 130 137 132 130 134
                               85
                                    86
 117 101 96 100 93 97 87
                                15
                                   84 106 123 125 127 127 126 132 130
```

Figure 1. Digital counts for hot (fire) pixels in AVHRR channels 1, 2 and 3 on the NOAA-9 image of 7 August 1985. The area limited by the continuous line is a site burning.

Figure 2(a) Colour composition of AVHRR channels 1, 2 and 3 for geometrically uncorrected NOAA-9 image of 7 August 1985 showing active fires, smoke clouds and fair-weather cumulus clouds. (b) Digital classification of AVHRR channel 3 showing hot (fire) pixels for the same region shown in figure 2(a). Only pixels with digital counts from 1 to 8 are shown.

(a)

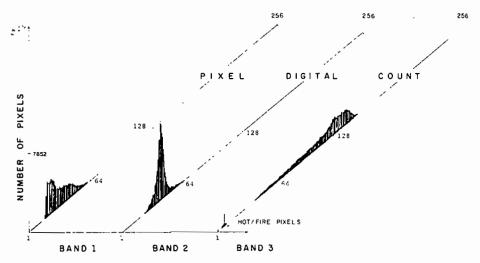


Figure 3. Histogram of pixel distribution in three AVHRR channels for 512 by 512 pixels of the NOAA-9 image of 9 August 1985. Note isolated peak in channel 3 associated to hot (fire) pixels.

amplification over the background of 3900-8900 times. For AVHRR channel 4 ($10\cdot3-11\cdot3\,\mu\text{m}$), not used in this study, and also according to Robinson (1991) the amplification over the background is 25-37 times, much lower than in channel 3. Channels 1 and 2 proved to be highly susceptible to smoke emissions which are unavoidable in forest fires, and therefore impair the use of these channels in fire detection.

Figure 3 shows the histograms for the digital counts in channels 1, 2 and 3 for a region of 512 by 512 pixels in South of Pará State, on 9 August. Of the three histograms, the one for channel 3 shows an isolated concentration of pixels with low counts and which were identified as hot/burning sites. The identification was possible with the help of the image in the visible channel depicting smoke plumes originating from the same pixels. Figure 4 shows a more detailed enlargement of the histogram for channel 3, in which the peak for count levels in the one to eight range associated to the fire pixels is clear.

Table 2 presents means and standard deviations for pixel counts in three channels for 2544 saturated pixels with count level one and for 14832 pixels in the one to eight count range. These pixels were all associated to active fires in the fourteen sectors of 512 by 512 pixels extracted from all images used in this study. Also in these sectors, the visible channel was used to confirm the fires by showing dense smoke clouds originating from all the pixels selected.

The column Δ shows the count level range of fire pixels for various sectors of the images analysed. When this range is either just one or one to eight for channel 3, the corresponding range for bands one and two refers to those same pixels of channel 3. The next two columns in the table show the means and variances of the ranges, and the n column shows the number of pixels in the sector of 512 by 512 pixels analysed in the three channels.

The data shows that fire pixels are better defined in channel 3 than in channels 1 and 2 when one considers the count range as well as the means and variances. Fire

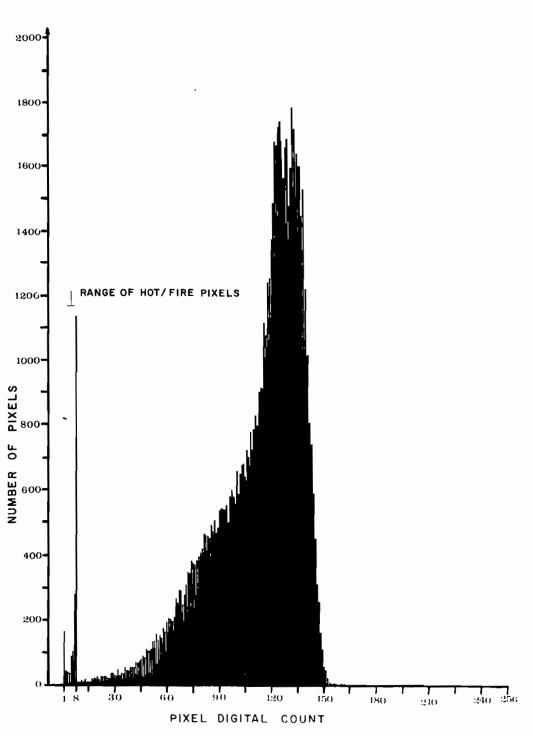


Figure 4. Detailed histogram of AVHRR channel 3 pixels shown in figure 3. Note that the peak related to hot (fire) pixels includes only 8 levels (in an 8-bit/256 scale) with higher frequency in the 8th level.

Table 2. Data and statistics of hot (fire) pixels, in AVHRR images. n is the number of hot (fire) pixels in the three channels; Δ , \bar{X} , S^2 , are respectively the ranges, averages and variances of the pixels in each range of digital counts.

		Statistics—1st count of channel 3		Statistics—8 initial counts of channel 3					
Image date	Channel	Δ	Ī	S²	n	 Δ	$ar{X}$	S ²	n
26 July	3 2 1	1 30-70 22-71	1·0 41·1 31·9	$ \begin{array}{c} 0.0 \\ 112.7 \\ 183.0 \end{array} $	22	 1-8 26-97 20-100	6·1 36·7 30·4	6·8 86·4 140·2	166
	3 2 1	1 23-48 18-45	1·0 30·9 24·8	$ \begin{pmatrix} 0.0 \\ 35.0 \\ 34.5 \end{pmatrix} $	27	1-8 21-89 16-86	5·2 34·2 27·3	$ \begin{array}{c} 7.9 \\ 90.3 \\ 104.7 \end{array} $	133
29 July	3 2 1	1 15-71 14-71	1·0 35·4 27·6	$ \begin{bmatrix} 0.0 \\ 120.7 \\ 166.2 \end{bmatrix} $	32	1–8 15–71 14–71	6·4 35·6 26·6	$ \begin{array}{c} 6.7 \\ 89.5 \\ 128.7 \end{array} $	230
6 August	3 2 1	1 31–100 21–98	1·0 47·7 42·0	$ \begin{bmatrix} 0.0 \\ 250.5 \\ 371.0 \end{bmatrix} $	54	1-8 23-119 18-122	6·3 48·9 43·4	$ \begin{array}{c} 5.8 \\ 249.9 \\ 367.1 \end{array} $	511
7 August	3 2 1	1 24–72 16–79	1·0 36·8 29·3	$ \begin{bmatrix} 0.0 \\ 96.2 \\ 131.4 \end{bmatrix} $	98	1-8 24-72 16-79	6·6 36·9 28·6	5.5 53.7 99.2	985
	3 2 1	1 17–128 17–125	1·0 45·7 39·5	$ \begin{bmatrix} 0.0 \\ 212.3 \\ 290.6 \end{bmatrix} $	120	1-8 17-128 17-125	6·3 45·3 40·5	$ \begin{array}{c} 6.0 \\ 170.7 \\ 251.2 \end{array} $	1051
9 August	3 2 1	1 23-112 20-107	1·0 38·4 32·1	$ \begin{bmatrix} 0.0 \\ 70.1 \\ 90.2 \end{bmatrix} $	1020	1-8 17-123 16-127	5·3 39·2 34·3	$ \begin{pmatrix} 8.1 \\ 91.6 \\ 139.2 \end{pmatrix} $	4641
	3 2 1	1 19-82 18-88	1·0 41·2 36·1	$ \begin{array}{c} 0.0 \\ 195.9 \\ 305.4 \end{array} $	32	1–8 19–82 18–88	6·8 39·5 32·9	5·0 115·9 188·4	386
	3 2 1	1 23–82 19–88	1·0 41·4 36·3	0.0 131.9 239.4	74	1-8 19-88 17-91	6·8 39·3 33·8	4·9 93·7 173·4	877
	3 2 1	1 27–122 22–125	1·0 68·8 64·5	$ \begin{bmatrix} 0.0 \\ 1386.8 \\ 1830.0 \end{bmatrix} $	22	1–8 20–125 19–128	6·5 48·5 41·4	$ \begin{array}{c} 6.0 \\ 662.4 \\ 851.8 \end{array} $	184
	3 2 1	1 29–100 2–105	1·0 41·1 37·9	0·0 129·5 192·8	54	1–8 22–123 17–127	6·7 40·1 37·8	$ \begin{array}{c} 4.6 \\ 72.3 \\ 128.3 \end{array} $	729
	3 2 1	1 22–103 20–109	1·0 41·0 33·8	$ \begin{bmatrix} 0.0 \\ 54.5 \\ 76.5 \end{bmatrix} $	765	1-8 17-114 16-119	5·0 40·9 34·3	$ \begin{array}{c} 8.4 \\ 76.2 \\ 123.9 \end{array} $	3061
	3 2 1	1 21-82 19-88	1·0 39·9 34·6	$ \begin{bmatrix} 0.0 \\ 111.1 \\ 205.0 \end{bmatrix} $	79	1-8 19-88 16-91 1-8	6·7 38·5 33·1 6·0	89·5 165·9 6·8	924
	3 2 1	1 16–98 16–107	1·0 33·0 30·4	155·9 178·4	145	1-8 17-98 16-103	38·0 34·2	92·7 152·5	954

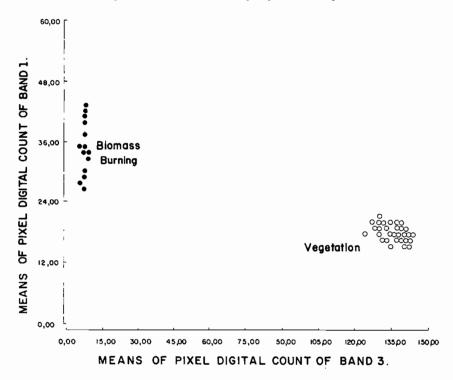


Figure 5. AVHRR channels 1 and 3 bi-spectral distribution of active fires and vegetation. Each of the 14 fire and 30 vegetation dots actually represent averages for the sectors given in tables 1 and 2.

pixels presented mean counts between 5.2 (26 July) and 6.8 (9 August) with a maximum variance of 8.4 (9 August) when using the one to eight count limit. Ranges for the other channels were much wider and consequently variances were also higher, indicating that channel 3 provides a much more defined range to detect hot pixels. For channel 1, the means in the column with statistics for the eight initial counts (in channel 3) varied from 26.6 (29 July) to 43.4 (6 August). The variances, in the same column of statistics, varied from 99.2 (7 August) to 851.9 (9 August).

The wider variances and ranges of count values of fire pixels in channels 1 and 2 can be explained by the effect of the smoke produced by the fires and by differences in ground covers. The smoke increases the reflection of incoming solar radiation and also diffuses the outgoing radiation reflected by the different ground covers. Concerning ground covers, the areas burning at the time the satellite images were obtained naturally had different amounts of exposed soil and content of ashes, reflecting more solar radiation, and therefore increasing the range in the count values in these two channels.

Figure 5 shows on a bi-spectral graph for channels 1 and 3 that fire and vegetation pixels are well separated without possibility of confusion. Each point in the graph is actually the average of many samples obtained from the eleven images already listed in table 1. Details of the vegetation samples plotted in figure 5 are given in table 3, and were always from dense tropical forest areas and less polluted by smoke; the points for biomass burning represent the average counts of the hot

Table 3. Data and statistics for samples of vegetation pixels in AVHRR images. n is the number of pixels in the three channels. Δ , \bar{X} , S^2 , are respectively the ranges, averages and variances of the pixels. The 'total' column refers to all samples in each image combined.

Image date	Channel	Radiometric range	Mean	S 2	n	Total mean	N
19 July	1	15–18	15.1	0.1	2100		
	2 3	32-37 129-144	34·3 140·2	0.6	2100		
	1	19–21	19.6	0⋅3 🧻		15-3	
	2 3	40-44	42.1	0.6	100	34.7	2200
	3	136–143	138-8	1⋅8 Ϳ		140∙1	2200
20 July	1	16-26	16.6	3.3			
	2 3	39–47 120–143	40·4 140·3	2·1 }	36		
	1	18-18	18.0	0.0		18-0	
	2 3	39–47	41.4	0.7 }	884	41.4	
	3	120-143	136.0	3.7 ∫		136-1	920
21 July	1	16-18	16.7	0.2			
,	2	35-40	38.0	1.0 }	196		
	3	134–139	136.4	1.0			
	1	15–16 33–38	15·2 35·4	0.1	836		
	2 3	135–148	141.3	2.7 ∫	030		
	1	15-16	15.3	0.2 ∫		15.5	
	2 3	34–37	35.4	-}	100	35.9	1122
	3	137–147	140-2	— J		140-3	1132
26 July	1	19-20	19.0	0.1			
	2 3	40–44	42·2 138·7	0.8	100		
	1	137–141 19–20	19.4	0.2			
	2	41-46	42.9	0.7	140		
	2 3	135-141	138-3	1.2			
	1	20-20	20.0	0.0	2.6	19.3	
	2 3	43-45 135-139	44·2 136·8	0·3 1·0	36	1·0 138·3	276
	3	133–137				150 5	270
27 July	1	19–20	20.0	0.0	224		
	2 3	41-46 133-140	43·1 136·7	0·7 } 1·5 }	324		
	ĺ	19-20	19.0	0.0			
	2	42-45	42.9	0.6 }	220		
	3	133–139	136.3	1.3			
	1 2	17-20 42-46	18·9 43·9	0.3	60	19·5 43·1	
	3	133-140	136.2	2.3 ∫	00	136.5	604
20.1.1				_			
29 July	1 2	17–18 40–43	17·3 41·3	0.2	100		
	3	129-134	131.6	1.2 ∫	100		
	1	17-20	17.3	0.2		17.3	
	2 3	38-48	42.7	2.5	748	42.6	0.40
	3	125–143	135.8	7.4		135.0	848

Table 3 continued

Image date	Channel	Radiometric range	Mean	S ²	n	Total mean	N
31 July	1 2	16-18 36-39	16·6 37·6	$\begin{bmatrix} 0.3 \\ 0.3 \end{bmatrix}$	100		
	3	133–138	135.0	1.1	100		
	1	16–19	17.4	0.4			
	2	32-40	38.2	1.6 }	60		
	3	111–141	138.8	31·0 J			
	1	17–18	17.1	0.1	(0		
	2 3	36–39 136–141	37·9 138·8	0·8 } 1·7 }	60		
	1	16-17	16.0	0.0			
	2	35-39	36.6	0.9	100		
	3	129-141	133.5	5∙0 ∫			
	1	16–21	16.7	0.9		16.7	
	2	32–42	36.2	2.4	140	37.0	460
	3	126–143	138-4	8.1		135-8	460
5 August	1	17-17	17.0	0.0			
	2	34–38	36.3	1.1 }	156		
	3	139-148	142.5	1.9 ∫			
	1	17–18	17.9	0.1			
	2 3	35-36	35.8	0.1	36		
	1	134–142 17–18	139·1 17·5	2·4 ∫ 0·3 ∫			
	2	31–36	34.4	0.6 >	140		
	3	136-144	140.7	2.0	• 10		
	1	18-21	18.1	0.2)			
	2	33–37	35.0	0.2	140		
	3	134–148	141.8	2.8			
	1 2	18- 1 8 34-35	18·0 35·0	$\begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}$	84		
	3	140–148	142.9		04		
	1	19–20	19.9	0.1 🖯			
	2	42-45	43.4	0.6	36		
	3	132-135	133-1	0.9 ∫			
	1	19–23	20.0	0.2		18-1	
	2	34–39	36.3	0.9	100	35.8	600
	3	130–143	136-1	5.7		140.5	692
6 August	1	19-20	19.9	0.1			
J	2	42-44	43.3	0.3	36		
	3	132–136	133.9	0.6 ∫			
	1	20–21	20.9	0.1	2.		
	2 3	44–47 116–130	45·2 126·4	0·6 } 7·7 }	36		
	I	19-23	19.9	0.8			
	2	40–47	43.3	1.8	484		
	3	129-144	137.3	6.7			
	1	20-23	20.5	0.6			
	2	43-47	45.3	0.7 }	36		
	3	121-129	126-1	2.6			
	1 2	20–23 43–46	21·1 44·8	$\begin{bmatrix} 0.2 \\ 0.6 \end{bmatrix}$	60		
	/	4 7-40	44.4	0.0 >	OU.		

Table 3 continued

Image date	Channel	Radiometric range	Mean	S ²	n	Total mean	N
	1	20-21	20.7	0.2	2.0	20.2	
	2 3	44-46 128-132	45·1 130·1	0.3	36	43·7 128·5	688
7 August	1	20–22	20.2	0.2			
,	2	44-49	46.4	1.0 }	60		
	3	125-132	128.9	2.7			
	1	18-21	19.3	0⋅3]			
	2	35–46	42.9	4.2	60		
	3	126-136	129-1	3⋅6 Ϳ			
	1	19-19	19.0	0.0			
	2 3	40-45 125-131	42·6 128·4	1·1 } 1·7	60		
	1	19–20	19.0	0.0]			
	2	40-46	42.2	1.0 }	60		
	3	113-132	127-1	12.2			
	1	18-21	19-1	0.1 ∫			
	2	31-45	42-4	2.5 }	192		
	3	121–138	128-9	<u>ل</u> —			
	1	18–20	18.6	0⋅3]			
	. 2	35-41	38.1	0.8	684		
	3	127–136	133-2	2.2			
	1 2	18-19 37- 4 2	18·4 38·3	0.2 0.7	180		
	3	130–139	135.5	3.3	100		
	1	16–19	17.2	0.2		18.0	
	2	34-43	37.3	2.1	1140	38.6	
	3	120-143	137-2	7.2		134.4	2436
9 August	ı	16–22	17.7	0.4]			
Ü	2	36-41	37.7	0.8 }	140		
	3	117–141	133.8	6⋅8 ∫			
	1	18-19	18-4	0∙2]			
	2	35–38	37.2	0.6	100		
	3	123–134	128.9	5.3			
	1	19-21	19-1	0.2	26		
	2 3	34–49	43·2	5.6	36		
	1	128–138 18–19	131.5	4·1 ∫ 0·2 ີ			
	2	18–19 42–44	18·2 42·5	0.5	60		
	3	114-127	123.2	4.2	00		
	. 1	18–19	18.0	0.0		18-2	
	2	35–39	37.8	0.5	140	41.5	
	3	114-140	134.0	1.5		126.4	1496

pixels in the one to eight range from table 2. Vegetation samples in channel 3 had low average values of counts, ranging from 123.2 (9 August) to 142.9 (5 August), and were more than one order of magnitude higher than the biomass burning pixel counts. (It must be remembered that channel 3 has an inverted scale, where the

Table 4. AVHRR response in channels 1, 2 and 3 for active fires, smoke and vegetation. Values represent averages obtained from many sectors and images referenced in tables 1, 2 and 3. Intervals of confidence refer to the significance level of 1 per cent ($\alpha = 0.01$).

Channel	Fire	Forest	Smoke
1	34 ± 34	17±1	39±8
2	40 ± 28	38 ± 3	44 ± 5
3	6±7	137 ± 5	136 ± 31

lowest count values correspond to highest energy levels received by the AVHRR sensor.) The difference between counts of fire and vegetation pixels in channel 2 did not exist, since in this channel average counts of pixels ranged from 34·2 (26 July) to 48·9 (6 August) for fire pixels (table 2), and from 34·3 (19 July) to 46·4 (7 August) for forest pixels (table 3). For channel 1, the counts varied from 26·6 (29 July) to 43·4 (6 August) for fire pixels (table 2), and from 15·1 (19 July) to 21·1 (6 August) for forest pixels, making the difference in this channel barely marginal to separate these two classes. Therefore fires are better distinguished from surrounding forest in channel 3, and to some extent also in channel 1. With the presence of significant amounts of smoke, channel 1 will also record reflected radiation from the smoke particles, preventing the recording of good data of the forest cover, and consequently making its use unreliable for fire detection in typical conditions of biomass burning in the forest.

The above information can be summarized in table 4, where average count values for all samples of fire and forest pixels combined are presented. Average data of samples of pixels on downwind dense smoke plumes over forest background has also been included; for more details about the characteristics of this class (smoke) see Pereira (1988). In channel 3, forest and smoke had close responses, indicating that in the $3.7 \, \mu \text{m}$ wavelength the smoke does not show high temperatures and that it can be penetrated to a large extent. In channel 2 the three classes had responses relatively close, again indicating that this channel is not appropriate to fire detection. In channel 1 smoke had higher count levels than forests and to some extent than fires, corroborating the likelihood that it reflects incoming solar radiation, and therefore that it interferes in the detection of fires in real biomass burning conditions.

4. Conclusions

Digital analysis of channels 1, 2 and 3 of NOAA-9 AVHRR images indicated that channel 3 $(3.55-3.93 \,\mu\text{m})$ is the best one to detect active fires in a region of tropical forests. Channels 1 and 2 are subject to effects of smoke and cause the fires to be mistaken with other ground covers. Channel 3 showed pixels with digital counts of more than one order of magnitude smaller than for other ground covers. Most fires were found in the 8th count (in 256 levels, or 32nd on 1024 levels) and not in the saturated level. Data about biomass burning in tropical forests is becoming increasingly important to study the carbon cycle and atmospheric contamination in general. The simple technique to detect fires based on AVHRR/HRPT channel 3, and the relatively low costs of image reception and processing presents therefore a strong potential to assess occurrences of fires in near-real time.

Acknowledgments

The financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de SP (FAPESP) as well as the technical support from LTID and DOP departments of INPE is highly acknowledged.

References

- Andreae, M. O., Browell, E. V., Garstang, M., Gregory, G. L., Harris, R. C., Hill, G. F., Jaqcob, D. J., Pereira, M. C., Sachse, G. W., Setzer, A. W., Dias, P. L. S., Talbot, R. W., Torres, A. L., and Wofsy, S. C., 1988, Biomass burning emission and associated haze layers over Amazonia. *Journal of Geophysical Research*, 93, 1509–1527.
- CHUNG, Y.-S., and Le, H. V., 1984, Detection of fire smoke plumes by satellite imagery. *Atmospheric Environment*, 18, 2143-2151.
- CRUTZEN, P. J., and Andreae, M. O., 1990, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. *Science*, **250**, 1669–1678.
- DOZIER, J., 1981, A method for satellite identification of surface temperature fields of subpixel resolution. *Remote Sensing of Environment*, 11, 221-229.
- EOSAT, 1988. The Yellowstone wildfires of 1988. Landsat Data Users Notes, 3, p. 12.
- Ernst, J. A., and Matson, M., 1977, A NOAA-5 view of Alaskan smoke patterns. *Bulletin of the American Meteorological Society*, **58**, 1074–1076.
- Flannigan, M. D., 1985, Forest fire monitoring using the NOAA satellite series. MSc Thesis, Colorado State University, Fort Collins, CO.
- FLANNIGAN, M. D., and HAAR, T. H. V., 1986, Forest fire monitoring using the NOAA satellite series. In *American Meteorological Society Symposium, Atlanta, Georgia* (Atlanta: A.M.S.), pp. 168-172.
- FREDERIKSEN, P., LANGAAS, S., and MBAYE, M., 1990, NOAA-AVHRR and GIS-based monitoring of fire activity in Senegal—a provisional methodology and potential applications. In *Fire in the Tropical Biota*, edited by J. G. Goldammer (Berlin: Springer-Verlag), pp. 400–417.
- G.E., GENERAL ELECTRIC COMPANY, 1975, Image 100: User Manual (Daytona Beach, Florida: G.E.).
- KAUFMAN, Y. J., SETZER, A. W., JUSTICE, C., TUCKER, C. J., PEREIRA, M. C., and FUNG, I., 1990, Remote sensing of biomass burning in the tropics. In *Fire in the Tropical Biota*, edited by J. G. Goldammer (Berlin: Springer-Verlag), pp. 371-399.
- KIDWELL, K. B., 1985, NOAA polar orbiter data (TIROS-N, NOAA-6, NOAA-8 and NOAA-9) user guide. NOAA-NESS, Washington, DC.
- KIRCHHOFF, V. W. J. H., SETZER, A. W., and PEREIRA, M. C., 1989, Biomass burnings in Amazonia: scasonal effects on atmospheric O₃ and CO. *Geophysical Research Letters*, 16, 469–472.
- Lee, T. F., and Tag, P. M., 1990, Improved detection of hotspots using the AVHRR 3-7 μ m channel. Bulletin of the American Meteorological Society, 71, 1722–1730.
- MALINGREAU, J. P., 1984, Remote sensing and disaster monitoring: a review of application in Indonesia. *International Symposium on Remote Sensing of Environment*, 18, Paris, France. Proceedings of E.R.I.M. (Ann Arbor: E.R.I.M.), 1, pp. 283-297.
- MALINGREAU, J. P., 1990, The contribution of remote sensing to the global monitoring of fires in tropical and subtropical ecosystems. In *Fire in the Tropical Biota*, edited by J. G. Goldammer (Berlin: Springer-Verlag), pp. 337-370.
- MALINGREAU, J. P., STEPHENS, G., and FELLOWS, L., 1985, Remote sensing of forest fires: Kalimantan and North Borneo in 1982-83. Ambio, 14, 314-321.
- MATSON, M., and DOZIER, J., 1981, Identification of subresolution high temperatures sources using thermal IR sensor. *Photogrammetric Engineering and Remote Sensing*, 47, 1311-1318.
- MATSON, M., and HOLBEN, B., 1987, Satellite detection of tropical burning in Brazil. International Journal of Remote Sensing, 8, 509-516.
- MATSON, M., SCHNEIDER, S. R., ALDRIDGE, B., and SATCHWELL, B., 1984, Fire detection using the NOAA-series satellites. NOAA-NESS, Washington, DC (NOAA-TR-NESDIS-7).

- MATSON, M., STEPHENS, G., and ROBINSON, J., 1987, Fire detection using data from the NOAA-N satellites. *International Journal of Remote Sensing*, 8, 961–970.
- MUIRHEAD, K., and CRACKNELL, A. P., 1985, Straw burning over Great Britain detected by AVHRR. *International Journal of Remote Sensing*, 6, 827–833.
- Pereira, M. C., 1988, Detection, monitoring and analysis of some environmental effects of biomass burnings in Amazon region using NOAA and Landsat satellite images, and airborne data. MSc Thesis in Remote Sensing (in Portuguese), INPE, São Jose dos Campos, SP, Brazil, 268pp. (INPE-4503-TDL/362).
- ROBINSON, J. M., 1991, Fire from space: Global fire evaluation using infrared remote sensing. *International Journal of Remote Sensing*, 12, 3-24.
- SETZER, A. W., and PEREIRA, M. C., 1991a, Amazônia biomass burning in 1987 and an estimate of their tropospheric emissions. *Ambio*, 20, 19-22.
- SETZER, A. W., and PEREIRA, M. C., 1991 b, Operational detection of fires in Brazil with NOAA-AVHRR. 24th International Symposium on Remote Sensing of the Environment, Rio de Janeiro, Brazil (Ann Arbor: E.R.I.M.). In Press.
- SETZER, A. W., KIRCHHOFF, V. W. J. H., and PEREIRA, M. C., 1991, Ozone concentrations in the Brazilian Amazonia during BASE-A. In *Global Biomass Burning—Proceedings Chapman Conference*, edited by J. Levine (Boston: MIT Press), pp. 112-114.
- SVEJKOVSKY, J., 1985, Santa Ana airflow observed from wildfire smoke patterns in satellite imagery. *Monthly Weather Review*, 113, 902-906.